Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Aruta, Patrizia (2019) An innovative design of transcatheter implantable mitral valve prosthesis.
Anatomy of the mitral valve in patients with functional mitral regurgitation and preliminary results of the implant in the animal model using quantitative 3D echocardiography and particle imaging velocimetry.
[Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi di dottorato) - Submitted Version
16Mb

Abstract (italian or english)

Background: Transcatheter mitral valve replacement (TMVR) is a new therapeutic option for high surgical risk patients with mitral regurgitation (MR) and several prostheses are currently at different stages of development. Indeed, once prototypes of these prosthesis are designed, they need to undergo both bench testing and preclinical evaluation to test the performance and safety of the device and acquire useful information for guiding the secondary improvements. After this stage, if the prosthesis shows favourable results in terms of performance and safety, the manufacturer can apply for CE marking. In case of achievement of the CE mark, the clinical use can start in the European countries. The application of advanced echocardiography is useful not only in a preclinical experimental stage but results to be an irreplaceable tool in the proper selection of the treatment strategy with respect to the case-specific anatomic and functional mitral valve (MV) disease pattern and in the guidance of the correct bioprosthesis positioning and implantation during the procedure.
Aims: To describe the feasibility and advantage of 3D and contrast echocardiography in a preclinical study and report the acute hemodynamic results after implantation of a novel transcatheter self- expandable D-shape mitral bioprosthesis characterized by asymmetric stent and advanced mono- leaflet structure. In addition, we aimed to assess the MV geometry in patients with functional MR (FMR) that would potentially benefit from TMVR, focusing on the comparison between mitral annulus (MA) geometry of patients with ischemic (IMR) and non-ischemic mitral regurgitation (nIMR).
Methods: From May 2015 to August 2018, prosthesis prototypes were implanted under echocardiography guidance in 112 small-size healthy sheep using both trans-atrial (Ta) and trans- apical (TA) access. Multimodality imaging was used for animal selection and trans-pericardial echocardiography (TPE) was applied to obtain humanized image during intervention. Particle imaging velocimetry was used to assess intraventricular flow dynamics. We retrospectively selected 94 patients with severe FMR, both IMR and nIMR. 3D MA analysis was performed in early-diastole
and mid-systoleby using a recent, commercially-available software package. Measure of interest were MA dimensions and geometry parameters, left atrial and left ventricular volumes.
Results: 2D and 3D TPE was performed before and after implantation to measure MA dimensions (area: 6.4±0.8 cm2, perimeter: 9.4±0.8 cm) and assess prosthesis alignment and function. The vast majority of implantations showed none or just trivial intra- (n=104, 93%) and peri-prosthesis leak (n=86, 77%) with good valve function (mean gradient 4 ± 3 mmHg). At particle imaging velocimetry, left ventricular vortex properties did not change after implantation.
In patients with severe FMR, 41 (43,6%) with IMR and 53 (56,4%) with nIMR, maximum MA 3D area (10.7±2.5 cm2 vs 11.6±2.7 cm2, p=0.124) and the best fit plane MA area (9.9±2.3 cm2 vs 10.7±2.5 cm2, p=0.135, respectively) were similar between IMR and nIMR. nIMR patients showed larger mid- systolic 3D area (9.8±2.3 cm2 vs 10.8±2.7 cm2, p=0.046) and perimeter (11.2±1.3 cm vs 11.8±1.5 cm, p=0.048), longer and larger leaflets, and wider aorto-mitral angle (135±10° vs 141±11°, p=0.011). Conversely, the area of MA at the best fit plane did not differ between IMR and nIMR patients (9±1.1 cm2 vs 9.9±1.5 cm2, p=0.063).
Conclusions: In the healthy sheep model, initial preclinical experience with a novel mono-leaflet transcatheter self-expandable mitral prosthesis showed that the TA implantation of the valve was feasible, safe, and supported by good hemodynamic results. The application of advanced echocardiography on an animal model was feasible and helpful in guiding the continuous refinements needed to enhance the development of this new concept of bioprosthesis.
Patients with ischemic and non-ischemic etiology of FMR have similar maximum dimension, yet systolic differences between the two groups should be considered to tailor prosthesis’s selection.

Abstract (a different language)

Premesse: La sostituzione percutanea della valvola mitralica rappresenta una nuova opzione terapeutica per i pazienti con insufficienza mitralica (IM) ad alto rischio chirurgico. Attualmente molte protesi percutanee sono in differenti fasi di sviluppo. I prototipi valvolari, prima di ottenere il marchio CE ed iniziare l’uso clinico, devono essere sottoposti a test su animale per raggiungere il design finale. Inoltre, la valutazione della geometrica valvolare mitralica è fondamentale per il successo procedurale e l’ecocardiografia transtoracica 3D rappresenta un utile strumento di screening. Scopi: Valutare la fattibilità dell’impianto e i risultati emodinamici in acuto di una nuova bioprotesi percutanea auto-espandibile caratterizzata da una forma a D con stent asimmetrico e da un unico lembo. Valutare la geometrica della valvola mitralica in pazienti con IM funzionale (IMF) che potrebbero potenzialmente beneficiare della sostituzione percutanea della valvola mitralica, confrontando i pazienti con IMF secondaria a cardiopatia ischemica (IMF-I) e non-ischemica (IMF- nI).
Metodi: Da Maggio 2015 ad Agosto 2018 sono stati impiantati prototipi della nuova bioprotesi su 112 ovini sani di piccola taglia usando l’approccio trans-atriale (Ta) e trans-apicale (TA). La selezione degli ovini è avvenuta mediante tomografia computerizzata ed ecocardiografia, mentre l’impianto è stato guidato tramite ecocardiografia trans-pericardica (ETP) che ha permesso di ottenere immagini “umanizzate”. Inoltre, l’analisi della velocità delle particelle è stata utilizzata per valutare la dinamica del flusso intracavitario prima e dopo impianto della bioprotesi.
Sono stati retrospettivamente selezionati 94 pazienti con IMF severa. L’analisi 3D dell’AM è stata eseguita su immagini 3D dedicate, utilizzando un nuovo software d’analisi disponibile in commercio, in due momenti del ciclo cardiaco (protodiastole e mesosistole). Sono state misurate le dimensioni e la geometria dell’AM e i volumi atriali e ventricolari sinistri.
Risultati: ETP 2D e 3D è stata utilizzata per misurare le dimensioni dell’AM nel modello ovino (area: 6.4 ± 0.8 cm2, perimetro: 9.4 ± 0.8 cm) e per valutare l’allineamento ed il funzionamento della protesi. La maggioranza degli impianti hanno mostrato nessuna o solo minima insufficienza intra- (n=104, 93%) e peri-protesica (n=86, 77%) ed un buon funzionamento della protesi (gradiente medio 4 ± 3 mmHg). Inoltre, all’analisi della velocità delle particelle, le proprietà dei vortici del ventricolo sinistro rimangono invariati dopo l’impianto.
Nei pazienti con IMF severa, 41 (43.6%) con IMF-I e 53 (56.4%) con IMF-nI, l’area massima 3D dell’AM (10.7±2.5 cm2 vs 11.6±2.7 cm2, p=0.124) ed a livello del best fit plane (9.9±2.3 cm2 vs 10.7±2.5 cm2, p=0.135, rispettivamente) sono simili tra i pazienti con IMF-I e IMF-nI. In mesosistole, i pazienti con IMF-nI mostrano una maggiore area 3D (9.8±2.3 cm2 vs 10.8±2.7 cm2, p=0.046) e perimetro (11.2±1.3 cm vs 11.8±1.5 cm, p=0.048) con lembi più lunghi e grandi, ed un più ampio angolo aorto-mitralico (135±10° vs 141±11°, p=0.011). Mentre l’area dell’AM a livello del best fit plane non differisce tra i pazienti con IMF-I e IMF-nI (9±1.1 cm2 vs 9.9±1.5 cm2, p=0.063). Conclusioni: L’iniziale esperienza pre-clinica della nuova bioprotesi mono-lembo autoespandibile, ha evidenziato che l’impianto della valvola tramite approccio TA è fattibile e sicuro con un buon risultato emodinamico. L’utilizzo di metodi ecocardiografici avanzati su modello animale è stato fattibile ed ha supportato il continuo sviluppo di un nuovo concetto di bioprotesi. I pazienti con IMF ad eziologia ischemica e non-ischemica hanno simili dimensioni massime dell’AM; le differenze sistoliche nella geometria dell’AM dovrebbero essere prese in considerazioni per l’accurata selezione delle protesi.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Badano, Luigi
Ph.D. course:Ciclo 31 > Corsi 31 > MEDICINA SPECIALISTICA TRASLAZIONALE "G.B. MORGAGNI"
Data di deposito della tesi:16 May 2019
Anno di Pubblicazione:16 May 2019
Key Words:Mitral valve, functional mitral regurgitation, 3D echocardiography
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:11929
Depositato il:08 Nov 2019 12:51
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 2003;24:1231- 43. Cerca con Google

2. Monteagudo Ruiz JM, Galderisi M, Buonauro A, et al. Overview of mitral regurgitation in Europe: results from the European Registry of mitral regurgitation (EuMiClip). Eur Heart J Cardiovasc Imaging 2018;19:503-7. Cerca con Google

3. Mirabel M, Iung B, Baron G, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 2007;28:1358-65. Cerca con Google

4. Goel SS, Bajaj N, Aggarwal B, et al. Prevalence and outcomes of unoperated patients with severe symptomatic mitral regurgitation and heart failure: comprehensive analysis to determine the potential role of MitraClip for this unmet need. J Am Coll Cardiol 2014;63:185-6. Cerca con Google

5. Asgar AW, Mack MJ, Stone GW. Secondary mitral regurgitation in heart failure: pathophysiology, prognosis, and therapeutic considerations. J Am Coll Cardiol 2015;65:1231-48. 6. Banai S, Verheye S, Cheung A, et al. Transapical mitral implantation of the Tiara bioprosthesis: pre-clinical results. JACC Cardiovasc Interv 2014;7:154-62. Cerca con Google

7. Bapat V, Rajagopal V, Meduri C, et al. Early Experience With New Transcatheter Mitral Valve Replacement. J Am Coll Cardiol 2018;71:12-21. Cerca con Google

8. Lutter G, Lozonschi L, Ebner A, et al. First-in-human off-pump transcatheter mitral valve replacement. JACC Cardiovasc Interv 2014;7:1077-8. Cerca con Google

9. Blanke P, Naoum C, Webb J, et al. Multimodality Imaging in the Context of Transcatheter Mitral Valve Replacement: Establishing Consensus Among Modalities and Disciplines. JACC Cardiovasc Imaging 2015;8:1191-208. Cerca con Google

10. Boekstegers P, Hausleiter J, Baldus S, et al. Percutaneous interventional mitral regurgitation treatment using the Mitra-Clip system. Clin Res Cardiol 2014;103:85-96. Cerca con Google

11. Daimon M, Saracino G, Gillinov AM, et al. Local dysfunction and asymmetrical deformation of mitral annular geometry in ischemic mitral regurgitation: a novel computerized 3D echocardiographic analysis. Echocardiography 2008;25:414-23. Cerca con Google

12. Nagasaki M, Nishimura S, Ohtaki E, et al. The echocardiographic determinants of functional mitral regurgitation differ in ischemic and non-ischemic cardiomyopathy. Int J Cardiol 2006;108:171-6. Cerca con Google

13. Veronesi F, Corsi C, Sugeng L, et al. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:347-54. Cerca con Google

14. Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three- dimensional echocardiography study. Circulation 2003;107:1135-40. Cerca con Google

15. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005-11. Cerca con Google

16. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017;38:2739-91. Cerca con Google

17. McGee EC, Gillinov AM, Blackstone EH, et al. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg 2004;128:916- 24. Cerca con Google

18. Acker MA, Parides MK, Perrault LP, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 2014;370:23-32. Cerca con Google

19. Bach DS, Awais M, Gurm HS, Kohnstamm S. Failure of guideline adherence for intervention in patients with severe mitral regurgitation. J Am Coll Cardiol 2009;54:860-5. Cerca con Google

20. Reece TB, Tribble CG, Ellman PI, et al. Mitral repair is superior to replacement when associated with coronary artery disease. Ann Surg 2004;239:671-5; discussion 5-7. Cerca con Google

21. Al-Radi OO, Austin PC, Tu JV, David TE, Yau TM. Mitral repair versus replacement for ischemic mitral regurgitation. The Annals of thoracic surgery 2005;79:1260-7; discussion -7. Cerca con Google

22. Grossi EA, Goldberg JD, LaPietra A, et al. Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications. J Thorac Cardiovasc Surg 2001;122:1107-24. Cerca con Google

23. Goldstein D, Moskowitz AJ, Gelijns AC, et al. Two-Year Outcomes of Surgical Treatment of Severe Ischemic Mitral Regurgitation. N Engl J Med 2016;374:344-53. Cerca con Google

24. Feldman T, Young A. Percutaneous approaches to valve repair for mitral regurgitation. J Am Coll Cardiol 2014;63:2057-68. Cerca con Google

25. Nishimura RA, Vahanian A, Eleid MF, Mack MJ. Mitral valve disease--current management and future challenges. Lancet 2016;387:1324-34. Cerca con Google

26. Chiarito M, Pagnesi M, Martino EA, et al. Outcome after percutaneous edge-to-edge mitral repair for functional and degenerative mitral regurgitation: a systematic review and meta-analysis. Heart 2018;104:306-12. Cerca con Google

27. Goldberg SL, Lipiecki J, Sievert H. The CARILLON Mitral Contour transcatheter indirect mitral valve annuloplasty system. EuroIntervention 2015;11 Suppl W:W64-6. Cerca con Google

28. Vahanian A, Urena M, Ince H, Nickenig G. Mitral valve: repair/clips/cinching/chordae. EuroIntervention 2017;13:AA22-AA30. Cerca con Google

29. Feldman T, Wasserman HS, Herrmann HC, et al. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial. J Am Coll Cardiol 2005;46:2134-40. Cerca con Google

30. Mauri L, Garg P, Massaro JM, et al. The EVEREST II Trial: design and rationale for a randomized study of the evalve mitraclip system compared with mitral valve surgery for mitral regurgitation. Am Heart J 2010;160:23-9. Cerca con Google

31. Feldman T, Kar S, Elmariah S, et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II. J Am Coll Cardiol 2015;66:2844-54. Cerca con Google

32. Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N Engl J Med 2018. Cerca con Google

33. Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure.0:null. Cerca con Google

34. Puls M, Lubos E, Boekstegers P, et al. One-year outcomes and predictors of mortality after MitraClip therapy in contemporary clinical practice: results from the German transcatheter mitral valve interventions registry. Eur Heart J 2016;37:703-12. Cerca con Google

35. Maisano F, Franzen O, Baldus S, et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J Am Coll Cardiol 2013;62:1052-61. Cerca con Google

36. Nickenig G, Estevez-Loureiro R, Franzen O, et al. Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011-2012 Pilot European Sentinel Registry. J Am Coll Cardiol 2014;64:875-84. Cerca con Google

37. Maisano F, Taramasso M, Nickenig G, et al. Cardioband, a transcatheter surgical-like direct mitral valve annuloplasty system: early results of the feasibility trial. Eur Heart J 2016;37:817-25. 38. Maisano F, Taramasso M. The Cardioband transcatheter direct mitral valve annuloplasty system. EuroIntervention 2015;11 Suppl W:W58-9. Cerca con Google

39. Gooley RP, Meredith IT. The Accucinch transcatheter direct mitral valve annuloplasty system. EuroIntervention 2015;11 Suppl W:W60-1. Cerca con Google

40. Siminiak T, Dankowski R, Baszko A, et al. Percutaneous direct mitral annuloplasty using the Mitralign Bident system: description of the method and a case report. Kardiologia polska 2013;71:1287-92. Cerca con Google

41. Nickenig G, Schueler R, Dager A, et al. Treatment of Chronic Functional Mitral Valve Regurgitation With a Percutaneous Annuloplasty System. J Am Coll Cardiol 2016;67:2927-36. 42. Schofer J, Bijuklic K, Tiburtius C, Hansen L, Groothuis A, Hahn RT. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J Am Coll Cardiol 2015;65:1190-5. Cerca con Google

43. Hahn RT, Meduri CU, Davidson CJ, et al. Early Feasibility Study of a Transcatheter Tricuspid Valve Annuloplasty: SCOUT Trial 30-Day Results. J Am Coll Cardiol 2017;69:1795- 806. Cerca con Google

44. Piazza N, Bonan R. Transcatheter mitral valve repair for functional mitral regurgitation: coronary sinus approach. Journal of interventional cardiology 2007;20:495-508. Cerca con Google

45. Klein N, Pfeiffer D, Goldberg S, Klein M. Mitral Annuloplasty Device Implantation for Non-Surgical Treatment of Mitral Regurgitation: Clinical Experience After the Approval Studies. The Journal of invasive cardiology 2016. Cerca con Google

46. Hoppe UC, Brandt MC, Degen H, et al. Percutaneous mitral annuloplasty device leaves free access to cardiac veins for resynchronization therapy. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions 2009;74:506-11. Cerca con Google

47. Schofer J, Siminiak T, Haude M, et al. Percutaneous mitral annuloplasty for functional mitral regurgitation: results of the CARILLON Mitral Annuloplasty Device European Union Study. Circulation 2009;120:326-33. Cerca con Google

48. Siminiak T, Wu JC, Haude M, et al. Treatment of functional mitral regurgitation by percutaneous annuloplasty: results of the TITAN Trial. European journal of heart failure 2012;14:931-8. Cerca con Google

49. Lipiecki J, Siminiak T, Sievert H, et al. Coronary sinus-based percutaneous annuloplasty as treatment for functional mitral regurgitation: the TITAN II trial. Open heart 2016;3:e000411. Cerca con Google

50. Goldberg SL, Meredith I, Marwick T, et al. A randomized double-blind trial of an interventional device treatment of functional mitral regurgitation in patients with symptomatic congestive heart failure-Trial design of the REDUCE FMR study. Am Heart J 2017;188:167-74. 51. Delgado V, van der Kley F, Schalij MJ, Bax JJ. Optimal imaging for planning and guiding interventions in structural heart disease: a multi-modality imaging approach. European Heart Journal Supplements 2010;12:E10-E23. Cerca con Google

52. Goldberg SL, Lipiecki J, Sievert H. The CARILLON Mitral Contour transcatheter indirect mitral valve annuloplasty system. EuroIntervention 2015;11:W64-W6. Cerca con Google

53. Rogers JH, Thomas M, Morice MC, et al. Treatment of Heart Failure With Associated Functional Mitral Regurgitation Using the ARTO System: Initial Results of the First-in-Human MAVERIC Trial (Mitral Valve Repair Clinical Trial). JACC Cardiovasc Interv 2015;8:1095-104. 54. Erglis A, Thomas M, Morice MC, et al. The Arto transcatheter mitral valve repair system. EuroIntervention 2015;11 Suppl W:W47-8. Cerca con Google

55. Manoharan G. Results of the Multi-Centre Phase of the MAVERIC Trial Investigating the MVRx ARTO System. PCR London Valve 2015 September 2015; Berlin. Cerca con Google

56. Worthley SG EA, Redwood S, Hildick-Smith D, Rafter T, Whelan A. 6 Months Outcomes of Transcatheter Annular Reduction Therapy (TART) with the ARTO System for Functional Mitral Regurgitation. Journal of American College of Cardiology 2017;70:TCT-461. Cerca con Google

57. Perier P, Hohenberger W, Lakew F, et al. Toward a new paradigm for the reconstruction of posterior leaflet prolapse: midterm results of the "respect rather than resect" approach. The Annals of thoracic surgery 2008;86:718-25; discussion -25. Cerca con Google

58. Anyanwu AC, Adams DH. Transcatheter mitral valve replacement: the next revolution? J Am Coll Cardiol 2014;64:1820-4. Cerca con Google

59. Cheung A, Webb J, Verheye S, et al. Short-term results of transapical transcatheter mitral valve implantation for mitral regurgitation. J Am Coll Cardiol 2014;64:1814-9. Cerca con Google

60. Verheye S, Cheung A, Leon M, Banai S. The Tiara transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W71-2. Cerca con Google

61. Inc N. Neovasc Announces Results for the First Quarter 2018. May 10, 2018. Cerca con Google

62. Inc. N. Neovasc Reports Tiara’s Clinical Case Load Accelerating. January 8, 2018. Cerca con Google

63. Cheung A, Banai S. Transcatheter mitral valve implantation: Tiara. EuroIntervention Cerca con Google

2016;12:Y70-Y2. Cerca con Google

64. Regueiro A, Ye J, Fam N, et al. 2-Year Outcomes After Transcatheter Mitral Valve Replacement. JACC Cardiovasc Interv 2017;10:1671-8. Cerca con Google

65. Bapat V, Buellesfeld L, Peterson MD, et al. Transcatheter mitral valve implantation (TMVI) using the Edwards FORTIS device. EuroIntervention 2014;10 Suppl U:U120-8. Cerca con Google

66. Bapat V, Lim ZY, Boix R, Pirone F. The Edwards Fortis transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W73-5. Cerca con Google

67. Ussia GP, Quadri A, Cammalleri V, et al. Percutaneous transfemoral-transseptal implantation of a second-generation CardiAQ mitral valve bioprosthesis: first procedure description and 30-day follow-up. EuroIntervention 2016;11:1126-51. Cerca con Google

68. Sondergaard L, Ussia GP, Dumonteil N, Quadri A. The CardiAQ transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W76-7. Cerca con Google

69. Sondergaard L, Brooks M, Ihlemann N, et al. Transcatheter mitral valve implantation via transapical approach: an early experience. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 2015;48:873-7; discussion 7-8. Cerca con Google

70. Attinger-Toller AC, A; Webb, J.G. Transcatheter Mitral Valve Implantation. Percutaneous Treatment of Left Side Cardiac Valves: Springer; 2018:205-22. Cerca con Google

71. Perpetua EM, Reisman M. The Tendyne transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W78-9. Cerca con Google

72. Moat N, Duncan A, Lindsay A, et al. Transcatheter mitral valve replacement for the treatment of mitral regurgitation: in-hospital outcomes of an apically tethered device. J Am Coll Cardiol 2015;65:2352-3. Cerca con Google

73. Alkhouli M, Alqahtani F, Aljohani S. Transcatheter mitral valve replacement: An evolution of a revolution2017. Cerca con Google

74. Muller D. TCT 51: The Tendyne Transcatheter Mitral Valve Implantation (TMVI) Global Feasibility Study. TCT 2015; October 13, 2015. Cerca con Google

75. Muller D. Tendyne: Novel Design Features and Clinical Updates. TCT 2015; October 12, 2015. Cerca con Google

76. Moore BM, Ng HKB, Naoum C, et al. Transcatheter Mitral Valve Replacement With a Novel Dual Stent Bioprosthesis. Circ Cardiovasc Interv 2017;10. Cerca con Google

77. Lang R. HighLife Transcatheter Mitral VAlve Implanation. EuroPCR 2015; May 20, 2015; Paris. Cerca con Google

78. Lange R, Piazza N. The HighLife transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W82-3. Cerca con Google

79. Serruys P GA, Abdelghani M, Miyazaki Y, Ma J, Nietlispach F, Maisano F. The transapical AccuFit bioprosthesis for transcatheter mitral valve replacement. Journal of American College of Cardiology 2016;68:TCT-637. Cerca con Google

80. Abdelghani M, Onuma Y, Zeng Y, et al. The Sino Medical AccuFit transcatheter mitral valve implantation system. EuroIntervention 2015;11 Suppl W:W84-5. Cerca con Google

81. Serruys PW. SinoMed AccuFit: Novel Design Features and Clinical Updates. TCT2015; October 12, 2015. Cerca con Google

82. M W. The Caisson transcatheter mitral valve replacement system. PCR London Valves. London, UK2016. Cerca con Google

83. Interventional C. Caisson Interventional Completes First in Human Implants of its Transvascular Mitral Valve Replacement. 2016. Cerca con Google

84. Regueiro A, Granada JF, Dagenais F, Rodes-Cabau J. Transcatheter Mitral Valve Replacement: Insights From Early Clinical Experience and Future Challenges. J Am Coll Cardiol 2017;69:2175-92. Cerca con Google

85. Buchbinder M. MValve A novel approach for mitral valve replacement. TCT 2015; San Francisco, CA. Cerca con Google

86. Urena M, Vahanian A, Sondergaard L. Patient selection for transcatheter mitral valve implantation: why is it so hard to find patients? EuroIntervention 2018;14:AB83-AB90. Cerca con Google

87. Alkhouli M, Alqahtani F, Aljohani S. Transcatheter mitral valve replacement: an evolution of a revolution. J Thorac Dis 2017;9:S668-S72. Cerca con Google

88. Wu Q, Zhang L, Zhu R. Obstruction of left ventricular outflow tract after mechanical mitral valve replacement. The Annals of thoracic surgery 2008;85:1789-91. Cerca con Google

89. Paradis JM, Del Trigo M, Puri R, Rodes-Cabau J. Transcatheter Valve-in-Valve and Valve- in-Ring for Treating Aortic and Mitral Surgical Prosthetic Dysfunction. J Am Coll Cardiol 2015;66:2019-37. Cerca con Google

90. Kasel AM, Rumpf M, Frangieh AH, et al. International LAMPOON: first European experience with laceration of the anterior mitral valve leaflet prior to transseptal transcatheter mitral valve implantation. EuroIntervention 2018;14:746-9. Cerca con Google

91. Alkhouli M, Rihal CS, Holmes DR, Jr. Transseptal Techniques for Emerging Structural Heart Interventions. JACC Cardiovasc Interv 2016;9:2465-80. Cerca con Google

92. Blanke P, Naoum C, Dvir D, et al. Predicting LVOT Obstruction in Transcatheter Mitral Valve Implantation: Concept of the Neo-LVOT. JACC Cardiovasc Imaging 2017;10:482-5. Cerca con Google

93. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 2010;11:307-32. Cerca con Google

94. Mihaila S, Muraru D, Piasentini E, et al. Quantitative analysis of mitral annular geometry and function in healthy volunteers using transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr 2014;27:846-57. Cerca con Google

95. Anwar AM, Soliman OI, Nemes A, et al. Assessment of mitral annulus size and function by real-time 3-dimensional echocardiography in cardiomyopathy: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2007;20:941-8. Cerca con Google

96. Muraru D, Cecchetto A, Cucchini U, et al. Intervendor Consistency and Accuracy of Left Ventricular Volume Measurements Using Three-Dimensional Echocardiography. J Am Soc Echocardiogr 2018;31:158-68 e1. Cerca con Google

97. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233-70. Cerca con Google

98. Agati L, Cimino S, Tonti G, et al. Quantitative analysis of intraventricular blood flow dynamics by echocardiographic particle image velocimetry in patients with acute myocardial infarction at different stages of left ventricular dysfunction. Eur Heart J Cardiovasc Imaging 2014;15:1203-12. Cerca con Google

99. Siciliano M, Migliore F, Badano L, et al. Cardiac resynchronization therapy by multipoint pacing improves response of left ventricular mechanics and fluid dynamics: a three-dimensional and particle image velocimetry echo study. Europace 2017;19:1833-40. Cerca con Google

100. Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature 2000;404:759-61. Cerca con Google

101. Pedrizzetti G, Domenichini F. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 2005;95:108101. Cerca con Google

102. Faludi R, Szulik M, D'Hooge J, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 2010;139:1501-10. Cerca con Google

103. Pedrizzetti G, Domenichini F, Tonti G. On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 2010;38:769-73. Cerca con Google

104. Hong GR, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging 2008;1:705-17. Cerca con Google

105. Pedrizzetti G, Martiniello AR, Bianchi V, D'Onofrio A, Caso P, Tonti G. Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry. Eur Heart J Cardiovasc Imaging 2016;17:203- 9. Cerca con Google

106. Mackensen GB, Lee JC, Wang DD, et al. Role of Echocardiography in Transcatheter Mitral Valve Replacement in Native Mitral Valves and Mitral Rings. J Am Soc Echocardiogr 2018;31:475-90. Cerca con Google

107. Levack MM, Jassar AS, Shang EK, et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection. Circulation 2012;126:S183-8. 108. Flachskampf FA, Chandra S, Gaddipatti A, et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr 2000;13:277-87. Cerca con Google

109. Kaplan SR, Bashein G, Sheehan FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J 2000;139:378-87. 110. Khabbaz KR, Mahmood F, Shakil O, et al. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. The Annals of thoracic surgery 2013;95:105-10. Cerca con Google

111. Little SH, Ben Zekry S, Lawrie GM, Zoghbi WA. Dynamic annular geometry and function in patients with mitral regurgitation: insight from three-dimensional annular tracking. J Am Soc Echocardiogr 2010;23:872-9. Cerca con Google

112. Mak GJ, Blanke P, Ong K, et al. Three-Dimensional Echocardiography Compared With Computed Tomography to Determine Mitral Annulus Size Before Transcatheter Mitral Valve Implantation. Circ Cardiovasc Imaging 2016;9. Cerca con Google

113. Alkadhi H, Desbiolles L, Stolzmann P, et al. Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol 2009;44:218-25. Cerca con Google

114. Daimon M, Saracino G, Fukuda S, et al. Dynamic change of mitral annular geometry and motion in ischemic mitral regurgitation assessed by a computerized 3D echo method. Echocardiography 2010;27:1069-77. Cerca con Google

115. Theriault-Lauzier P, Mylotte D, Dorfmeister M, et al. Quantitative multi-slice computed tomography assessment of the mitral valvular complex for transcatheter mitral valve interventions part 1: systematic measurement methodology and inter-observer variability. EuroIntervention 2016;12:e1011-e20. Cerca con Google

116. Theriault-Lauzier P, Dorfmeister M, Mylotte D, et al. Quantitative multi-slice computed tomography assessment of the mitral valvular complex for transcatheter mitral valve interventions part 2: geometrical measurements in patients with functional mitral regurgitation. EuroIntervention 2016;12:e1021-e30. Cerca con Google

117. Khalique OK, Kodali SK, Paradis JM, et al. Aortic annular sizing using a novel 3- dimensional echocardiographic method: use and comparison with cardiac computed tomography. Circ Cardiovasc Imaging 2014;7:155-63. Cerca con Google

118. Blanke P, Dvir D, Cheung A, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr 2014;8:459-67. Cerca con Google

119. Khalique OK, Hahn RT. Multimodality Imaging in Transcatheter Mitral Interventions: Buzzword or Modern Age Toolbox? Circ Cardiovasc Imaging 2016;9. Cerca con Google

120. Jiang L, Owais K, Matyal R, et al. Dynamism of the mitral annulus: a spatial and temporal analysis. J Cardiothorac Vasc Anesth 2014;28:1191-7. Cerca con Google

121. Owais K, Montealegre-Gallegos M, Jeganathan J, Matyal R, Khabbaz KR, Mahmood F. Dynamic changes in the ischemic mitral annulus: Implications for ring sizing. Ann Card Anaesth 2016;19:15-9. Cerca con Google

122. Veronesi F, Corsi C, Sugeng L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging 2009;2:24- 31. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record