Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ravazzolo, Laura (2019) The maize root response to nitrogen fluctuations: signalling crosstalk with strigolactones, auxin and transcriptional regulation. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi dottorato Laura Ravazzolo)
5Mb

Abstract (italian or english)

Nitrogen (N) plays a vital role in plant life, with nitrate (NO3-) and ammonium (NH4+) as the most common inorganic N compounds. Strigolactones (SLs) are carotenoid-derived phytohormones, acting as both endogenous and exogenous signalling molecules to play multiple roles in regulating plant development in response to various environmental stimuli and in concert with many other regulators. Starting from the hypothesis that nitric oxide (NO), auxin and SLs could take part to complex pathway governing the maize root adaptation to different N availabilities, this PhD work mainly investigated the involvement of SLs in the maize root developmental response to both nitrate and ammonium, thanks to a combined physiological and molecular approach.
The research was initially focused on studying the effect of the two different N source on SL exudation and biosynthesis. A LC-MS/MS method was applied to identify and quantify the already known SLs in maize root exudates obtained by seedlings grown with different N availabilities. The results indicated a clear inhibitory effect of nitrate on SL production. The expression of genes encoding key SL biosynthesis and transport components was then measured in roots in response to nitrate, ammonium and N-starvation, and a germination bioassay was also performed. The results further confirmed the presence of SLs in the exudates harvested from N-deprived plants, while a massive inhibition of SL exudation resulted as a specific response to nitrate provision. In situ hybridization (ISH) experiments were then performed both in roots and shoot. The effects of 24 h of N-deficiency, nitrate and ammonium supply in the presence of a SL biosynthesis inhibitor and of a synthetic SL analogue on lateral root (LR) density and primary root (PR) length were then evaluated. The results suggested that the stimulation of LR development might be linked to the complete or partial inhibition of SL production observed in response to nitrate and ammonium, respectively. Since our previous results suggest that SLs and auxin might cooperate to regulate the response of maize primary root to nitrate, the hypothesis that the negative effect of nitrate on SL biosynthesis/exudation could depend on auxin was further studied with a SL quantification in planta, gene expression assessment and lateral root density evaluation. Results obtained are in accordance with our previous results on exudates, thus confirming the role of zealactones production as a clear response to N-deprivation. The expression of the auxin-related genes evidenced peculiar trends, thus allowing to select few of them as good candidates to better characterize and deepen the auxinic action involved in the nitrate signalling. LR density was also assessed in seedlings treated as for gene expression analysis. Our preliminary results suggest that SLs and auxin share overlapping and divergent pathways to regulate maize lateral root development in response to nitrate availability.
The maize root response to different N provision was then assessed, trying to outline the different signature between nitrate and ammonium. Accordingly, a root transcriptome analysis was assessed to compare gene expression profiles in maize root apex of seedlings exposed to N-depleted solution or supplied with nitrate or ammonium for 24 h. In addition, physiological evaluation of plant development in response to nitrate and ammonium was also performed. The results provided new insight to better characterize how the early sensing of N-deficiency or nitrate/ammonium provision by root could impact on the overall plant growth and physiology.


Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Quaggiotti, Silvia
Supervisor:Trevisan, Sara
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE DELLE PRODUZIONI VEGETALI
Data di deposito della tesi:31 October 2019
Anno di Pubblicazione:31 October 2019
Key Words:maize; root; nitrate; ammonium; strigolactones; auxin; transcriptomic approach
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:12055
Depositato il:03 Feb 2021 16:09
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Charnikhova, T.V., Gaus, K., Lumbroso, A., Sanders, M., Vincken, J.P., De Mesmaeker, A., Ruyter-Spira, C.P., Screpanti, C., Bouwmeester, H.J. Zealactones. Novel natural strigolactones from maize. Phytochem. 2017, 137, 123–131. https://doi.org/10.1016/j.phytochem.2017.02.010 Vai! Cerca con Google

Cheng, X., Ruyter-Spira, C., Bouwmeester, H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Front. Plant Sci. 2013, 4, 199. https://doi.org/10.3389/fpls.2013.00199 Vai! Cerca con Google

Bloom, A.J. Nitrogen as a limiting factor: crop acquisition of ammonium and nitrate. In: Ecology in Agriculture; Jackson, L.E.; ed. San Diego: Academic Press, 1997, 145–172. Cerca con Google

Bisseling, T.; Scheres, B. Plant Science. Nutrient computation for root architecture. Science 2014, 346, 300-301. https://doi.org/10.1126/science.1260942 Vai! Cerca con Google

Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 2002, 159, 567-584. https://doi.org/10.1078/0176-1617-0774 Vai! Cerca con Google

Chandran, A.K.; Priatama, R.A.; Kumar, V.; Xuan, Y.; Je, B.I.; Kim, C.M.; Jung, K.H.; Han, C.D. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen. J. Plant Physiol. 2016, 200, 62-75. https://doi.org/10.1016/j.jplph.2016.06.005 Vai! Cerca con Google

Escobar, M.A.; Geisler, D.A.; Rasmusson, A.G. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 2006, 45, 775–788. https://doi.org/10.1111/j.1365-313X.2005.02640.x Vai! Cerca con Google

Giehl, R.F.; von Wirén, N. Root nutrient foraging. Plant Physiol. 2014, 166, 509-517. https://doi.org/10.1104/pp.114.245225 Vai! Cerca con Google

Gruber, B.D.; Giehl, R.F.; Friedel, S.; von Wirén, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013, 163, 161-79. https://doi.org/10.1104/pp.113.218453 Vai! Cerca con Google

Kant, S.; Bi, Y.M.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. https://doi.org/10.1093/jxb/erq297 Vai! Cerca con Google

Jia, K.P., Li, C., Bouwmeester, H.J., Al-Babili, S. Strigolactone Biosynthesis and Signal Transduction. In: Strigolactones - Biology and Applications. Koltai H., Prandi C. (eds). 2019, Springer, Cham. Cerca con Google

Kiba, T.; Krapp, A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol. 2016, 57, 707-714. https://doi.org/10.1093/pcp/pcw052 Vai! Cerca con Google

Koltai, H. Strigolactones are regulators of root development. New Phytol. 2011, 190, 545-549. Cerca con Google

Krapp, A.; David, L.C.; Chardin, C.; Girin, T.; Marmagne, A.; Leprince, A.S.; Chaillou, S.; Ferrario-Méry, S.; Meyer, C.; Daniel-Vedele, F. Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 2014, 65, 789–798. https://doi.org/10.1093/jxb/eru001 Vai! Cerca con Google

Krouk, G. Hormones and nitrate: a two-way connection. Plant Mol. Biol. 2016, 91, 599-606. https://doi.org/10.1007/s11103-016-0463-x Vai! Cerca con Google

Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, P.R.; Halford, N.G. Asparagine in plants. Ann. Appl. Biol. 2007, 150, 1-26. https://doi.org/10.1111/j.1744-7348.2006.00104.x Vai! Cerca con Google

Manoli, A.; Begheldo, M.; Genre, A.; Lanfranco, L.; Trevisan, S.; Quaggiotti, S. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J. Exp. Bot. 2014, 65, 185–200. https://doi.org/10.1093/jxb/ert358 Vai! Cerca con Google

Manoli, A.; Trevisan, S.; Voigt, B.; Yokawa, K.; Baluška, F.; Quaggiotti, S. Nitric Oxide-mediated maize root apex response to nitrate are regulated by auxin and strigolactones. Front. Plant Sci. 2016, 6, 1269:1-1269:15. https://doi.org/10.3389/fpls.2015.01269. Vai! Cerca con Google

Marzec, M., Muszynska, A., Gruszka, D. The role of strigolactones in nutrient-stress responses in plants. Int. J. Mol. Sci. 2013, 14, 9286–9304. https://doi.org/10.3390/ijms14059286 Vai! Cerca con Google

Marzec, M., Melzer, M. Regulation of root development and architecture by strigolactones under optimal and nutrient deficiency conditions. Int. J. Mol. Sci. 2018, 19, E1887. https://doi.org/10.3390/ijms19071887 Vai! Cerca con Google

Medici, A.; Krouk, G. The primary nitrate response: a multifaceted signalling pathway. J. Exp. Bot. 2014, 65, 5567–5576. https://doi.org/10.1093/jxb/eru245 Vai! Cerca con Google

Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. https://doi.org/10.1007/s11104-004-0965-1 Vai! Cerca con Google

Mostofa, M.G., Li, W., Nguyen, K.H., Fujita, M., Tran, L.P. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell Environ. 2018, 41, 2227-2243. https://doi.org/10.1111/pce.13364 Vai! Cerca con Google

Nacry, P.; Bouguyon, E.; Gojon, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 2013, 370, 1–29. https://doi.org/10.1007/s11104-013-1645-9 Vai! Cerca con Google

O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate transport, sensing, and responses in plants. Mol. Plant 2016, 9, 837–856. https://doi.org/10.1016/j.molp.2016.05.004 Vai! Cerca con Google

Patterson, K.; Cakmak, T.; Cooper, A.; Lager, I.; Rasmusson, A.G.; Escobar, M.A. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 2010, 33, 1486–1501. https://doi.org/10.1111/j.1365-3040.2010.02158.x Vai! Cerca con Google

Planchet, E.; Kaiser, W.M. Nitric oxide production in plants. Plant Signal. Behav. 2006, 1, 46–51. https://doi.org/10.4161/psb.1.2.2435 Vai! Cerca con Google

Rameau, C., Goormachtig, S., Cardinale, F., Bennett, T., Cubas, P. Strigolactones as Plant Hormones. In: Strigolactones - Biology and Applications. Koltai H., Prandi C. (eds), 2019, Springer, Cham. Cerca con Google

Ravazzolo, L.; Trevisan, S.; Manoli, A.; Boutet-Mercey, S.; Perreau, F.; Quaggiotti, S. The control of zealactone biosynthesis and exudation is involved in the response to nitrogen in maize root. Plant Cell Physiol. 2019, 60, 2100-2112. https://doi.org/10.1093/pcp/pcz108 Vai! Cerca con Google

Scheible, W.R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N.; Schindelasch, D.; Thimm, O.; Udvardi, M.K.; Stitt, M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004, 136, 2483–2499. https://doi.org/10.1104/pp.104.047019 Vai! Cerca con Google

Trevisan, S.; Manoli, A.; Begheldo, M.; Nonis, A.; Enna, M.; Vaccaro, S.; Caporale, G.; Ruperti, B.; Quaggiotti, S. Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol. 2011, 192, 338-352. https://doi.org/10.1111/j.1469-8137.2011.03822.x Vai! Cerca con Google

Trevisan, S.; Manoli, A.; Quaggiotti, S. NO signaling is a key component of the root growth response to nitrate in Zea mays L. Plant Signal. Behav. 2014, 9, e28290:1- e28290:6. https://doi.org/10.4161/psb.28290 Vai! Cerca con Google

Trevisan, S.; Manoli, A.; Ravazzolo, L.; Botton, A.; Pivato, M.; Masi, A.; Quaggiotti, S. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. J. Exp. Bot. 2015, 66, 3699-3715. https://doi.org/10.1093/jxb/erv165 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record