Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bertoni, Sara (2019) The magnocellular-dorsal pathway dysfunction in developmental dyslexia:
Case-control, longitudinal and intervention studies.
[Ph.D. thesis]

Full text disponibile come:

PDF Document (Tesi) - Accepted Version

Abstract (italian or english)

Reading is a unique cognitive human skill crucial to life in modern societies, but for about 10% of children, learning to read is extremely difficult. These children are affected by developmental dyslexia (DD). Although the most common explanation of DD suggest a specific disorder in auditory and phonological processing, several studies show that also a magnocellular-dorsal (MD) pathway dysfunction could be a core deficit in DD. In this thesis will be investigated the MD functioning on children with and without DD by two case-control studies. The causal relationship between MD dysfunction and reading impairment will be investigated through: (i) two longitudinal studies, in which the attentional skills was tested in pre-reading children, and (ii) five intervention studies in which children with DD was treated with a visual-attentional training (i.e., action video game, AVG). The MD functioning was tested with different tasks that are able to capture different skills driven by MD pathway. In particular, the low spatial frequency, processed by MD pathway, will be investigated through Navon tasks in which is important the global perception of the scene. Another aspect linked to the MD pathway, is the signal-to-noise exclusion in which the target is processed filtering the noise, and this will be investigated through a crowding task and visual and auditory attentional noise exclusion tasks.
The findings show that the MD functioning is impaired already at pre-reading stage in future poor readers and that AVG training is able to improve reading speed and attentional skills linked to the MD pathway functioning. For these reason it will be sustain the causal role of MD pathway dysfunction in DD, and the DD as a multifactorial neurodevelopmental disorder.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Facoetti, Andrea
Supervisor:Palazzi, Claudio
Ph.D. course:Ciclo 31 > Corsi 31 > BRAIN, MIND AND COMPUTER SCIENCE
Data di deposito della tesi:04 September 2019
Anno di Pubblicazione:11 July 2019
Key Words:Dyslexia, Magnocellular Pathway, Training, Longitudinal Study, Attention
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/04 Psicologia dello sviluppo e psicologia dell'educazione
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:12034
Depositato il:08 Nov 2019 13:05
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

American Psychiatric Association Diagnostic and statistical manual of mental disorders (DSM-5®) (2013), American Psychiatric Pub. Cerca con Google

Antzaka, A., Lallier, M., Meyer, S., Diard, J., Carreiras, M., & Valdois, S. (2017). Enhancing reading performance through action video games: the role of visual attention span. Scientific reports, 7(1), 14563. Cerca con Google

Banfi, C., Kemény, F., Gangl, M., Schulte-Körne, G., Moll, K., & Landerl, K. (2017). Visuo-spatial cueing in children with differential reading and spelling profiles. PloS one, 12(7), e0180358. Cerca con Google

Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological bulletin, 144(1), 77. Cerca con Google

Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: visual processing in autism. Trends in cognitive sciences, 10(6), 258-264. Cerca con Google

Black, J. M., Xia, Z., & Hoeft, F. (2017). Neurobiological bases of reading disorder part II: The importance of developmental considerations in typical and atypical reading. Language and linguistics compass, 11(10), e12252. Cerca con Google

Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., & Blomert, L. (2009). Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Current Biology, 19(6), 503-508. Cerca con Google

Boden, C., & Giaschi, D. (2007). M-stream deficits and reading-related visual processes in developmental dyslexia. Psychological bulletin, 133(2), 346. Cerca con Google

Boets, B., de Beeck, H. P. O., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., ... & Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 1251-1254. Cerca con Google

Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., & Ghesquière, P. (2011). Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child development, 82(3), 854-869. Cerca con Google

Boets, B., Wouters, J., Van Wieringen, A., De Smedt, B., & Ghesquiere, P. (2008). Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain and language, 106(1), 29-40. Cerca con Google

Blomert, L. (2011). The neural signature of orthographic–phonological binding in successful and failing reading development. Neuroimage, 57(3), 695-703 Cerca con Google

Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104(2), 198-230. Cerca con Google

Bosse, M. L., & Valdois, S. (2009). Influence of the visual attention span on child reading performance: a cross‐sectional study. Journal of Research in Reading, 32(2), 230-253. Cerca con Google

Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177. Cerca con Google

Bradley, L., & Bryant, P. E. (1978). Difficulties in auditory organisation as a possible cause of reading backwardness. Nature, 271(5647), 746. Cerca con Google

Breznitz, Z., Shaul, S., Horowitz-Kraus, T., Sela, I., Nevat, M., & Karni, A. (2013). Enhanced reading by training with imposed time constraint in typical and dyslexic adults. Nature communications, 4, 1486. Cerca con Google

Buchholz, J., & Davies, A. A. (2007). Attentional blink deficits observed in dyslexia depend on task demands. Vision Research, 47(10), 1292-1302. Cerca con Google

Callens, M., Whitney, C., Tops, W., & Brysbaert, M. (2013). No deficiency in left-to-right processing of words in dyslexia but evidence for enhanced visual crowding. The Quarterly Journal of Experimental Psychology, 66(9), 1803-1817. Cerca con Google

Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: the role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57(6), 750-758. Cerca con Google

Casco, C., Tressoldi, P. E., & Dellantonio, A. (1998). Visual selective attention and reading efficiency are related in children. Cortex, 34(4), 531-546. Cerca con Google

Castles, A., & Coltheart, M. (2004). Is there a causal link from phonological awareness to success in learning to read?. Cognition, 91(1), 77-111. Cerca con Google

Catts, H. W., McIlraith, A., Bridges, M. S., & Nielsen, D. C. (2017). Viewing a phonological deficit within a multifactorial model of dyslexia. Reading and Writing, 30(3), 613-629. Cerca con Google

Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014). Attention-dependent early cortical suppression contributes to crowding. Journal of Neuroscience, 34(32), 10465-10474. Cerca con Google

Chicherov, V., Plomp, G., & Herzog, M. H. (2014). Neural correlates of visual crowding. Neuroimage, 93, 23-31. Cerca con Google

Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324. Cerca con Google

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 3(3), 201. Cerca con Google

Cornelissen, P. L., & Hansen, P. C. (1998). Motion detection, letter position encoding, and single word reading. Annals of Dyslexia, 48(1), 155-188. Cerca con Google

Costanzo, F., Menghini, D., Caltagirone, C., Oliveri, M., & Vicari, S. (2013). How to improve reading skills in dyslexics: the effect of high frequency rTMS. Neuropsychologia, 51(14), 2953-2959. Cerca con Google

De Schotten, M. T., Dell'Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature neuroscience, 14(10), 1245. Cerca con Google

Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234. Cerca con Google

Denckla, M. B., & Rudel, R. G. (1976). Rapid ‘automatized’naming (RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14(4), 471-479. Cerca con Google

Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current directions in psychological science, 18(6), 321-326. Cerca con Google

Ding, Y., Zhao, J., He, T., Tan, Y., Zheng, L., & Wang, Z. (2016). Selective impairments in covert shifts of attention in Chinese dyslexic children. Dyslexia, 22(4), 362-378. Cerca con Google

Dispaldro, M., Leonard, L. B., Corradi, N., Ruffino, M., Bronte, T., & Facoetti, A. (2013). Visual attentional engagement deficits in children with specific language impairment and their role in real-time language processing. Cortex, 49(8), 2126-2139. Cerca con Google

Doron, A., Manassi, M., Herzog, M. H., & Ahissar, M. (2015). Intact crowding and temporal masking in dyslexia. Journal of Vision, 15(14), 13-13. Cerca con Google

Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in cognitive sciences, 12(3), 99-105. Cerca con Google

Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382(6586), 66. Cerca con Google

Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010a). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226-239. Cerca con Google

Facoetti, A., Lorusso, M. L., Paganoni, P., Cattaneo, C., Galli, R., Umilta, C., & Mascetti, G. G. (2003). Auditory and visual automatic attention deficits in developmental dyslexia. Cognitive brain research, 16(2), 185-191. Cerca con Google

Facoetti, A., & Molteni, M. (2000). Is attentional focusing an inhibitory process at distractor location?. Cognitive Brain Research, 10(1-2), 185-188. Cerca con Google

Facoetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36(1), 109-123. Cerca con Google

Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. cortex, 44(9), 1221-1233. Cerca con Google

Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138(1), 46-53. Cerca con Google

Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., ... & Zorzi, M. (2010b). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of cognitive neuroscience, 22(5), 1011-1025. Cerca con Google

Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., ... & Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of cognitive neuroscience, 22(5), 1011-1025. Cerca con Google

Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic bulletin & review, 2(4), 460-493. Cerca con Google

Finn, E. S., Shen, X., Holahan, J. M., Scheinost, D., Lacadie, C., Papademetris, X., ... & Constable, R. T. (2014). Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biological psychiatry, 76(5), 397-404. Cerca con Google

Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees?. Nature, 382(6592), 626. Cerca con Google

Franceschini, S., Bertoni, S., Ronconi, L., Molteni, M., Gori, S., & Facoetti, A. (2015). “Shall we play a game?”: Improving reading through action video games in developmental dyslexia. Current Developmental disorders reports, 2(4), 318-329. Cerca con Google

Franceschini, S., Bertoni, S., Ronconi, L., Molteni, M., Gori, S., & Facoetti, A. (2016). Batteria De. Co. Ne. Per la lettura: Strumenti per la valutazione delle abilità di lettura nelle scuole primarie. Dislessia, 13(3), 319-337. Cerca con Google

Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814-819. Cerca con Google

Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462-466. Cerca con Google

Freeman, J., Chakravarthi, R., & Pelli, D. G. (2012). Substitution and pooling in crowding. Attention, Perception, & Psychophysics, 74(2), 379-396. Cerca con Google

Gabrieli, J. D. (2009). Dyslexia: a new synergy between education and cognitive neuroscience. science, 325(5938), 280-283. Cerca con Google

Geiger, G., Cattaneo, C., Galli, R., Pozzoli, U., Lorusso, M. L., Facoetti, A., & Molteni, M. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37(11), 1745-1764. Cerca con Google

Geiger, G., & Lettvin, J. Y. (1987). Peripheral vision in persons with dyslexia. New England Journal of Medicine, 316(20), 1238-1243. Cerca con Google

Geiger, G., Cattaneo, C., Galli, R., Pozzoli, U., Lorusso, M. L., Facoetti, A., & Molteni, M. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37(11), 1745-1764. Cerca con Google

Giraldo-Chica, M., Hegarty II, J. P., & Schneider, K. A. (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. NeuroImage: Clinical, 7, 830-836. Cerca con Google

Gliga, T., Bedford, R., Charman, T., Johnson, M. H., Baron-Cohen, S., Bolton, P., ... & Gammer, I. (2015). Enhanced visual search in infancy predicts emerging autism symptoms. Current Biology, 25(13), 1727-1730. Cerca con Google

Gori, S., Agrillo, C., Dadda, M., & Bisazza, A. (2014). Do fish perceive illusory motion?. Scientific reports, 4, 6443. Cerca con Google

Gori, S., Cecchini, P., Bigoni, A., Molteni, M., & Facoetti, A. (2014a). Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Frontiers in human neuroscience, 8, 460. Cerca con Google

Gori, S., & Facoetti, A. (2014b). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision research, 99, 78-87. Cerca con Google

Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition: The intriguing case of crowding and developmental dyslexia. Journal of vision, 15(1), 8-8. Cerca con Google

Gori, S., Giora, E., & Stubbs, D. A. (2010). Perceptual compromise between apparent and veridical motion indices: The Unchained-Dots illusion. Perception, 39(6), 863-866. Cerca con Google

Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2011). A new motion illusion based on competition between two kinds of motion processing units: The Accordion Grating. Neural networks, 24(10), 1082-1092. Cerca con Google

Gori, S., & Hamburger, K. (2006). A new motion illusion: The Rotating-Tilted-Lines illusion. Perception, 35(6), 853-857. Cerca con Google

Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., Quadrelli, E., ... & Marino, C. (2014). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis) ability. Cerebral Cortex, 25(6), 1685-1695. Cerca con Google

Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26(11), 4356-4369. Cerca con Google

Gori, S., & Yazdanbakhsh, A. (2008). The riddle of the Rotating-Tilted-Lines illusion. Perception, 37(4), 631-635. Cerca con Google

Goswami, U. (2003). Why theories about developmental dyslexia require developmental designs. Trends in cognitive sciences, 7(12), 534-540. Cerca con Google

Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20(3), 171-179. Cerca con Google

Grainger, J., Bertrand, D., Lété, B., Beyersmann, E., & Ziegler, J. C. (2016). A developmental investigation of the first-letter advantage. Journal of Experimental Child Psychology, 152, 161-172. Cerca con Google

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534. Cerca con Google

Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current biology, 22(6), R197-R206. Cerca con Google

Green, C. S., Li, R., & Bavelier, D. (2010). Perceptual learning during action video game playing. Topics in cognitive science, 2(2), 202-216. Cerca con Google

Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current biology, 20(17), 1573-1579. Cerca con Google

Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2012). Crowding follows the binding of relative position and orientation. Journal of vision, 12(3), 18-18. Cerca con Google

Grinter, E. J., Maybery, M. T., & Badcock, D. R. (2010). Vision in developmental disorders: is there a dorsal stream deficit?. Brain research bulletin, 82(3-4), 147-160. Cerca con Google

Grubb, M. A., Behrmann, M., Egan, R., Minshew, N. J., Heeger, D. J., & Carrasco, M. (2013). Exogenous spatial attention: Evidence for intact functioning in adults with autism spectrum disorder. Journal of vision, 13(14), 9-9. Cerca con Google

Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in cognitive sciences, 21(6), 434-448. Cerca con Google

Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in cognitive sciences, 5(12), 525-532. Cerca con Google

Harrar, V., Tammam, J., Pérez-Bellido, A., Pitt, A., Stein, J., & Spence, C. (2014). Multisensory integration and attention in developmental dyslexia. Current Biology, 24(5), 531-535. Cerca con Google

He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383(6598), 334. Cerca con Google

Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791-804. Cerca con Google

Hoeft, F., Hernandez, A., McMillon, G., Taylor-Hill, H., Martindale, J. L., Meyler, A., ... & Whitfield-Gabrieli, S. (2006). Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. Journal of Neuroscience, 26(42), 10700-10708. Cerca con Google

Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., ... & Gabrieli, J. D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361-366. Cerca con Google

Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: a biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500-3504. Cerca con Google

Huckauf, A., & Heller, D. (2002). Spatial selection in peripheral letter recognition: In search of boundary conditions. Acta Psychologica, 111(1), 101-123. Cerca con Google

Hughes, H. C., Nozawa, G., & Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statistics of natural images. Journal of cognitive neuroscience, 8(3), 197-230. Cerca con Google

Hulme, C., Hatcher, P. J., Nation, K., Brown, A., Adams, J., & Stuart, G. (2002). Phoneme awareness is a better predictor of early reading skill than onset-rime awareness. Journal of experimental child psychology, 82(1), 2-28. Cerca con Google

Iles, J., Walsh, V., & Richardson, A. (2000). Visual search performance in dyslexia. Dyslexia, 6(3), 163-177. Cerca con Google

Joo, S. J., White, A. L., Strodtman, D. J., & Yeatman, J. D. (2018). Optimizing text for an individual's visual system: The contribution of visual crowding to reading difficulties. Cortex, 103, 291-301. Cerca con Google

Jorm, A. F. (1983). Specific reading retardation and working memory: A review. British journal of Psychology, 74(3), 311-342. Cerca con Google

Lobier, M. A., Peyrin, C., Pichat, C., Le Bas, J. F., & Valdois, S. (2014). Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Frontiers in human neuroscience, 8, 479. Cerca con Google

Kevan, A., & Pammer, K. (2008). Visual deficits in pre-readers at familial risk for dyslexia. Vision research, 48(28), 2835-2839. Cerca con Google

Kevan, A., & Pammer, K. (2009). Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia, 47(14), 3174-3181. Cerca con Google

Kim, Y. H., Kang, D. W., Kim, D., Kim, H. J., Sasaki, Y., & Watanabe, T. (2015). Real-time strategy video game experience and visual perceptual learning. Journal of Neuroscience, 35(29), 10485-10492. Cerca con Google

Koyama, M. S., Di Martino, A., Kelly, C., Jutagir, D. R., Sunshine, J., Schwartz, S. J., ... & Milham, M. P. (2013). Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PloS one, 8(2), e55454. Cerca con Google

Krause, M. B. (2015). Pay Attention!: sluggish multisensory attentional shifting as a core deficit in developmental dyslexia. Dyslexia, 21(4), 285-303. Cerca con Google

Lallier, M., Tainturier, M. J., Dering, B., Donnadieu, S., Valdois, S., & Thierry, G. (2010). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48(14), 4125-4135. Cerca con Google

Lallier, M., Thierry, G., Tainturier, M. J., Donnadieu, S., Peyrin, C., Billard, C., & Valdois, S. (2009). Auditory and visual stream segregation in children and adults: An assessment of the amodality assumption of the ‘sluggish attentional shifting’theory of dyslexia. Brain research, 1302, 132-147. Cerca con Google

Lawton, T. (2016). Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Frontiers in human neuroscience, 10, 397. Cerca con Google

Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7(11), 3416-3468. Cerca con Google

Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences, 88(18), 7943-7947. Cerca con Google

Liu, D., Chen, X., & Chung, K. K. (2015). Performance in a visual search task uniquely predicts reading abilities in third-grade Hong Kong Chinese children. Scientific Studies of Reading, 19(4), 307-324. Cerca con Google

Liu, D., Chen, X., & Wang, Y. (2016). The impact of visual-spatial attention on reading and spelling in Chinese children. Reading and Writing, 29(7), 1435-1447. Cerca con Google

Łuniewska, M., Chyl, K., Dębska, A., Kacprzak, A., Plewko, J., Szczerbiński, M., ... & Jednoróg, K. (2018). Neither action nor phonological video games make dyslexic children read better. Sci. Rep. 8, 549. Cerca con Google

Marotta, L., Trasciani, M., & Vicari, S. (2004). Valutazione delle competenze metafonologiche–CMF. Trento: Edizioni Erickson. Cerca con Google

Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of vision, 9(4), 14-14. Cerca con Google

Maunsell, J. H., & Newsome, W. T. (1987). Visual processing in monkey extrastriate cortex. Annual review of neuroscience, 10(1), 363-401. Cerca con Google

McArthur, G., Eve, P. M., Jones, K., Banales, E., Kohnen, S., Anandakumar, T., ... & Castles, A. (2012). Phonics training for English‐speaking poor readers. Cochrane Database of Systematic Reviews, (12). Cerca con Google

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological review, 88(5), 375. Cerca con Google

Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways?. Annual review of neuroscience, 16(1), 369-402. Cerca con Google

Millin, R., Arman, A. C., Chung, S. T., & Tjan, B. S. (2013). Visual crowding in V1. Cerebral Cortex, 24(12), 3107-3115. Cerca con Google

Moll, K., & Jones, M. (2013). Naming fluency in dyslexic and nondyslexic readers: Differential effects of visual crowding in foveal, parafoveal, and peripheral vision. The Quarterly Journal of Experimental Psychology, 66(11), 2085-2091. Cerca con Google

Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49(14), 3881-3890. Cerca con Google

Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature neuroscience, 3(12), 1322. Cerca con Google

Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive psychology, 9(3), 353-383. Cerca con Google

Nazir, T. A. (1992). Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. Vision research, 32(4), 771-777. Cerca con Google

O'Brien, B. A., Wolf, M., & Lovett, M. W. (2012). A taxometric investigation of developmental dyslexia subtypes. Dyslexia, 18(1), 16-39. Cerca con Google

Omtzigt, D., & Hendriks, A. W. (2004). Magnocellular involvement in flanked-letter identification relates to the allocation of attention. Vision Research, 44(16), 1927-1940. Cerca con Google

Omtzigt, D., Hendriks, A. W., & Kolk, H. H. (2002). Evidence for magnocellular involvement in the identification of flanked letters. Neuropsychologia, 40(12), 1881-1890. Cerca con Google

Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current opinion in neurobiology, 18(4), 445-451. Cerca con Google

Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency of word recognition. Nature, 423(6941), 752. Cerca con Google

Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature neuroscience, 11(10), 1129. Cerca con Google

Perfetti, C. A. (1985). Reading ability. Oxford University Press. Cerca con Google

Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud. Psychological review, 114(2), 273. Cerca con Google

Peters, J. L., De Losa, L., Bavin, E. L., & Crewther, S. G. (2019). Efficacy of dynamic visuo-attentional interventions for reading in dyslexic and neurotypical children: A systematic review. Neuroscience & Biobehavioral Reviews, 100, 58-76. Cerca con Google

Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual review of clinical psychology, 11, 283-307. Cerca con Google

Ronconi, L., Basso, D., Gori, S., & Facoetti, A. (2012). TMS on right frontal eye fields induces an inflexible focus of attention. Cereb. Cortex, 24, 396-402. Cerca con Google

Ronconi, L., Bertoni, S., & Marotti, R. B. (2016). The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics. Cortex, 79, 87-98. Cerca con Google

Ronconi, L., Devita, M., Molteni, M., Gori, S., & Facoetti, A. (2018). When Large Becomes Slow: Zooming-Out Visual Attention Is Associated to Orienting Deficits in Autism. J. Autism Dev. Disord, 48, 2577-2584. Cerca con Google

Ronconi, L., Franchin, L., Valenza, E., Gori, S., & Facoetti, A. (2016). The attentional ‘zoom‐lens’ in 8‐month‐old infants. Dev. Sci. 19, 145-154. Cerca con Google

Ronconi, L., & Marotti, R. B. (2017). Awareness in the crowd: Beta power and alpha phase of prestimulus oscillations predict object discrimination in visual crowding. Consciousness and cognition, 54, 36-46. Cerca con Google

Rosenholtz, R. (2016). Capabilities and limitations of peripheral vision. Annual Review of Vision Science, 2, 437-457. Cerca con Google

Ruzzoli, M., Gori, S., Pavan, A., Pirulli, C., Marzi, C. A., & Miniussi, C. (2011). The neural basis of the Enigma illusion: A transcranial magnetic stimulation study. Neuropsychologia, 49(13), 3648-3655. Cerca con Google

Sacchi, E., Mirchin, R., & Laszlo, S. (2018). An Event-Related Potential study of letter spacing during visual word recognition. Brain research, 1684, 9-20. Cerca con Google

Sartori, G., & Job, R. (2007). DDE-2: Giunti OS Organizzazioni Speciali: batteria per la Valutazione della Dislessia e della Disortografia Evolutiva-2: manuale. Giunti OS, Organizzazioni Speciali. Cerca con Google

Schneps, M. H., Thomson, J. M., Sonnert, G., Pomplun, M., Chen, C., & Heffner-Wong, A. (2013). Shorter lines facilitate reading in those who struggle. PloS one, 8(8), e71161. Cerca con Google

Scolari, M., Kohnen, A., Barton, B., & Awh, E. (2007). Spatial attention, preview, and popout: Which factors influence critical spacing in crowded displays?. Journal of Vision, 7(2), 7-7. Cerca con Google

Sergent, J. (1982). The cerebral balance of power: Confrontation or cooperation?. Journal of Experimental Psychology: Human Perception and Performance, 8(2), 253. Cerca con Google

Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55(2), 151-218. Cerca con Google

Song, Y., & Hakoda, Y. (2015). Lack of global precedence and global-to-local interference without local processing deficit: A robust finding in children with attention-deficit/hyperactivity disorder under different visual angles of the Navon task. Neuropsychology, 29(6), 888. Cerca con Google

Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature neuroscience, 8(7), 862. Cerca con Google

Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2006). Motion-perception deficits and reading impairment: it's the noise, not the motion. Psychological Science, 17(12), 1047-1053. Cerca con Google

Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38(2), 179-200. Cerca con Google

Stein, J. (2014). Dyslexia: the role of vision and visual attention. Current developmental disorders reports, 1(4), 267-280. Cerca con Google

Stein, J. (2018). The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia. Cerca con Google

Strasburger, H. (2005). Unfocussed spatial attention underlies the crowding effect in indirect form vision. Journal of Vision, 5(11), 8-8. Cerca con Google

Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5(9), 721. Cerca con Google

Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in cognitive sciences, 14(9), 400-410. Cerca con Google

Turatto, M., Benso, F., Facoetti, A., Galfano, G., Mascetti, G. G., & Umiltà, C. (2000). Automatic and voluntary focusing of attention. Perception & Psychophysics, 62(5), 935-952. Cerca con Google

Valdois, S., Bosse, M. L., & Tainturier, M. J. (2004). The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia, 10(4), 339-363. Cerca con Google

Van der Hallen, R., Evers, K., Brewaeys, K., Van den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychological bulletin, 141(3), 549. Cerca con Google

van Laarhoven, T., Keetels, M., Schakel, L., & Vroomen, J. (2018). Audio-visual speech in noise perception in dyslexia. Developmental science, 21(1), e12504. Cerca con Google

Vedamurthy, I., Nahum, M., Huang, S. J., Zheng, F., Bayliss, J., Bavelier, D., & Levi, D. M. (2015). A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision research, 114, 173-187. Cerca con Google

Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in cognitive sciences, 14(2), 57-63. Cerca con Google

Vidyasagar, T. R. (2019). Visual attention and neural oscillations in reading and dyslexia: are they possible targets for remediation?. Neuropsychologia. Cerca con Google

Yashar, A., Chen, J., & Carrasco, M. (2015). Rapid and long-lasting reduction of crowding through training. Journal of Vision, 15(10), 15-15. Cerca con Google

Yazdanbakhsh, A., & Gori, S. (2011). Mathematical analysis of the accordion grating illusion: a differential geometry approach to introduce the 3D aperture problem. Neural networks, 24(10), 1093-1101. Cerca con Google

Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target location diminishes crowding and reduces the critical distance. Journal of Vision, 10(10), 16-16. Cerca con Google

Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123. Cerca con Google

Wechsler, D. (2002). Wechsler primary and preschool scale of intelligence. San Antonio, TX: The Psychological Corporation. Cerca con Google

Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in cognitive sciences, 15(4), 160-168. Cerca con Google

Wilkinson, F., Wilson, H. R., & Ellemberg, D. (1997). Lateral interactions in peripherally viewed texture arrays. JOSA A, 14(9), 2057-2068. Cerca con Google

Williams, J. P. (1984). Phonemic analysis and how it relates to reading. Journal of Learning Disabilities, 17(4), 240-245. Cerca con Google

Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., ... & Green, G. G. R. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current biology, 8(14), 791-797. Cerca con Google

Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychological bulletin, 131(1), 3. Cerca con Google

Ziegler, J. C., Pech-Georgel, C., George, F., Alario, F. X., & Lorenzi, C. (2005). Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences, 102(39), 14110-14115. Cerca con Google

Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., ... & Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, 109(28), 11455-11459. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record