Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Barbato, Alessandro (2018) Reliability and dynamic properties of GaN devices. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 30 September 2021 for intellectual property related reasons.
Visibile to: nobody

6Mb

Abstract (italian or english)

Nowadays power electronics market is increasingly having the need for high effciency power conversion systems. Due to its outstanding properties in terms of high temperature, high voltage and high frequency capability, GaN material seems to be a valid candidate to provide the solution to the market requirements. In particular, GaN High Electron Mobility Transistors (GaN HEMTs) are promising devices suitable for high voltage and high power applications. In the last years, many works about GaN power HEMTs devices have been published and this confirms the huge interest in this emerging technology. Despite the outstanding performance already demonstrated of GaN HEMTs, market is still wary of this technology due to some still open reliability issues. In particular, many works have been published regarding the reliability of such devices but only few are able to predict the lifetime of such devices working in the final real application with reasonable accuracy. Many failure modes have been investigated in laboratory direct current (DC) and pulsed conditions but only few works try
to analyze the behavior of GaN HEMTs transistors in the real application environment.
The main goal of this thesis is to investigate reliability of GaN power HEMT devices during dynamic operation in real life conditions. This thesis try to identify the most important aspects that limit reliability of GaN HEMT devices in real life conditions and try to identify the failure modes during real switching operation. Many test concepts to assess performance and reliability of GaN HEMTs working in application conditions are also reported. The thesis starts by explaining the traditional state-of-the art approach used until now to assess HEMTs reliability, then introduce novel measurement concepts that are used to test devices in real switching operation close to the operative conditions of a real power converter. First of all, a novel measurement system able to assess dynamic performance and reliability of GaN devices is presented. As a result, some novel measurements concepts and the related results are reported showing that testing GaN HEMTs in real life conditions is of fundamental importance to assess performance and reliability of such devices. At the end of the thesis a methodology capable to carry out accelerated stress test in dynamic operation conditions has been found, using an external additional capacitor in parallel with the HEMT under test. We think that the concepts introduced in this thesis enable a novel test approach that can lead to the definition of a lifetime model for GaN power HEMTs able to predict the time to failure of devices working in real life conditions.


EPrint type:Ph.D. thesis
Tutor:Meneghesso, Gaudenzio
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:15 May 2019
Anno di Pubblicazione:30 September 2018
Key Words:HEMT, GaN, dynamic ON resistance, RDSON, hard switching, application, dynamic
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:11926
Depositato il:08 Nov 2019 12:59
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] N. Fichtenbaum, M. Giandalia, S. Sharma, and J. Zhang. Half-Bridge GaN Power ICs: Performance and Application. IEEE Power Electronics Magazine, 4(3):33-40, Sept 2017. Cerca con Google

[2] B. Hughes, J. Lazar, S. Hulsey, M. Musni, D. Zehnder, A. Garrido,R. Khanna, R. Chu, S. Khalil, and K. Boutros. Normally-on-GaN-on-Si multi-chip module boost converter with 96% efficiency and low gate and drain overshoot. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pages 484-487, March 2014. Cerca con Google

[3] B. Passmore, S. Storkov, B. McGee, J. Stabach, G. Falling, A. Curbow, P. Killeen, T. Flint, D. Simco, R. Shaw, and K. Olejniczak. A 650 V/150 A enhancement mode GaN-based half-bridge power module for high frequency power conversion systems. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pages 4520-4524, Sept 2015. Cerca con Google

[4] F. Luo, Z. Chen, L. Xue, P. Mattavelli, D. Boroyevich, and B. Hughes.Design considerations for GaN HEMT multichip halfbridge module for high-frequency power converters. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pages 537-544, March 2014. Cerca con Google

[5] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Transactions on Electron Devices, Vol. 48(3):560-566, Mar 2001. Cerca con Google

[6] D. Jin and J. A. del Alamo. Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs. 24th International Symposium on Power Semiconductor Devices and ICs, Bruges, pages 333-336, 2012. Cerca con Google

[7] I. Hwang et al. Impact of Channel Hot Electrons on Current Collapse in AlGaN/GaN HEMTs. IEEE Electron Device Letters, 34(12):1494-1496, Dec 2013. Cerca con Google

[8] Andrzej Taube et al. Temperature-dependent electrical characterization of high-voltage AlGaN/GaN-on-Si HEMTs with Schottky and ohmic drain contacts. Solid-State Electronics, 111:12-17, September 2015. Cerca con Google

[9] M. Ilegems and H.C. Montgomery. Electrical properties of n-type vapor-grown gallium nitride. Journal of Physics and Chemistry of Solids, 34(5):885-895, May 1973. Cerca con Google

[10] N. Ikeda et al. GaN Power Transistors on Si Substrates for Switching Applications. Proceedings of the IEEE, Vol. 98(7):1151-1161, Jul 2010. Cerca con Google

[11] Y. Wu, M. Jacob-Mitos, M. L. Moore, and S. Heikman. A 97.8% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1MHz. IEEE Electron Device Letters, 29(8):824-826, Aug 2008. Cerca con Google

[12] G. Meneghesso, M. Meneghini, R. Silvestri, P. Vanmeerbeek, P. Moens,and E. Zanoni. High voltage trapping effects in GaN-based metal-insulator-semiconductor transistors. Jpn. J. Appl. Phys., 55(1S):01AD04-1-01AD04-5, Jan 2016. Cerca con Google

[13] M. Ruzzarin, M. Meneghini, I. Rossetto, M. Van Hove, S. Stoffels, T. L. Wu, S. Decoutere, G. Meneghesso, and E. Zanoni. Evidence of Hot-Electron Degradation in GaN-Based MIS-HEMTs Submitted to High Temperature Constant Source Current Stress. IEEE Electron Device Letters, 37(11):1415-1417, Nov 2016. Cerca con Google

[14] M. Meneghini et al. Role of buffer doping and pre-existing trap states in the current collapse and degradation of AlGaN/GaN HEMTs. IEEE International Reliability Physics Symposium, 2014. Cerca con Google

[15] M. Silvestri, M. J. Uren, and M. Kuball. Iron-induced deep-level acceptor center in GaN/AlGaN high electron mobility transistors: Energy level and cross section. Appl. Phys. Lett., 102(7):073501-1-073501-4, Feb 2013. Cerca con Google

[16] D. W. Cardwell, A. Sasikumar, A. R. Arehart, S. W. Kaun, J. Lu S. Keller, J. S. Speck, U. K. Mishra, S. A. Ringel, and J. P. Pelz. Spatially-resolved spectroscopic measurements of Ec-0.57 eV traps in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett., 102(19):193509-1-1935094, May 2013. Cerca con Google

[17] B. Wang, N. Tipirneni, M. Riva, A. Monti, G. Simin, and a. E. Santi. An Efficient High-Frequency Drive Circuit for GaN Power HFETs. IEEE Transactions on Industry Applications, 45(2):843-853, March-April 2009. Cerca con Google

[18] N. Badawi and S. Dieckerhoff. A new Method for Dynamic Ron Extraction of GaN Power HEMTs. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, pages 1-6, 2015. Cerca con Google

[19] R. Gelagaev, P. Jacqmaer, and J. Driesen. A Fast Voltage Clamp Circuit for the Accurate Measurement of the Dynamic ON-Resistance of Power Transistors. IEEE Transactions on Industrial Electronics, 62(2):1241-1250, Feb 2015. Cerca con Google

[20] F. Luo, Z. Chen, L. Xue, P. Mattavelli, D. Boroyevich, and B. Hughes. Design considerations for GaN HEMT multichip halfbridge module for high-frequency power converters. IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, pages 537-544, 2014. Cerca con Google

[21] H Amano, Y Baines, E Beam, Matteo Borga, T Bouchet, Paul R Chalker, M Charles, Kevin J Chen, Nadim Chowdhury, Rongming Chu, Carlo De Santi, Maria Merlyne De Souza, Stefaan Decoutere, L Di Cioccio, Bernd Eckardt, Takashi Egawa, P Fay, Joseph J Freedsman, L Guido, Oliver Haberlen, Geoff Haynes, Thomas Heckel, Dilini Hemakumara, Peter Houston, Jie Hu, Mengyuan Hua, Qingyun Huang, Alex Huang, Sheng Jiang, H Kawai, Dan Kinzer, Martin Kuball, Ashwani Kumar, Kean Boon Lee, Xu Li, Denis Marcon, Martin Marz, R McCarthy, Gaudenzio Meneghesso, Matteo Meneghini, E Morvan, A Nakajima, E M S Narayanan, Stephen Oliver, Tomas Palacios, Daniel Piedra, M Plissonnier, R Reddy, Min Sun, Iain Thayne, A Torres, Nicola Trivellin, V Unni, Michael J Uren, Marleen Van Hove, David J Wallis, J Wang, J Xie, S Yagi, Shu Yang, C Youtsey, Ruiyang Yu, Enrico Zanoni, Stefan Zeltner, and Yuhao Zhang. The 2018 GaN power electronics roadmap. Journal of Physics D: Applied Physics, 51(16):163001, 2018. Cerca con Google

[22] G. Spiazzi and L. Corradini. Lecture notes in Power Electroncs. 2015-2016. Cerca con Google

[23] Jungwoo Joh and Jesus A. del Alamo. A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors. IEEE Transactions on Electron Devices, 58(1):132-140, Jan 2011. Cerca con Google

[24] G. Meneghesso, M. Meneghini, A. Chini, G. Verzellesi, and E. Zanoni. Trapping and high field related issues in GaN power HEMTs. IEEE International Electron Devices Meeting, San Francisco, CA, pages 17.5.1-17.5.4, 2014. Cerca con Google

[25] J. Kuzmik et al. Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon. IEEE Transactions on Electron Devices, 52(8):1698-1705, Aug 2005. Cerca con Google

[26] A. Ikoshi et al. Lifetime evaluation for Hybrid-Drain-embedded Gate Injection Transistor (HD-GIT) under practical switching operations. IEEE International Reliability Physics Symposium (IRPS), pages 4E.1-1-4E.2-7, 2018. Cerca con Google

[27] I. Rossetto et al. Evidence of Hot-Electron Effects During Hard Switching of AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 64(9):3734-3739, Sept 2017. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record