Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Duma, Gian Marco (2019) The impact of selective attention on information maintenance in visual short term memory: a neurofunctional investigation. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
3274Kb

Abstract (italian or english)

Two of the most important constructs of cognitive psychology are attention and memory. These are pillars of our cognition, allowing for the selection, encoding and storing of information in order to reach our goals. Attention and memory are nevertheless very broad concepts, both emerging from the interaction of different cognitive mechanisms. In the present work, emphasis has been placed on selective attention and visual short term memory as two main computational stages of information. Furthermore, selective attention both in the temporal and spatial domains was investigated with a special focus on how differently these domains impact the succesful maintenance of visual information in short term memory. Close attention was paid to the neural activity underlying the processes mentioned above. Therefore, high-density electroencephalogram (HD-EEG) was used to provide an optimal compromise between temporal and spatial resolution. The first two chapters of this thesis provide a brief introduction of the concept of visual short term memory (VSTM) and selective attention. Next, the relationship between these two mental processes is examined by discussing some of the most relevant empirical studies on this topic. In the central chapters, it is presented new experimental evidence from two different studies. In the first study, the focus is on the effect of temporal orienting of attention (TO) on memory, targeting the encoding (Experiment 1a) and maintenance (Experiment 1b) of information as two distinct computational steps of VSTM. In the second study, it is further explored the neural patterns underlying the VSTM network identified in the first study, deepening the functional role and the relations of the relative nodes of this circuit with regard to the maintenance of visual information. The final part of the present work is dedicated to discussing the theoretical implication of the empirical findings as well as to identifying new experimental routes to pursue with the aim of extending upon the presented results.

Abstract (a different language)

Due dei più importanti costrutti della psicologia cognitiva sono l'attenzione e la memoria. Questi sono i pilastri della nostra cognizione, che permettono la selezione, la codifica e lo stoccaggio delle informazioni per raggiungere i nostri obiettivi. Attenzione e memoria sono tuttavia concetti molto ampi, che emergono entrambi dall'interazione di diversi meccanismi cognitivi. Nel presente lavoro, l'enfasi è stata posta sull'attenzione selettiva e sulla memoria visiva a breve termine come due principali stadi computazionali dell'informazione. Inoltre, l'attenzione selettiva sia nel dominio temporale che in quello spaziale è stata indagata con particolare attenzione a come questi domini influenzano in modo diverso l'efficacia del mantenimento dell'informazione visiva nella memoria a breve termine. Particolare attenzione è stata dedicata all'attività neurale alla base dei processi sopra menzionati. Pertanto, l'elettroencefalogramma ad alta densità (HD-EEG) è stato utilizzato per fornire un compromesso ottimale tra risoluzione temporale e spaziale. I primi due capitoli di questa tesi forniscono una breve introduzione al concetto di memoria visiva a breve termine (VSTM) e di attenzione selettiva. Successivamente, la relazione tra questi due processi mentali viene esaminata discutendo alcuni dei più rilevanti studi empirici sull'argomento. Nei capitoli centrali vengono presentate nuove evidenze sperimentali tratte da due diversi studi. Nel primo studio, l'attenzione è focalizzata sull'effetto dell'orientamento temporale dell'attenzione (TO) sulla memoria, puntando alla codifica (Esperimento 1a) e al mantenimento (Esperimento 1b) dell'informazione come due distinti passi computazionali della VSTM. Nel secondo studio vengono ulteriormente esplorati i pattern neurali sottostanti la rete VSTM individuati nel primo studio, approfondendo il ruolo funzionale e le relazioni dei relativi nodi di questo circuito per quanto riguarda il mantenimento dell'informazione visiva. La parte finale del presente lavoro è dedicata alla discussione delle implicazioni teoriche delle scoperte empiriche e all'individuazione di nuovi percorsi sperimentali da perseguire con l'obiettivo di estendersi ai risultati presentati.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Dell'Acqua, Roberto
Supervisor:Mento, Giovanni
Ph.D. course:Ciclo 32 > Corsi 32 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:20 November 2019
Anno di Pubblicazione:20 November 2019
Key Words:viaual-short-term memory maintenance, functional connectivity, temporal-orienting
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:12071
Depositato il:22 Jan 2021 13:07
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adam, K. C., Vogel, E. K., & Awh, E. (2017). Clear evidence for item limits in visual working memory. Cognitive Psychology, 97, 79-97. Cerca con Google

Albouy, P., Weiss, A., Baillet, S., & Zatorre, R. J. (2017). Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance. Neuron, 94(1), 193-206. Cerca con Google

Alvarez, G. A., & Cavanagh, P. (2004). The Capacity of Visual Short- Term Memory Is Set Both by Visual Information Load and by Number of Objects. 15(2), 106–111. Cerca con Google

Astle, D. E., & Scerif, G. (2011). Interactions between attention and visual short-term memory (VSTM): What can be learnt from individual and developmental differences? Neuropsychologia, 49(6), 1435-1445. Cerca con Google

Astle, D. E., Luckhoo, H., Woolrich, M., Kuo, B. C., Nobre, A. C., & Scerif, G. (2014). The neural dynamics of fronto-parietal networks in childhood revealed using magnetoencephalography. Cerebral Cortex, 25(10), 3868-3876. Cerca con Google

Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146-162. Cerca con Google

Awh, E., Barton, B., & Vogel, E. K. (2014). Visual Working Memory a Fixed Number of Represents Items Regardless of Complexity. 18(7), 622–628. Cerca con Google

Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Vecchio, F., Cola, B., ... & Rossini, P. M. (2004). Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behavioral neuroscience, 118(4), 687. Cerca con Google

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. Cerca con Google

Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5-28. Cerca con Google

Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press. Cerca con Google

Bakshi, N., Pruitt, P., Radwan, J., Keshavan, M. S., Rajan, U., Zajac- Cerca con Google

Benitez, C., & Diwadkar, V. A. (2011). Inefficiently increased anterior cingulate modulation of cortical systems during working memory in young offspring of schizophrenia patients. Journal of psychiatric research, 45(8), 1067-1076. Cerca con Google

Barbosa, J. (2017). Working memories are maintained in a stable code. Journal of Neuroscience, 37(35), 8309-8311. Cerca con Google

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823. Cerca con Google

Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral cortex, 11(9), 825-836 Cerca con Google

Brigadoi, S., Cutini, S., Meconi, F., Castellaro, M., Sessa, P., Cerca con Google

Marangon, M., ... & Dell'Acqua, R. (2017). On the role of the inferior intraparietal sulcus in visual working memory for lateralized single-feature objects. Journal of cognitive neuroscience, 29(2), 337-351. Cerca con Google

Brisson, B., & Jolicœur, P. (2007). A psychological refractory period in access to visual short‐term memory and the deployment of visual–spatial attention: Multitasking processing deficits revealed by event‐related potentials. Psychophysiology, 44(2), 323-333. Cerca con Google

Broadbent, D. E. (1958). Perception and communication. London, New York: Pergamon. Cerca con Google

Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychological review, 64(3), 205. Cerca con Google

Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JDE (2002): Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–31. Cerca con Google

Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (2014). Cerca con Google

Entrainment of neural oscillations as a modifiable substrate of attention. Trends in cognitive sciences, 18(6), 300-309. Cerca con Google

Capizzi, M., Ambrosini, E., Arbula, S., Mazzonetto, I., & Vallesi, A. (2016). Electrophysiological evidence for domain-general processes in task-switching. Frontiers in Human Neuroscience, 10, 124. Cerca con Google

Capizzi, M., Ambrosini, E., Arbula, S., Mazzonetto, I., & Vallesi, A. (2016). Electrophysiological evidence for domain-general processes in task-switching. Frontiers in Human Neuroscience, 10, 124. Cerca con Google

Capizzi, M., Correa, A., & Sanabria, D. (2013). Temporal orienting of attention is interfered by concurrent working memory updating. Neuropsychologia, 51(2), 326-339. Cerca con Google

Capizzi, M., Sanabria, D., & Correa, Á. (2012). Dissociating controlled from automatic processing in temporal preparation. Cognition, 123(2), 293-302. Cerca con Google

Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal- parietal network based on goals. Nature Publishing Group, 14(7), 830–832. https://doi.org/10.1038/nn.2823 Vai! Cerca con Google

Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cognitive Brain Research, 25(3), 607-623. Cerca con Google

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the acoustical society of America, 25(5), 975-979. Cerca con Google

Christina Nobre, A. (2001). Orienting attention to instants in time. Neuropsychologia, 39(12), 1317–1328. https://doi.org/10.1016/s0028-3932(01)00120-8 Vai! Cerca con Google

Christophel, T. B., Hebart, M. N., & Haynes, J. D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32(38), 12983-12989. Cerca con Google

Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The distributed nature of working memory. Trends in cognitive sciences, 21(2), 111-124. Cerca con Google

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755 Vai! Cerca con Google

Correa, A., & Nobre, A. C. (2008). Neural modulation by regularity and passage of time. Journal of Neurophysiology, 100(3), 1649-1655. Cerca con Google

Correa, Á., Lupiáñez, J., Madrid, E., & Tudela, P. (2006). Temporal attention enhances early visual processing: A review and new evidence from event-related potentials. Brain research, 1076(1), 116-128. Cerca con Google

Correa, Á., Lupiáñez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception & Psychophysics, 66(2), 264-278. Cerca con Google

Correa, Á., Triviño, M., Pérez-Dueñas, C., Acosta, A., & Lupiáñez, J. (2010). Temporal preparation, response inhibition and impulsivity. Brain and Cognition, 73(3), 222-228. Cerca con Google

Correa, Á., Triviño, M., Pérez-Dueñas, C., Acosta, A., & Lupiáñez, J. (2010). Temporal preparation, response inhibition and impulsivity. Brain and Cognition, 73(3), 222-228. Cerca con Google

Coull, J. T., & Nobre, A. C. (1998). Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. 18(18), 7426–7435. Cerca con Google

Coull, J. T., Charras, P., Donadieu, M., Droit-Volet, S., & Vidal, F. (2015). SMA selectively codes the active accumulation of temporal, not spatial, magnitude. Journal of Cognitive Neuroscience, 27(11), 2281-2298. Cerca con Google

Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38(6), 808-819. Cerca con Google

Cowan, N. (1999). An embedded-processes model of working memory. Models of working memory: Mechanisms of active maintenance and executive control, 20, 506. Cerca con Google

Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why?.Current directions in psychological science, 19(1), 51-57. Cerca con Google

Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive psychology, 51(1), 42-100. Cerca con Google

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114 Cerca con Google

Cravo, A. M., Rohenkohl, G., Santos, K. M., & Nobre, A. C. (2017). Temporal anticipation based on memory. Journal of cognitive neuroscience, 29(12), 2081-2089. Cerca con Google

Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. Journal of Neuroscience, 33(9), 4002-4010. Cerca con Google

Curtis, C. E., & D' Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423. Cerca con Google

Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423. https://doi.org/10.1016/S1364-6613(03)00197-9 Vai! Cerca con Google

Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423. Cerca con Google

Davranche, K., Nazarian, B., Vidal, F., & Coull, J. (2011). Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. Journal of cognitive neuroscience, 23(11), 3318-3330. Cerca con Google

Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS biology, 5(10), e260 Cerca con Google

Dell’Acqua, R., Sessa, P., Toffanin, P., Luria, R., & Jolicœur, P. (2010). Orienting attention to objects in visual short-term memory. Neuropsychologia, 48(2), 419–428. https://doi.org/10.1016/j.neuropsychologia.2009.09.033 Vai! Cerca con Google

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. Cerca con Google

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1-15. Cerca con Google

Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological review, 70(1), 80. Cerca con Google

Drew, T. W., McCollough, A. W., & Vogel, E. K. (2006). Event-Related Potential Measures of Visual Working Memory. Clinical EEG and Neuroscience, 37(4), 286–291. https://doi.org/10.1177/155005940603700405 Vai! Cerca con Google

Duma, G. M., Mento, G., Manari, T., Martinelli, M., & Tressoldi, P. (2017). Driving with intuition: A preregistered study about the EEG anticipation of simulated random car accidents. PloS one, 12(1), e0170370. Cerca con Google

Duncan, J., & Humphreys, G. W. (1989). Visual Search and Stimulus Similarity. 96(3), 433–458. Cerca con Google

Ede, F. Van, Niklaus, M., & Nobre, X. A. C. (2017). Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated ␣ Oscillations. 37(2), 437–445. https://doi.org/10.1523/JNEUROSCI.2272-16.2016 Vai! Cerca con Google

Electroencephalography and Clinical Neurophysiology, 76(5), 419–439 Cerca con Google

Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893-905. Cerca con Google

Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain templates and atlases. Neuroimage, 62(2), 911-922. Cerca con Google

Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. 108(42). https://doi.org/10.1073/pnas.1106439108 Vai! Cerca con Google

Ferree, T. C. (2000). Spline interpolation of the scalp EEG. Secondary TitlEGI. Cerca con Google

Fox, J., & Weisberg, S. (2011). Multivariate linear models in R. An R Companion to Applied Regression. Los Angeles: Thousand Oaks. Cerca con Google

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. Cerca con Google

Gasquoine, P. G. (2013). Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neuroscience & Biobehavioral Reviews, 37(3), 340-348. Cerca con Google

Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014 Vai! Cerca con Google

Gazzaley, A., Rissman, J., Cooney, J., Seibert, T., Clapp, W., & Esposito, M. D. (2007). Functional Interactions between Prefrontal and Visual Association Cortex Contribute to Top-Down Modulation of Visual Processing. 125–135. https://doi.org/10.1093/cercor/bhm113 Vai! Cerca con Google

Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex (New York, NY: 1991), 7(4), 374-385. Cerca con Google

Gramfort, A., Papadopoulo, T., Olivi, E., & Clerc, M. (2011). Forward field computation with OpenMEEG. Computational intelligence and neuroscience, 2011. Cerca con Google

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. Cerca con Google

Griffin, I. C., Miniussi, C., & Nobre, A. C. (2002). Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia, 40(13), 2325-2340. Cerca con Google

Griffin, I. C., Miniussi, C., and Nobre, A. C. (2001). Orienting attention in time. Frontiers in Bioscience, 6, 660–71 Cerca con Google

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725. Cerca con Google

Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8), 1395-1399. Cerca con Google

Johnson, M. R., Mitchell, K. J., Raye, C. L., Esposito, M. D., & Cerca con Google

Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. Human Brain Mapping Journal, 37(1), 290–299. https://doi.org/10.1016/j.neuroimage.2007.05.017 Vai! Cerca con Google

Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive psychology, 36(2), 138-202. Cerca con Google

Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive psychology, 36(2), 138-202. Cerca con Google

Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall. Cerca con Google

Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations. Experimental psychology, 52(2), 99-108. Cerca con Google

Klingberg, T. (2006). Development of a superior frontal–intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171-2177. Cerca con Google

Kondo, H., Osaka, N., & Osaka, M. (2004). Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage, 23(2), 670-679. Cerca con Google

Korolczuk, I., Burle, B., & Coull, J. T. (2018). The costs and benefits of temporal predictability: impaired inhibition of prepotent responses accompanies increased activation of task-relevant responses. Cognition, 179, 102-110. Cerca con Google

Kuo, B. C., Stokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24(1), 51–60. https://doi.org/10.1162/jocn_a_00087 Vai! Cerca con Google

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13). Cerca con Google

Kybic, J., Clerc, M., Faugeras, O., Keriven, R., & Papadopoulo, T. (2005). Fast multipole acceleration of the MEG/EEG boundary element method. Physics in Medicine & Biology, 50(19), 4695. Cerca con Google

Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human brain mapping, 8(4), 194-208. Cerca con Google

Lange, K., Rösler, F., & Röder, B. (2003). Early processing stages are modulated when auditory stimuli are presented at an attended moment in time: An event‐related potential study. Psychophysiology, 40(5), 806-817. Cerca con Google

Lantz, G., De Peralta, R. G., Spinelli, L., Seeck, M., & Michel, C. M. (2003). Epileptic source localization with high density EEG: how many electrodes are needed? Clinical neurophysiology, 114(1), 63-69. Cerca con Google

Lefebvre, C., Dell'acqua, R., Roelfsema, P. R., & Jolicœur, P. (2011). Surfing the attentional waves during visual curve tracing: evidence from the sustained posterior contralateral negativity. Psychophysiology, 48(11), 1510-1516. Cerca con Google

Lenartowicz, A., & McIntosh, A. R. (2005). The role of anterior cingulate cortex in working memory is shaped by functional connectivity. Journal of Cognitive Neuroscience, 17(7), 1026-1042. Cerca con Google

Lenth, R. (2018). Emmeans: Estimated marginal means, aka least-squares means. R Package Version, 1(2). Cerca con Google

Lepsien, J., & Nobre, A. C. (2007). Attentional modulation of object representations in working memory. Cerebral Cortex, 17(9), 2072–2083. https://doi.org/10.1093/cercor/bhl116 Vai! Cerca con Google

Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49(6), 1569–1577. https://doi.org/10.1016/j.neuropsychologia.2011.03.011 Vai! Cerca con Google

Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2014). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2), 325-333. Cerca con Google

Linden, D. E., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Cerca con Google

Goebel, R., ... & Munk, M. H. (2003). Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage, 20(3), 1518-1530. Cerca con Google

Los, S. A., & Heslenfeld, D. J. (2005). Intentional and unintentional contributions to nonspecific preparation: Electrophysiological evidence. Journal of experimental psychology: General, 134(1), 52. Cerca con Google

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–284. https://doi.org/10.1038/36846 Vai! Cerca con Google

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279. Cerca con Google

Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of cognitive neuroscience, 22(3), 496-512. Cerca con Google

Luu, P., & Ferree, T. (2005). Determination of the HydroCel Geodesic Sensor Nets’ average electrode positions and their 10–10 international equivalents (Technical report). Eugene, OR: Electrical Geodesics Inc. Cerca con Google

Ma, L., Steinberg, J. L., Hasan, K. M., Narayana, P. A., Kramer, L. A., & Moeller, F. G. (2012). Working memory load modulation of parieto‐frontal connections: Evidence from dynamic causal modeling. Human brain mapping, 33(8), 1850-1867. Cerca con Google

Macar, F., Coull, J., & Vidal, F. (2006). The supplementary motor area in motor and perceptual time processing: fMRI studies. Cognitive processing, 7(2), 89-94. Cerca con Google

Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Experimental Brain Research, 125(3), 271-280. Cerca con Google

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838. Cerca con Google

Mecklinger, A., & Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Research, 4(3), 211–224. https://doi.org/10.1016/S0926-6410(96)00034-1 Vai! Cerca con Google

Mento G. (2017). The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study. Neuropsychologia,107, 31-40. Cerca con Google

Mento, G. (2013). The passive CNV: carving out the contribution of task-related processes to expectancy. Frontiers in human neuroscience, 7, 827. Cerca con Google

Mento, G. (2017). The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study. Neuropsychologia, 107, 31-40. Cerca con Google

Mento, G., & Tarantino, V. (2015). Developmental trajectories of internally and externally driven temporal prediction. PLoS One, 10(8), e0135098. Cerca con Google

Mento, G., & Valenza, E. (2016). Spatiotemporal neurodynamics of automatic temporal expectancy in 9-month old infants. Scientific Reports, 6, 36525. Cerca con Google

Mento, G., & Vallesi, A. (2016). Spatiotemporally dissociable neural signatures for generating and updating expectation over time in children: A High Density-ERP study. Developmental cognitive neuroscience, 19, 98-106. Cerca con Google

Mento, G., & Vallesi, A. (2016). Spatiotemporally dissociable neural signatures for generating and updating expectation over time in children: A High Density-ERP study. Developmental cognitive neuroscience, 19, 98-106. Cerca con Google

Mento, G., Astle, D. E., & Scerif, G. (2018). Cross-frequency Phase–Amplitude Coupling as a Mechanism for Temporal Orienting of Attention in Childhood. Journal of cognitive neuroscience, 30(4), 594-602. Cerca con Google

Mento, G., Tarantino, V., Vallesi, A., & Bisiacchi, P. S. (2015). Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study. Journal of Cognitive Neuroscience, 27(3), 425-439. Cerca con Google

Michel, C. M., M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli & R. Grave de Peralta (2004) EEG source imaging. Clin Neurophysiol, 115, 2195-222 Cerca con Google

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81. Cerca con Google

Miniussi, C., Wilding, E. L., Coull, J. T., & Nobre, A. C. (1999). Orienting attention in time: Modulation of brain potentials. Brain, 122(8), 1507-1518. Cerca con Google

Monosov, I. E., Trageser, J. C., & Thompson, K. G. (2008). Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field. Neuron, 57(4), 614-625. Cerca con Google

Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Cerca con Google

Neuropsychologia Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49(6), 1458–1465. https://doi.org/10.1016/j.neuropsychologia.2011.02.016 Vai! Cerca con Google

Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological science, 24(4), 550-556. Cerca con Google

Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological bulletin, 89(1), 133. Cerca con Google

Nobre, A. C. (2001). Orienting attention to instants in time. Neuropsychologia, 39(12), 1317-1328. Cerca con Google

Nobre, A. C. (2001). The attentive homunculus: now you see it, now you don't. Neuroscience & Biobehavioral Reviews, 25(6), 477-496. Cerca con Google

Nunez, P. L., & Westdorp, A. F. (1994). The surface Laplacian, high resolution EEG and controversies. Brain topography, 6(3), 221-226. Cerca con Google

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). Cerca con Google

FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience, 2011, 1. Cerca con Google

Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: an fMRI study. NeuroImage, 18(3), 789-797. Cerca con Google

Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87(1), 256-259. Cerca con Google

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol, 24(Suppl D), 5-12. Cerca con Google

Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature reviews neuroscience, 2(6), 417. Cerca con Google

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184-187. Cerca con Google

Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biological psychiatry, 45(10), 1237-1258. Cerca con Google

Phillips, W. A., & Baddeley, A. D. (1971). Reaction time and short-term visual memory. Psychonomic Science, 22(2), 73-74. Cerca con Google

Pinotsis, D. A., Buschman, T. J., & Miller, E. K. (2018). Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex, 29(4), 1670–1681. Cerca con Google

Polich, J. (2003). Overview of P3a and P3b. In J. Polich (Ed.), Cerca con Google

Detection of Change:Event-Related Potential and fMRI Findings (pp. 83-98). Kluwer Academic Press: Boston. Cerca con Google

Posner, M. (1990). The Attention System of The Human Brain. Annual Review of Neuroscience, 13(1), 25–42. https://doi.org/10.1146/annurev.neuro.13.1.25 Vai! Cerca con Google

Posner, M. I. (1980). Orienting of attention. Quarterly journal of experimental psychology, 32(1), 3-25. Cerca con Google

Posner, M. I. (1980). Posner - 1980 - Orienting of attention. (July 1979), 3–25. Cerca con Google

Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological review, 78(5), 391. Cerca con Google

Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annu. Rev. Neurosci., 27, 611-647. Cerca con Google

Robitaille, N., Jolicœur, P., Dell'Acqua, R., & Sessa, P. (2007). Short-term consolidation of visual patterns interferes with visuo-spatial attention: Converging evidence from human electrophysiology. Brain research, 1185, 158-169. Cerca con Google

Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory attention follow temporal expectations. Journal of Neuroscience, 31(40), 14076-14084. Cerca con Google

Ruchkin, D. S., Johnson, R., Canoune, H., & Ritter, W. (1990). Short-term memory Cerca con Google

Sala-Llonch, R., Peña-Gómez, C., Arenaza-Urquijo, E. M., Vidal-Piñeiro, D., Bargalló, N., Junqué, C., & Bartrés-Faz, D. (2012). Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex, 48(9), 1187-1196. Cerca con Google

Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-specific fronto-parietal synchronization during visual working memory. Science, 1224000. Cerca con Google

Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. Cerca con Google

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., ... & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917-2926. Cerca con Google

Schwartze, M., & Kotz, S. A. (2013). A dual-pathway neural architecture for specific temporal prediction. Neuroscience & Biobehavioral Reviews, 37(10), 2587-2596. Cerca con Google

Serences, J. T. (2016). Neural mechanisms of information storage in visual short-term memory. Vision research, 128, 53-67. Cerca con Google

Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 1082-1108. Cerca con Google

Shimi, A., & Scerif, G. (2017). Towards an integrative model of visual short-term memory maintenance: Evidence from the effects of attentional control, load, decay, and their interactions in childhood. Cognition, 169(September), 61–83. https://doi.org/10.1016/j.cognition.2017.08.005 Vai! Cerca con Google

Shimi, A., & Scerif, G. (2017). Towards an integrative model of visual short-term memory maintenance: Evidence from the effects of attentional control, load, decay, and their interactions in childhood. Cognition, 169, 61-83. Cerca con Google

Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting Attention Within Visual Short-Term Memory: Development and Mechanisms. Child Development, 85(2), 578–592. https://doi.org/10.1111/cdev.12150 Vai! Cerca con Google

Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2009). V4 Activity Predicts the Strength of Visual Short-Term Memory Representations. 29(23), 7432–7438. https://doi.org/10.1523/JNEUROSCI.0784-09.2009 Vai! Cerca con Google

Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., & Tucker, D. (2015). EEG source localization: Sensor density and head surface coverage. Journal of Neuroscience Methods, 256, 9–21. Cerca con Google

Sperling, G. (1960). The information available in brief visual presentations. Psychological monographs: General and applied, 74(11), 1. Cerca con Google

Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in cognitive sciences, 18(2), 82-89. Cerca con Google

Srinivasan, R., P. L. Nunez, D. M. Tucker, R. B. Silberstein & P. J. Cerca con Google

Cadusch (1996) Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topogr, 8, 355-66. Cerca con Google

Stokes, M. G. (2015). ‘Activity-silent’working memory in prefrontal cortex: a dynamic coding framework. Trends in cognitive sciences, 19(7), 394-405. Cerca con Google

Stone, J. V. (2002). Independent component analysis: an introduction. Trends in cognitive sciences, 6(2), 59-64. Cerca con Google

Strauss, M., Sitt, J. D., King, J. R., Elbaz, M., Azizi, L., Buiatti, M., ... & Dehaene, S. (2015). Disruption of hierarchical predictive coding during sleep. Proceedings of the National Academy of Sciences, 112(11), E1353-E1362. Cerca con Google

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience, 2011, 8. Cerca con Google

Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22(16), R658-R663. Cerca con Google

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751. Cerca con Google

Treisman, A. M. (1964). Selective attention in man. British medical bulletin. Cerca con Google

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136. Cerca con Google

Unit, A. P., & Duncan, J. (1984). Selective Attention and the Organization of Visual Information. 113(4), 501–517. Cerca con Google

Vallesi, A., Arbula, S., & Bernardis, P. (2014). Functional dissociations in temporal preparation: evidence from dual-task performance. Cognition, 130(2), 141-151. Cerca con Google

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. https://doi.org/10.1038/nature02447 Vai! Cerca con Google

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748. Cerca con Google

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500. Cerca con Google

Voorhis, S. V. A. N., & Hillyard, S. A. (1977). Visual evoked potentials and selective attention to points in space. 22(1), 54–62. Cerca con Google

Walter, W. G. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 230, 380-384. Cerca con Google

Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754-20759. Cerca con Google

Wilcox, R., 2012. Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record