Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bottin, Matteo (2019) Optimization of Complex Robotic Tasks for Smart Manufacturing Applications. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi definitiva Matteo Bottin) - Submitted Version
Thesis not accessible until 03 December 2022 for intellectual property related reasons.
Visibile to: nobody

28Mb

Abstract (italian or english)

Traditionally, the robots used in the industry field are made up of 6 links, so they can provide 6 degrees of freedom (DOF) in space. However, some particular applications or particular robot structures can provide additional degrees of freedom, thus creating a so-called "redundant task" or "redundant robot".
Due to the structure of the robot, having 7 (or more) degrees of freedom results in a non-unique definition of the configuration of the robot: by choosing the values of the redundant axis angles, the robot is always able, within the working space, to satisfy the requested final position.

This feature can greatly increase the flexibility of the robot because can be used to avoid obstacles that could not be avoided with a traditional 6-axis serial robot. Moreover, taking advantage of the redundancy it is possible to avoid the singularities of the structure, thus improving motor consumption, movement times and transmitted forces. The reduced forces introduce a novel topic in robotics that has become more and more important in the last years: Human-Robot Collaboration.

Due to safety reasons, the speed and the contact forces that the robot can apply have to be limited. Moreover, the introduction of the operator within the workspace leads to an uncertainty of the obstacles placed in the workspace that the robot has to avoid. All these aspects can be managed with a redundant robot, and that's why most of the new collaborative robot arms are made by 7 or more joints.

The redundancy can be obtained also with passive tools: in specific tasks, such as welding, grinding and spraying, the same result can be obtained by rotating the robot structure around a specific axis, usually normal to the workpiece surface.
Speaking about grinding, the redundant axis is coincident with the spindle axis: the grinder is circular, so every contact position around the grinder wheel circumference is suitable for the grinding process.

This work aims at providing a set of tools that can plan trajectories, avoid obstacles, schedule tasks and improve grinding finishing.
The inspiration of this work relies on a real-world application: the robotic grinding. Even if most of the industry uses dedicated grinding machines, the flexibility of the robots makes them perfect to increase the flexibility of the machining process.
However, the stiffness of the robot's structure is usually lower than the one of a dedicated machine, thus providing a worse finishing with the same cycle time.

In the first part of the thesis, a set of optimization tools are designed to find the optimal path that can move a redundant robot from one position to another without colliding the environment. This optimization takes into account the redundancy of the structure. Moreover, an optimal task allocation algorithm is presented. To complete the dissertation, in the Appendix a novel collision detection algorithm is explained.

The second part focuses on a dynamic analysis of a robot: firstly, a modal study on a real six-axis serial robot has been performed; secondly, a comparison between a redundant under-actuated robot and a dynamically equivalent fully-actuated robot is illustrated.

Abstract (a different language)

I robot utilizzati nell'ambito industriale sono prevalentemente composti da 6 elementi mobili, chiamati links, e dunque possono fornire 6 gradi di libertà (GDL, DOF in inglese) nello spazio.
Esistono però applicazioni e robot particolari che possono fornire gradi di libertà aggiuntivi, creando un cosiddetto "task ridondante" o "robot ridondante".
A causa della struttura del robot, la presenza di 7 (o più) gradi di libertà porta ad avere infinite configurazioni robotiche in grado di soddisfare la posizione finale: per farlo, è necessario solamente scegliere il valore delle rotazioni attorno agli assi ridondanti.

Grazie a questa funzionalità è possibile aumentare la flessibilità dei robot, in quanto cambiando la configurazione il robot potrebbe essere in grado di evitare gli ostacoli. Inoltre, si può usare la ridondanza per evitare configurazioni singolari, migliorando quindi il consumo energetico dei motori, i tempi di movimento e le forze trasmesse dal robot.
La riduzione delle forze permette di introdurre un argomento che sta diventando sempre più popolare negli ultimi anni: la collaborazione uomo-robot.

Per ragioni di sicurezza, la velocità e le forze di contatto che il robot può imprimere devono essere limitate. Per di più, l'introduzione del fattore umano all'interno della cella di lavoro porta ad un posizionamento incerto degli ostacoli nello spazio che il robot dev'essere in grado di evitare. Tutti questi aspetti possono quindi essere risolti utilizzando un robot ridondante, ed è per questo che la maggior parte dei robot collaborativi in commercio è dotato di 7 (o più) giunti.

Anche un robot a 6 gradi di libertà può essere ridondante: in particolari applicazioni, come la saldatura e la sbavatura, la stessa operazione può essere eseguita ruotando attorno uno specifico asse, solitamente normale alla superficie del pezzo. La base della ridondanza è data dunque dall'end effector passivo. Parlando nello specifico della sbavatura robotizzata, l'asse ridondante ècoincidente con l'asse del mandrino: la mola utilizzata nella lavorazione è circolare, quindi ogni punto attorno alla circonferenza può essere utilizzato come punto di contatto.

Questa tesi vuole fornire degli strumenti in grado di pianificare traiettorie, evitare ostacoli, definire una sequenza di operazioni e migliorare la finitura della sbavatura robotizzata. L'ispirazione deriva proprio dalla sbavatura robotizzata, per la quale la maggior parte delle applicazioni industriali si basa su macchine di sbavatura dedicate. Il robot, in un contesto come questo, sarebbe perfetto per migliorare la flessibilità del processo. Purtroppo, la rigidezza della struttura del robot è decisamente inferiore a quella di una macchina dedicata, risultando in una finitura superficiale peggiore con lo stesso tempo ciclo.

Nella prima parte della tesi vengono presentati alcuni strumenti di ottimizzazione in grado di trovare il percorso ottimale che nuove un robot ridondante tra due posizioni senza collidere con l'ambiente. La ridondanza della struttura viene presa in considerazione per la definizione del movimento.
Per di più, viene presentato anche un algoritmo di allocazione del task basato sul famoso Traveling Salesman Problem. Per completare il progetto, nell'Appendice un nuovo algoritmo di collision detection è stato spiegato.

Nella seconda parte della tesi viene analizzata la risposta dinamica del robot: inizialmente è stato condotto uno studio modale su un robot a 6 assi presente nel Laboratorio di Robotica dell'Università di Padova; successivamente, è stata condotta una comparazione dinamica tra un robot sotto-attuato e un manipolatore completamente attuato dinamicamente equivalente.

EPrint type:Ph.D. thesis
Tutor:Rosati, Giulio
Ph.D. course:Ciclo 32 > Corsi 32 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:25 November 2019
Anno di Pubblicazione:24 November 2019
Key Words:Deburring; Trajectory optimization; Travelling salesman problem; Robot dynamics; Vibration; Industrial robot
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:12083
Depositato il:02 Feb 2021 11:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] International Federation of Robotics, "World robotics 2019 preview" 2019. Cerca con Google

[2] A. Allahverdi and H. Soroush, "The significance of reducing setup times/setup costs,"European Journal of Operational Research, vol. 187, no. 3, pp. 978-984, 2008. Cerca con Google

[3] J. Heilala, J. Montonen, and O. Väätäinen, "Life cycle and unitcost analysis for modular reconfigurable flexible light assembly systems," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 222, no. 10, pp. 1289-1299, 2008. Cerca con Google

[4] J. P. Shewchuk, "Worker allocation in lean u-shaped production lines" International Journal of Production Research, vol. 46, no. 13, pp. 3485-3502, 2008. Cerca con Google

[5] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, "Recent progress on programming methods for industrial robots," in ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1-8, VDE, 2010. Cerca con Google

[6] G. Boothroyd, Assembly automation and product design. CRC Press, 2005. Cerca con Google

[7] B. Siciliano, "Kinematic control of redundant robot manipulators: A tutorial," Journal of intelligent and robotic systems, vol. 3, no. 3, pp. 201-212, 1990. Cerca con Google

[8] T. Yoshikawa, "Manipulability and redundancy control of robotic mechanisms," in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1004-1009, IEEE, 1985. Cerca con Google

[9] R. Dubey and J. Luh, "Redundant robot control for higher flexibility," in Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1066-1072, IEEE, 1987. Cerca con Google

[10] J. M. Hollerbach, "Optimum kinematic design for a seven degree of freedom manipulator," in Robotics research: The second international symposium, pp. 215-222, Cambridge, MIT Press, 1985. Cerca con Google

[11] A. A. Ata, "Optimal trajectory planning of manipulators: a review" Journal of Engineering Science and Technology, vol. 2, no. 1, pp. 32-54, 2007. Cerca con Google

[12] G. S. Chirikjian and J. W. Burdick, "An obstacle avoidance algorithm for hyper-redundant manipulators," in Proceedings., IEEE International Conference on Robotics and Automation, pp. 625-631, IEEE, 1990. Cerca con Google

[13] G. S. Chirikjian and J. W. Burdick, "A modal approach to hyper-redundant manipulator kinematics," IEEE Transactions on Robotics and Automation, vol. 10, no. 3, pp. 343-354, 1994. Cerca con Google

[14] A. A. Maciejewski and C. A. Klein, "Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments," The international journal of robotics research, vol. 4, no. 3, pp. 109-117, 1985. Cerca con Google

[15] Y. Zhang and J. Wang, "Obstacle avoidance for kinematically redundant manipulators using a dual neural network," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 752-759, 2004. Cerca con Google

[16] J. Wang, Q. Hu, and D. Jiang, "A lagrangian network for kinematic control of redundant robot manipulators," IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1123-1132, 1999. Cerca con Google

[17] Y. Xia and J. Wang, "A dual neural network for kinematic control of redundant robot manipulators," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 1, pp. 147-154, 2001. Cerca con Google

[18] S. Chiaverini, "Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators," IEEE Transactions on Robotics and Automation, vol. 13, no. 3, pp. 398-410, 1997. Cerca con Google

[19] N. Kumar, V. Panwar, N. Sukavanam, S. Sharma, and J.-H. Borm, "Neural network-based nonlinear tracking control of kinematically redundant robot manipulators," Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1889-1901, 2011. Cerca con Google

[20] R. Dubey and J. Y. Luh, "Redundant robot control using task based performance measures," Journal of robotic systems, vol. 5, no. 5, pp. 409-432, 1988. Cerca con Google

[21] D. R. Baker and C. W. Wampler, "On the inverse kinematics of redundant manipulators," The International journal of robotics research, vol. 7, no. 2, pp. 3-21, 1988. Cerca con Google

[22] Y. Wang and P. Artemiadis, "Closed-form inverse kinematic solution for anthropomorphic motion in redundant robot arms," Adv Robot Autom, vol. 2, no. 110, p. 2, 2013. Cerca con Google

[23] R. V. Dubey, J. A. Euler, and S. M. Babcock, "An efficient gradient projection optimization scheme for a seven-degree-offreedom redundant robot with spherical wrist," in Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 28-36, IEEE, 1988. Cerca con Google

[24] C. Urrea and J. Kern, "Modeling, simulation and control of a redundant scara-type manipulator robot," International Journal of Advanced Robotic Systems, vol. 9, no. 2, p. 58, 2012. Cerca con Google

[25] S. Lin and B. W. Kernighan, "An effective heuristic algorithm for the traveling-salesman problem," Operations research, vol. 21, no. 2, pp. 498-516, 1973. Cerca con Google

[26] M. Bottin, G. Boschetti, and G. Rosati, "A novel collision avoidance method for serial robots," in IFToMM Symposium on Mechanism Design for Robotics, pp. 293-301, Springer, 2018. Cerca con Google

[27] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, "Fast proximity queries with swept sphere volumes," tech. rep., Technical Report TR99-018, Department of Computer Science, University of North Carolina, 1999. Cerca con Google

[28] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, "Fast distance queries with rectangular swept sphere volumes," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 4, pp. 3719-3726, IEEE, 2000. Cerca con Google

[29] S. Gottschalk, M. C. Lin, and D. Manocha, "Obbtree: A hierarchical structure for rapid interference detection," in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 171-180, ACM, 1996. Cerca con Google

[30] C. Park, "Self-collision detection & avoidance algorithm for a robot manipulator," International Journal of Engineering and Innovative Technology, vol. 5, no. 4, pp. 139-142, 2015. Cerca con Google

[31] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," in Autonomous robot vehicles, pp. 396-404, Springer, 1986. Cerca con Google

[32] M. I. Ribeiro, "Obstacle avoidance" Instituto de Sistemas e Robótica, Instituto Superio Técnico, p. 1, 2005. Cerca con Google

[33] S. Redon, A. Kheddar, and S. Coquillart, "An algebraic solution to the problem of collision detection for rigid polyhedral objects" in Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, vol. 4, pp. 3733-3738, IEEE, 2000. Cerca con Google

[34] C. Rodriguez-Garavito, A. A. Patiño-Forero, and G. Camacho-Munoz, "Collision detector for industrial robot manipulators," in The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 187-196, Springer, 2018. Cerca con Google

[35] M. Ratiu and M. A. Prichici, "Industrial robot trajectory optimization-a review," in MATEC Web of Conferences, vol. 126, p. 02005, EDP Sciences, 2017. Cerca con Google

[36] S. Hrabar, "3d path planning and stereo-based obstacle avoidance for rotorcraft uavs," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 807-814, IEEE, 2008. Cerca con Google

[37] C. Carbone, U. Ciniglio, F. Corraro, and S. Luongo, "A novel 3d geometric algorithm for aircraft autonomous collision avoidance," in Proceedings of the 45th IEEE Conference on Decision and Control, pp. 1580-1585, IEEE, 2006. Cerca con Google

[38] J. Barraquand and J.-C. Latombe, "A monte-carlo algorithm for path planning with many degrees of freedom," in Proceedings., IEEE International Conference on Robotics and Automation, pp. 1712-1717, IEEE, 1990. Cerca con Google

[39] T. Lozano-Pérez and M. A. Wesley, "An algorithm for planning collision-free paths among polyhedral obstacles," Communications of the ACM, vol. 22, no. 10, pp. 560-570, 1979. Cerca con Google

[40] M. Elbanhawi and M. Simic, "Sampling-based robot motion planning: A review," Ieee access, vol. 2, pp. 56-77, 2014. Cerca con Google

[41] M. V. Weghe, D. Ferguson, and S. S. Srinivasa, "Randomized path planning for redundant manipulators without inverse kinematics," in 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 477-482, IEEE, 2007. Cerca con Google

[42] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, "An integrated approach to inverse kinematics and path planning for redundant manipulators," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 1874-1879, IEEE, 2006. Cerca con Google

[43] S. M. LaValle, Planning algorithms. Cambridge university press, 2006. Cerca con Google

[44] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, "Survey of robot 3d path planning algorithms," Journal of Control Science and Engineering, vol. 2016, p. 5, 2016. Cerca con Google

[45] S. Seereeram and J. T. Wen, "A global approach to path planning for redundant manipulators" IEEE Transactions on Robotics and Automation, vol. 11, no. 1, pp. 152-160, 1995. Cerca con Google

[46] O. P. Agrawal and Y. Xu, "On the global optimum path planning for redundant space manipulators," IEEE transactions on systems, man, and cybernetics, vol. 24, no. 9, pp. 1306-1316, 1994. Cerca con Google

[47] S. M. LaValle and J. J. Kuffner Jr, "Randomized kinodynamic planning," The international journal of robotics research, vol. 20, no. 5, pp. 378-400, 2001. Cerca con Google

[48] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996. Cerca con Google

[49] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959. Cerca con Google

[50] L. Sciavicco and B. Siciliano, "A solution algorithm to the inverse kinematic problem for redundant manipulators," IEEE Journal of Robotics and Automation, vol. 4, no. 4, pp. 403-410, 1988. Cerca con Google

[51] L. Tian and C. Collins, "Motion planning for redundant manipulators using a floating point genetic algorithm," Journal of Intelligent & Robotic Systems, vol. 38, no. 3, pp. 297-312, 2003. Cerca con Google

[52] N. C. N. Doan and W. Lin, "Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6r articulated robots," Robotics and Computer-Integrated Manufacturing, vol. 48, pp. 233-242, 2017. Cerca con Google

[53] J. Pamanes-García, E. Cuan-Durón, and S. Zeghloul, "Single and multi-objective optimization of path placement for redundant robotic manipulators," INGENIERÍA Investigación y Tecnologí­a, vol. 9, no. 3, pp. 231-257, 2008. Cerca con Google

[54] M. Bellmore and G. L. Nemhauser, "The traveling salesman problem: a survey," Operations Research, vol. 16, no. 3, pp. 538-558, 1968. Cerca con Google

[55] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, "An algorithm for the traveling salesman problem," Operations research, vol. 11, no. 6, pp. 972-989, 1963. Cerca con Google

[56] M. Bellmore and J. C. Malone, "Pathology of traveling-salesman subtour-elimination algorithms," Operations Research, vol. 19, no. 2, pp. 278-307, 1971. Cerca con Google

[57] M. Dorigo and L. M. Gambardella, "Ant colonies for the travelling salesman problem" biosystems, vol. 43, no. 2, pp. 73-81, 1997. Cerca con Google

[58] R. Bellman, "Dynamic programming treatment of the travelling salesman problem," Journal of the ACM (JACM), vol. 9, no. 1, pp. 61-63, 1962. Cerca con Google

[59] K. L. Hoffman, M. Padberg, and G. Rinaldi, "Traveling salesman problem," in Encyclopedia of operations research and management science, pp. 1573-1578, Springer, 2013. Cerca con Google

[60] J.-F. Petiot, P. Chedmail, and J.-Y. Hascoët, "Contribution to the scheduling of trajectories in robotics," Robotics and Computer-Integrated Manufacturing, vol. 14, no. 3, pp. 237-251, 1998. Cerca con Google

[61] Y. Edan, T. Flash, U. M. Peiper, I. Shmulevich, and Y. Sarig, "Near-minimum-time task planning for fruit-picking robots," IEEE transactions on robotics and automation, vol. 7, no. 1, pp. 48-56, 1991. Cerca con Google

[62] R. Kumar and Z. Luo, "Optimizing the operation sequence of a chip placement machine using tsp model," IEEE Transactions on Electronics Packaging Manufacturing, vol. 26, no. 1, pp. 14-21, 2003. Cerca con Google

[63] D. CHAN and D. Mercier, "Ic insertion: an application of the travelling salesman problem," The International Journal of Production Research, vol. 27, no. 10, pp. 1837-1841, 1989. Cerca con Google

[64] J. Balakrishnan and P. D. Jog, "Manufacturing cell formation using similarity coefficients and a parallel genetic tsp algorithm: Formulation and comparison," Mathematical and Computer Modelling, vol. 21, no. 12, pp. 61-73, 1995. Cerca con Google

[65] J. Mareczek, M. Buss, and G. Schmidt, "Robust global stabilization of the underactuated 2-dof manipulator r2d1," in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 3, pp. 2640-2645, IEEE, 1998. Cerca con Google

[66] J. Mareczek, M. Buss, and G. Schmidt, "Robust control of a nonholonomic underactuated scara robot," in Progress in system and robot analysis and control design, pp. 381-396, Springer, 1999. Cerca con Google

[67] S. Abdolshah, D. Zanotto, G. Rosati, and S. K. Agrawal, "Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots," Journal of Mechanisms and Robotics, vol. 9, no. 3, p. 031004, 2017. Cerca con Google

[68] G. Rosati, M. Faccio, A. Carli, and A. Rossi, "Fully flexible assembly systems (f-fas): a new concept in flexible automation," Assembly Automation, vol. 33, no. 1, pp. 8-21, 2013. Cerca con Google

[69] M. Bergerman, Y. Xu, and Y.-H. Liu, "Control of cooperative underactuated manipulators: a robustness comparison study," in 1st Workshop on Robotics and Mechatronics, Hong Kong. Citeseer, pp. 279-286, Citeseer, 1998. Cerca con Google

[70] A. A. Siqueira and M. H. Terra, "Nonlinear and markovian h/-sub/spl infin//controls of underactuated manipulators," IEEE Transactions on Control Systems Technology, vol. 12, no. 6, pp. 811-826, 2004. Cerca con Google

[71] C. Aguilar-lbÅAñez and H. Sira-Ramirez, "Pd control for active vibration damping in an underactuated nonlinear system," Asian Journal of Control, vol. 4, no. 4, pp. 502-508, 2002. Cerca con Google

[72] S. S. Nudehi and R. Mukherjee, "Enhancing controllability and observability in underactuated and undersensed systems through switching: Application to vibration control," Journal of dynamic systems, measurement, and control, vol. 126, no. 4, pp. 790-799, 2004. Cerca con Google

[73] International Federation of Robotics, "World robotics 2018 executive summary industrial robots," 2018. Cerca con Google

[74] International Federation of Robotics, "World robotics 2018 executive summary service robots," 2018. Cerca con Google

[75] J. Edward, C. W. Wannasuphoprasit, and M. A. Peshkin, "Cobots: Robots for collaboration with human operators," in International Mechanical Engineering Congress and Exposition, Atlanta, Citeseer, 1996. Cerca con Google

[76] L. Ventures, "Industrial robotics outlook: 2015-2025," 2019. Cerca con Google

[77] ISO, "Robots for industrial environments safety requirementspart 1," ISO ISO 10218-1, International Organization for Standardization, Geneva, Switzerland, 2011. Cerca con Google

[78] ISO, "Robots for industrial environments safety requirementspart 2," ISO ISO 10218-2, International Organization for Standardization, Geneva, Switzerland, 2011. Cerca con Google

[79] kuka, "http://www.kuka-robotics.com/," 2019. Vai! Cerca con Google

[80] ABB, "http://www.abb.com/," 2019. Vai! Cerca con Google

[81] R. robotics, "https://www.rethinkrobotics.com/" 2019. Vai! Cerca con Google

[82] U. robots, "https://www.universal-robots.com/," 2019. Vai! Cerca con Google

[83] Fanuc, "http://www.fanuc.eu/uk/en," 2019. Vai! Cerca con Google

[84] Comau, "https://www.comau.com/," 2019. Vai! Cerca con Google

[85] G. Rosati, G. Boschetti, A. Biondi, and A. Rossi, "On-line dimensional measurement of small components on the eyeglasses assembly line," Optics and Lasers in Engineering, vol. 47, no. 3, pp. 320-328, 2009. Cerca con Google

[86] G. Rosati, M. Faccio, L. Barbazza, and A. Rossi, "Hybrid fexible assembly systems (h-fas): bridging the gap between traditional and fully flexible assembly systems," The International Journal of Advanced Manufacturing Technology, vol. 81, no. 5-8, pp. 1289-1301, 2015. Cerca con Google

[87] C. Finetto, G. Rosati, M. Faccio, and A. Rossi, "Implementation framework for a fully flexible assembly system (f-fas)," Assembly Automation, vol. 35, no. 1, pp. 114-121, 2015. Cerca con Google

[88] M. Bottin, G. Rosati, and G. Boschetti, "Fixed point calibration of an industrial robot," in 18th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2018, pp. 215-216, 2018. Cerca con Google

[89] M. Faccio, M. Bottin, and G. Rosati, "Collaborative and traditional robotic assembly: a comparison model," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 5-8, pp. 1355-1372, 2019. Cerca con Google

[90] A. Doria, S. Cocuzza, N. Comand, M. Bottin, and A. Rossi, "Analysis of the compliance properties of an industrial robot with the mozzi axis approach," Robotics, vol. 8, no. 3, p. 80, 2019. Cerca con Google

[91] L. Gillespie, "Deburring precision miniature parts," Precision Engineering, vol. 1, no. 4, pp. 189-198, 1979. Cerca con Google

[92] M. Her and H. Kazerooni, "Automated robotic deburring of parts using compliance control," Journal of dynamic systems, measurement, and control, vol. 113, no. 1, pp. 60-66, 1991. Cerca con Google

[93] L. K. Gillespie, Deburring and edge finishing handbook. Society of Manufacturing Engineers, 1999. Cerca con Google

[94] S. Malkin and C. Guo, Grinding technology: theory and application of machining with abrasives. Industrial Press Inc., 2008. Cerca con Google

[95] I. D. Marinescu, M. P. Hitchiner, E. Uhlmann, W. B. Rowe, and I. Inasaki, Handbook of machining with grinding wheels. CRC Press, 2016. Cerca con Google

[96] ISO, "Industrial automation systems and integration - product data representation and exchange - part 1: Overview and fundamental principles," ISO ISO 10303-1, International Organization for Standardization, Geneva, Switzerland, 1994. Cerca con Google

[97] I. G. E. Specification, "Digital representation for communication of product definition data," ANSI Y14. 26M-1981, published by: The American Society of Mechanical Engineers, vol. 345. Cerca con Google

[98] L. Roscoe et al., "Stereolithography interface specification," America-3D Systems Inc, vol. 27, 1988. Cerca con Google

[99] W. Khalil and J. Kleinfinger, "A new geometric notation for open and closed-loop robots," in Proceedings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1174-1179, IEEE, 1986. Cerca con Google

[100] M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network optimization algorithms," Journal of the ACM (JACM), vol. 34, no. 3, pp. 596-615, 1987. Cerca con Google

[101] E. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou, "A review of global path planning methods for occupancy grid maps regardless of obstacle density," Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4, pp. 829-858, 2016. Cerca con Google

[102] C. Ericson, Real-time collision detection. CRC Press, 2004. Cerca con Google

[103] L. Biagiotti and C. Melchiorri, Trajectory planning for automatic machines and robots. Springer Science & Business Media, 2008. Cerca con Google

[104] E. Plaku and L. E. Kavraki, "Quantitative analysis of nearestneighbors search in high-dimensional sampling-based motion planning," in Algorithmic Foundation of Robotics VII, pp. 3-18, Springer, 2008. Cerca con Google

[105] G. Boschetti, "A picking strategy for circular conveyor tracking," Journal of Intelligent & Robotic Systems, vol. 81, no. 2, pp. 241-255, 2016. Cerca con Google

[106] Z. Shiller, "Off-line and on-line trajectory planning" in Motion and Operation Planning of Robotic Systems, pp. 29-62, Springer, 2015. Cerca con Google

[107] R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of applied mechanics, vol. 77, no. 2, pp. 215-221, 1955. Cerca con Google

[108] J. C. Lagarias, J. A. Reeds, M. H.Wright, and P. E.Wright, "Convergence properties of the nelder-mead simplex method in low dimensions," SIAM Journal on optimization, vol. 9, no. 1, pp. 112-147, 1998. Cerca con Google

[109] G. Rosati, M. Faccio, C. Finetto, and A. Carli, "Modelling and optimization of fully flexible assembly systems (f-fas)," Assembly Automation, vol. 33, no. 2, pp. 165-174, 2013. Cerca con Google

[110] MATLAB, "Traveling salesman problem: Problem-based." Cerca con Google

[111] MATLAB, "Traveling salesman problem: Solver-based." Cerca con Google

[112] MATLAB, "Mixed-integer linear programming (milp)." Cerca con Google

[113] Y. Chen and F. Dong, "Robot machining: recent development and future research issues," The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1489-1497, 2013. Cerca con Google

[114] Z. Pan, H. Zhang, Z. Zhu, and J. Wang, "Chatter analysis of robotic machining process," Journal of materials processing technology, vol. 173, no. 3, pp. 301-309, 2006. Cerca con Google

[115] A. Gasparetto, "Eigenvalue analysis of mode-coupling chatter for machine-tool stabilization," Journal of Vibration and Control, vol. 7, no. 2, pp. 181-197, 2001. Cerca con Google

[116] A. Gasparetto, "A system theory approach to mode coupling chatter in machining," Journal of dynamic systems, measurement, and control, vol. 120, no. 4, pp. 545-547, 1998. Cerca con Google

[117] H. Zhang, J. Wang, G. Zhang, Z. Gan, Z. Pan, H. Cui, and Z. Zhu, "Machining with flexible manipulator: toward improving robotic machining performance," in Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., pp. 1127-1132, IEEE, 2005. Cerca con Google

[118] C. Dumas, S. Caro, S. Garnier, and B. Furet, "Joint stiffness identification of six-revolute industrial serial robots," Robotics and Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 881-888, 2011. Cerca con Google

[119] E. Abele, M. Weigold, and S. Rothenbücher, "Modeling and identification of an industrial robot for machining applications," CIRP annals, vol. 56, no. 1, pp. 387-390, 2007. Cerca con Google

[120] G. Alici and B. Shirinzadeh, "Enhanced stiffness modeling, identification and characterization for robot manipulators," IEEE transactions on robotics, vol. 21, no. 4, pp. 554-564, 2005. Cerca con Google

[121] F. Rafieian, Z. Liu, and B. Hazel, "Dynamic model and modal testing for vibration analysis of robotic grinding process with a 6dof flexible-joint manipulator," in 2009 International Conference on Mechatronics and Automation, pp. 2793-2798, IEEE, 2009. Cerca con Google

[122] G. Carbone, "Stiffness analysis and experimental validation of robotic systems," Frontiers of Mechanical Engineering, vol. 6, no. 2, pp. 182-196, 2011. Cerca con Google

[123] H. Ni, C. Zhang, T. Hu, T. Wang, Q. Chen, and C. Chen, "A dynamic parameter identification method of industrial robots considering joint elasticity," International Journal of Advanced Robotic Systems, vol. 16, no. 1, p. 1729881418825217, 2019. Cerca con Google

[124] D. J. Ewins, Modal testing: theory and practice, vol. 15. Research studies press Letchworth, 1984. Cerca con Google

[125] N. M. M. Maia and J. M. M. e Silva, Theoretical and experimental modal analysis. Research Studies Press, 1997. Cerca con Google

[126] D. J. Inman and R. C. Singh, Engineering vibration, vol. 3. Prentice Hall Englewood Cliffs, NJ, 1994. Cerca con Google

[127] G. M. del Garbo, "Discorso matematico sopra il rotamento dei corpi," 1763. Cerca con Google

[128] R. Marcolongo, Notizie sul Discorso Matematico e sulla vita di Giulio Mozzi. 1905. Cerca con Google

[129] A. A. Shabana, Dynamics of multibody systems. Cambridge university press, 2013. Cerca con Google

[130] R. S. Ball, A Treatise on the Theory of Screws. Cambridge university press, 1998. Cerca con Google

[131] H. Lipkin and J. Duffy, "Sir robert stawell ball and methodologies of modern screw theory," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 216, no. 1, pp. 1-11, 2002. Cerca con Google

[132] X. Wu, Y. Lu, X. Duan, D. Zhang, and W. Deng, "Design and dof analysis of a novel compliant parallel mechanism for large load," Sensors, vol. 19, no. 4, p. 828, 2019. Cerca con Google

[133] V. Cossalter and A. Doria, "Analysis of motorcycle slalom manoeuvres using the mozzi axis concept," Vehicle System Dynamics, vol. 42, no. 3, pp. 175-194, 2004. Cerca con Google

[134] V. Cossalter and A. Doria, "Instantaneous screw axis of twowheeled vehicles in typical manoeuvres," Vehicle System Dynamics, vol. 44, no. sup1, pp. 669-678, 2006. Cerca con Google

[135] A. Doria and L. Taraborrelli, "The twist axis of frames with particular application to motorcycles," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 230, no. 17, pp. 3026-3039, 2016. Cerca con Google

[136] P. Blanchet and H. Lipkin, "Dual properties for vibration analysis via screw theory," in Proc. ASME Design Engineering Technical Conference, Atlanta, Georgia, DETC98/MECH-5868, Citeseer, 1998. Cerca con Google

[137] T. Patterson and H. Lipkin, "Structure of robot compliance," Journal of Mechanical Design, vol. 115, no. 3, pp. 576-580, 1993. Cerca con Google

[138] C. Chen, F. Peng, R. Yan, Y. Li, D. Wei, Z. Fan, X. Tang, and Z. Zhu, "Stiffness performance index based posture and feed orientation optimization in robotic milling process," Robotics and Computer-Integrated Manufacturing, vol. 55, pp. 29-40, 2019. Cerca con Google

[139] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons, 1999. Cerca con Google

[140] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, "Flatness and defect of non-linear systems: introductory theory and examples," International journal of control, vol. 61, no. 6, pp. 1327-1361, 1995. Cerca con Google

[141] H. Sira-Ramirez and S. K. Agrawal, Differentially flat systems. Crc Press, 2004. Cerca con Google

[142] J. Franch, S. K. Agrawal, and V. Sangwan, "Differential flatness of a class of n-dof planar manipulators driven by 1 or 2 actuators," IEEE transactions on automatic control, vol. 55, no. 2, pp. 548-554, 2010. Cerca con Google

[143] J. Franch, A. Reyes, and S. K. Agrawal, "Differential flatness of a class of n-dof planar manipulators driven by an arbitrary number of actuators," in 2013 European Control Conference (ECC), pp. 161-166, IEEE, 2013. Cerca con Google

[144] S. K. Agrawal and V. Sangwan, "Design of under-actuated openchain planar robots for repetitive cyclic motions," in ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1057-1066, American Society of Mechanical Engineers, 2006. Cerca con Google

[145] S. K. Agrawal and V. Sangwan, "Differentially flat designs of underactuated open-chain planar robots," IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1445-1451, 2008. Cerca con Google

[146] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and control. Springer Science & Business Media, 2010. Cerca con Google

[147] K. A. Foss, "Coordinates which uncouple the equations of motion of damped linear dynamic systems," tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE AEROELASTIC AND STRUCTURES RESEARCH LAB, 1956. Cerca con Google

[148] R. A. Frazer, W. J. Duncan, A. R. Collar, et al., Elementary matrices and some applications to dynamics and differential equations, vol. 1963. Cambridge University Press Cambridge, 1938. Cerca con Google

[149] L. Barbazza, D. Zanotto, G. Rosati, and S. K. Agrawal, "Design and optimal control of an underactuated cable-driven micro-macro robot," IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 896-903, 2017. Cerca con Google

[150] D. Zanotto, G. Rosati, and S. K. Agrawal, "Modeling and control of a 3-dof pendulum-like manipulator," in 2011 IEEE International Conference on Robotics and Automation, pp. 3964-3969, IEEE, 2011. Cerca con Google

[151] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, and K. Zikan, "Efficient collision detection using bounding volume hierarchies of k-dops," IEEE Transactions on Visualization & Computer Graphics, no. 1, pp. 21-36, 1998. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record