Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Visentin, Francesca (2019) A two-step approach to surface functionalize Ti dental implants. [Ph.D. thesis]

Full text disponibile come:

PDF Document (tesi dottorato Francesca Visentin ) - Submitted Version

Abstract (italian or english)

For enhancing the osseointegration aptitude of Ti dental implant, titanium oxide (TiO2) - hydroxyapatite (HA) bi-layered coatings were deposited by means of a two-step process on commercial-grade-IV Ti substrates with different pristine morphologies and topographies (machined, sandblasted, and sandblasted/acid etched). Firstly, dense, compact and crystalline titania was deposited as an inter-layer via Low Pressure Metal-Organic Chemical Vapor Deposition. Then a suitably discontinuous HA upper layer was deposited by means of spray pyrolysis. The thermal treatment at 600°C was assessed as the most suitable, both for material features and for bioactivity.
The novelty of this work is that this synergic two-step approach allows the co-existence of both TiO2 and HA ceramics on the implant surface, in order to increase the surface bioactivity and improve the short(HA)- and long(TiO2)-term implant service-life.
The relationship between material processing and functional properties was investigated and evaluated. The electrochemical and tribocorrosive behavior (in artificial saliva) of the functionalized surfaces as well as their metallic ion release (in lactic acid) appeared improved with respect to the uncoated ones. The (nano)hardness of the coated materials was higher than that of bare substrates. In agreement with industrial practice, HA-coating adhesion was qualitatively assessed by tape test. As expected, different results were obtained for different morphologies of substrate surfaces: machined surfaces showed reduced HA retention, while HA coatings better adhered to sandblasted and sandblasted/acid etched substrates. Useful information was obtained by wettability analysis. Freshly prepared surfaces always showed hydrophilicity, and even superhydrophilicity in the case of pure titania coatings. Exposure to air induced gradual wettability decreasing due to atmospheric hydrocarbon contamination. To maintain high-energy surfaces, two industrial-scalable strategies were positively set-up, either storing the samples in distilled water or radiating the contaminated samples by UV.
Acellular in-vitro bioactivity was evaluated testing the growth rate of bone-like apatite after immersion in Dulbecco’s Phosphate Buffer Saline (DPBS) solution at 37°C. The results showed that a bone-like apatite layer was effectively formed on the TiO2 – HA functionalized substrates, giving significant results just after 30 minutes incubation in DPBS. Higher HA nucleation rate was, furthermore, detected on the solely TiO2 coated samples when compared to bare Ti substrates, confirming their improved bioactivity. Finally, according to ISO 10993-5:2009, cell viability confirmed the safety of the samples in terms of cytotoxicity.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Fabrizio, Monica
Supervisor:Galenda , Alessandro
Data di deposito della tesi:26 November 2019
Anno di Pubblicazione:26 November 2019
Key Words:Titania Hydroxyapatite Titanium dental implants Osseointegration MOCVD Spray pyrolysis
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:12098
Depositato il:25 Jan 2021 12:30
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] D. Duraccio, F. Mussano, M.G. Faga, Biomaterials for dental implants: current and future trends, J. Mater. Sci. 50 (2015) 4779–4812. doi:10.1007/s10853-015-9056-3. Cerca con Google

[2] L. Gaviria, J.P. Salcido, T. Guda, J.L. Ong, Current trends in dental implants, J Korean Assoc Oral Maxillofac Surg. 40 (2014) 50–60. doi:10.5125/jkaoms.2014.40.2.50. Cerca con Google

[3] Dental Implants and Prosthetics Market by Type (Dental Implants, Bridge, Crown, Abutment, Dentures, Veneers, Inlay & Onlays), Material (Titanium, Zirconium, Metal, Ceramic, Porcelain Fused to Metal), Type of Facility, and Region - Global Forecast to 2023, (n.d.). https://www.marketsandmarkets.com/Market-Reports/dental-implants-prosthetics-market-695.html (accessed April 8, 2019). Vai! Cerca con Google

[4] R. Hosadurga, S. Tenneti, S. Hegde, R.S. Kashyap, A. Kumar, Awareness , knowledge , and attitude of patients toward dental implants : A web-based questionnaire study, J. Dent. Implant. 5 (2015) 93–100. Cerca con Google

doi:10.4103/0974-6781.190430. Cerca con Google

[5] V. Moraschini, L.A.D.C. Poubel, V.F. Ferreira, E.D.S.P. Barboza, Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review, Int. J. Oral Maxillofac. Surg. 44 (2015) 377–388. doi:10.1016/j.ijom.2014.10.023. Cerca con Google

[6] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dent. Mater. 23 (2007) 844–854. doi:10.1016/j.dental.2006.06.025. Cerca con Google

[7] M. Zuldesmi, A. Waki, K. Kuroda, M. Okido, Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity, Mater. Sci. Eng. C. 49 (2015) 430–435. doi:10.1016/j.msec.2015.01.031. Cerca con Google

[8] S. A. Alves, R. Bayón, A. Igartua, V.S. de Viteri, L.A. Rocha, Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants, Lubr. Sci. 26 (2014) 500–513. doi:10.1002/ls.1234. Cerca con Google

[9] A. Kulkarni Aranya, S. Pushalkar, M. Zhao, R.Z. LeGeros, Y. Zhang, D. Saxena, Antibacterial and bioactive coatings on titanium implant surfaces, J. Biomed. Mater. Res. - Part A. 105 (2017) 2218–2227. doi:10.1002/jbm.a.36081. Cerca con Google

[10] T. Hanawa, Biofunctionalization of titanium for dental implant, Jpn. Dent. Sci. Rev. 46 (2010) 93–101. doi:10.1016/j.jdsr.2009.11.001. Cerca con Google

[11] A. Jemat, M.J. Ghazali, M. Razali, Y. Otsuka, Surface Modifications and Their Effects on Titanium Dental Implants, Biomed Res. Int. (2015) Article ID 791725. doi:10.1155/2015/791725. Cerca con Google

[12] S. Bauer, P. Schmuki, K. von der Mark, J. Park, Engineering biocompatible implant surfaces Part 1:Materials and Surfaces, Prog. Mater. Sci. 58 (2013) 261–326. doi:10.1016/j.pmatsci.2012.09.001. Cerca con Google

[13] S.C.G. Leeuwenburgh, J.G.C. Wolke, J. Schoonman, J.A. Jansen, Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using Electrostatic Spray Deposition ( ESD ), Biomaterials. 25 (2004) 641–649. doi:10.1016/S0142-9612(03)00575-1. Cerca con Google

[14] N. Eliaz, N. Metoki, Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications, Materials (Basel). 10 (2017) 334. doi:10.3390/ma10040334. Cerca con Google

[15] A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, M.I. Ramli, Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review, Mater. Des. 55 (2014) 165–175. doi:10.1016/j.matdes.2013.09.045. Cerca con Google

[16] L.L. Hench, W. Cao, Bioactive Materials, Ceram. Int. 22 (1996) 493–507. Cerca con Google

[17] B. Ben-Nissan, Advances in Calcium Phosphate Biomaterials, Springer S, Springer Berlin Heidelberg, 2014. Cerca con Google

[18] B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, J.H. Choi, J.W. Kim, Y.L. Cho, C. Park, H.E. Kim, S.G. Kim, Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses, Appl. Surf. Sci. 257 (2011) 7792–7799. doi:10.1016/j.apsusc.2011.04.031. Cerca con Google

[19] P.C. Rath, L. Besra, B.P. Singh, S. Bhattacharjee, Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceram. Int. 38 (2012) 3209–3216. doi:10.1016/j.ceramint.2011.12.026. Cerca con Google

[20] W.S.W. Harun, R.I.M. Asri, A.B. Sulong, S.A.C. Ghani, Z. Ghazalli, Hydroxyapatite-Based Coating on Biomedical Implant, in: J. Thirumalai (Ed.), Hydroxyapatite - Adv. Compos. Nanomater. Biomed. Appl. Its Technol. Facet., IntechOpen, 2018. doi:10.5772/intechopen.71063. Cerca con Google

[21] T. Sopcak, L. Medvecky, T. Zagyva, M. Dzupon, J. Balko, K. Balázsi, C. Balázsi, Characterization and adhesion strength of porous electrosprayed polymer–hydroxyapatite composite coatings, Resolut. Discov. 3 (2018) 17–23. doi:10.1556/2051.2018.00057. Cerca con Google

[22] H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, H.E. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method, Biomaterials. 25 (2004) 2533–2538. doi:10.1016/j.biomaterials.2003.09.041. Cerca con Google

[23] M. Baryshnikova, L. Filatov, M. Mishin, A. Kondrateva, S. Alexandrov, Formation of hydroxylapatite on CVD deposited titania layers, Phys. Status Solidi Curr. Top. Solid State Phys. 12 (2015) 918–922. doi:10.1002/pssc.201510015. Cerca con Google

[24] X. Liang, A.D. Lynn, D.M. King, S.J. Bryant, A.W. Weimer, Biocompatible interface films deposited within porous polymers by atomic layer deposition (ALD), ACS Appl. Mater. Interfaces. 1 (2009) 1988–1995. doi:10.1021/am9003667. Cerca con Google

[25] S. Popescu, I. Demetrescu, C. Sarantopoulos, A.N. Gleizes, D. Iordachescu, The biocompatibility of titanium in a buffer solution: Compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel, J. Mater. Sci. Mater. Med. 18 (2007) 2075–2083. doi:10.1007/s10856-007-3133-3. Cerca con Google

[26] S. Piskounova, J. Forsgren, U. Brohede, M. Strømme, In Vitro Characterization of Bioactive Titanium Dioxide / Hydroxyapatite Surfaces Functionalized with BMP-2, J. Biomed. Mater. Res. Part B Appl. Biomater. 91B (2009) 780–787. doi:10.1002/jbm.b.31456. Cerca con Google

[27] F. Visentin, A. Galenda, M. Fabrizio, S. Battiston, N. Brianese, R. Gerbasi, V. Zin, N. El Habra, Assessment of synergistic effects of LP-MOCVD TiO2 and Ti surface finish for dental implant purposes, Appl. Surf. Sci. 490 (2019) 568–579. doi:10.1016/j.apsusc.2019.06.067. Cerca con Google

[28] A.J. Tonino, B.C.H. Van Der Wal, I.C. Heyligers, B. Grimm, Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses, Clin. Orthop. Relat. Res. 467 (2009) 478–484. doi:10.1007/s11999-008-0559-y. Cerca con Google

[29] W. Xue, X. Liu, X. Zheng, C. Ding, Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo, J. Biomed. Mater. Res. - Part A. 74 (2005) 553–561. doi:10.1002/jbm.a.30323. Cerca con Google

[30] G.M. Raghavendra, K. Varaprasad, T. Jayaramudu, Biomaterials: Design, Development and Biomedical Applications, in: Nanotechnol. Appl. Tissue Eng., Elsevier Inc., 2015: pp. 21–44. doi:10.1016/B978-0-323-32889-0.00002-9. Cerca con Google

[31] P.T. Leali, A. Merolli, Fundamentals of Biomaterials, in: A. Merolli, T.J. Joyce (Eds.), Biomater. Hand Surg., Springer, 2009: pp. 1–11. doi:10.1007/978-88-470-1195-3_3. Cerca con Google

[32] G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical implants: corrosion and its prevention - a review, Recent Patents Corros. Sci. 2 (2010) 40–54. doi:10.2174/1877610801002010040. Cerca con Google

[33] I. Kulinets, Biomaterials and their applications in medicine, in: Regul. Aff. Biomater. Med. Devices, Woodhead Publishing Limited, 2015: pp. 1–10. doi:10.1533/9780857099204.1. Cerca con Google

[34] V. dos Santos, R.N. Brandalise, M. Savaris, Biomaterials: Characteristics and Properties, in: Eng. Biomater., 2017: pp. 5–15. doi:10.1007/978-3-319-58607-6. Cerca con Google

[35] R. Deepashree, V. Devaki, B. Kandhasamy, R. Ajay, Evolution of Implant Biomaterials: A Literature Review, J. Indian Acad. Dent. Spec. Res. 4 (2017) 65–67. doi:10.4103/jiadsr.jiadsr. Cerca con Google

[36] M.N. Hegde, S. Attavar, N. Sreenath, Bioactive Materials – A Review, Int. J. Adv. Sci. Tech. Res. 6 (2017) 1–7. doi:10.26808/rs.st.i7v6.01. Cerca con Google

[37] S. Geissler, Surface functionalization of dental implants for improved biological response and reduced infection risk, University of Oslo, 2017. https://www.duo.uio.no/handle/10852/55178. Vai! Cerca con Google

[38] G. Abulqumsan, N. Abdurrahman, R. Al Tayep, Dental implant, (n.d.). https://www.slideshare.net/DrGhadah/dental-implant-57885535 (accessed June 4, 2019). Vai! Cerca con Google

[39] 1888Implant.com, Dental Implant Types. Root form dental implants, (n.d.). http://www.1888implant.com/mobile/dental_implants.html (accessed June 4, 2019). Vai! Cerca con Google

[40] P.I. Brånemark, Osseointegration and its experimental background, J Prosthet Dent. 50 (1983) 399–410. Cerca con Google

[41] T. Albrektsson, P.I. Brånemark, H.A. Hansson, J. Lindström, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man., Acta Orthop Scand. 52 (1981) 155. Cerca con Google

[42] T. Albrektsson, D.D.S. Zarb, M.D. Worthington, D.D.S. Eriksson, The long-term efficacy of currently used dental implants: a review and proposed criteria of success, J. Oral Maxillofac. Implant. 1 (1986) 11–25. Cerca con Google

[43] I. Needleman, S. Chin, O.T. Brien, A. Petrie, D. N, Systematic review of outcome measurements and reference group ( s ) to evaluate and compare implant success and failure, J Clin Periodontol. 39 (2012) 122–132. Cerca con Google

doi:10.1111/j.1600-051X.2011.01836.x. Cerca con Google

[44] G.H. Gomes, M.Y.O. Misawa, C. Fernandes, C.M. Pannuti, L. Saraiva, G. Huynh-Ba, C.C. Villar, A systematic review and meta-analysis of the survival rate of implants placed in previously failed sites, Braz. Oral Res. 2018;32e27. 32 (2018) 1–13. doi:10.1590/1807-3107bor-2018.vol32.0027. Cerca con Google

[45] C. ten Bruggenkate, W. van der Kwast, H. Oosterbeek, Success criteria in oral implantology. A review of the literature., Int J Oral Implant. 7 (1990) 45–51. Cerca con Google

[46] P. Simonis, T. Dufour, H. Tenenbaum, Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants., Clin Oral Implant. Res. 21 (2010) 772–777. Cerca con Google

[47] C.E. Misch, M.L. Perel, H. Wang, G. Sammartino, P. Galindo-moreno, P. Trisi, M. Steigmann, A. Rebaudi, A. Palti, M.A. Pikos, J. Choukroun, J. Gutierrez-perez, G. Marenzi, Implant Success , Survival , and Failure : Implantologists ( ICOI ) Pisa, Implant Dent. 17 (2008) 5–15. doi:10.1097/ID.0b013e3181676059. Cerca con Google

[48] P. Papaspyridakos, C.J. Chen, M. Singh, H.P. Weber, G.O. Gallucci, Success Criteria in Implant Dentistry : A Systematic Review, J Dent Res. 91 (2012) 242–248. doi:10.1177/0022034511431252. Cerca con Google

[49] F. Javed, H.B. Ahmed, R. Crespi, G.E. Romanos, Role of primary stability for successful osseointegration of dental implants : Factors of influence and evaluation, Interv. Med. Appl. Sci. 5 (2013) 162–167. doi:10.1556/IMAS.5.2013.4.3. Cerca con Google

[50] A. Muhamad, C. Georges, M. Abdulgani, A. Abdulgani, Implant Stability : Methods and Recent Advances Implant Stability : Methods and Recent Advances, J. Dent. Med. Sci. 16 (2017) 13–23. doi:10.9790/0853-1608021323. Cerca con Google

[51] C.N. Elias, Y. Oshida, H.J.C. Lima, C.A. Muller, Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque, J. Mech. Behav. Biomed. Mater. (2008) 234–242. doi:10.1016/j.jmbbm.2007.12.002. Cerca con Google

[52] R.B. Osman, M. V Swain, A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia, Materials (Basel). 8 (2015) 932–958. doi:10.3390/ma8030932. Cerca con Google

[53] N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, R.D. Woody, Implant Materials, Designs, and Surface Topographies: Their Effect on Osseointegration. A Literature Review, Int. J. Oral Maxillofac. Implants. 15 (2000) 675–690. Cerca con Google

[54] J. Oliva, X. Oliva, J.D. Oliva, Five-year Success Rate of 831 Consecutively Placed Zirconia Dental Implants in Humans : A Comparison of Three Different Rough Surfaces, Int J Oral Maxillofac Implant. 25 (2010) 336–344. Cerca con Google

[55] J. Askari, M. Iqbal, S. Ateyah, Ceramic Dental Implants : A Literature Review, Biomed J Sci Tech Res. 1 (2017) 1–5. doi:10.26717/BJSTR.2017.01.000522. Cerca con Google

[56] J. Chevalier, L. Gremillard, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J. Am. Ceram. Soc. 92 (2009) 1901–1920. doi:10.1111/j.1551-2916.2009.03278.x. Cerca con Google

[57] A. Cimpean, S. Popescu, C.M. Ciofrangeanu, A.N. Gleizes, Effects of LP-MOCVD prepared TiO2 thin films on the in vitro behavior of gingival fibroblasts, Mater. Chem. Phys. 125 (2011) 485–492. doi:10.1016/j.matchemphys.2010.10.028. Cerca con Google

[58] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium , titanium alloys , and related materials for biomedical applications, Mater. Sci. Eng. R 47. 47 (2004) 49–121. doi:10.1016/j.mser.2004.11.001. Cerca con Google

[59] Y.T. Sul, The significance of the surface properties of oxidized titanium to the bone response: Special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials. 24 (2003) 3893–3907. doi:10.1016/S0142-9612(03)00261-8. Cerca con Google

[60] M. Lorenzetti, E. Pellicer, J. Sort, M.D. Baró, J. Kovač, S. Novak, S. Kobe, Improvement to the corrosion resistance of Ti-based implants using hydrothermally synthesized nanostructured anatase coatings, Materials (Basel). 7 (2014) 180–194. doi:10.3390/ma7010180. Cerca con Google

[61] Z. Stanec, J. Halambek, K. Maldini, M. Balog, P. Križik, Z. Schauperl, A. Ćatić, Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study, Acta Stomatol. Croat. 50 (2016) 40–48. doi:10.15644/asc50/1/6. Cerca con Google

[62] L.T. De Jonge, S.C.G. Leeuwenburgh, J.G.C. Wolke, J.A. Jansen, Organic – Inorganic Surface Modifications for Titanium Implant Surfaces, Pharm. Res. 25 (2008). doi:10.1007/s11095-008-9617-0. Cerca con Google

[63] A. Wennerberg, A. Ide-Ektessabi, S. Hatkamata, T. Sawase, C. Johansson, T. Albrektsson, A. Martinelli, U. Södervall, H. Odelius, Titanium release from implants prepared with different surface roughness: An in vitro and in vivo study, Clin. Oral Implants Res. 15 (2004) 505–512. doi:10.1111/j.1600-0501.2004.01053.x. Cerca con Google

[64] C. Ivanoff, C. Hallgren, G. Widmark, L. Sennerby, A. Wennerberg, Histologic evaluation of the bone integration of TiO2 blasted and turned Titanium microimplants in human, Clin Oral Implant. Res. 12 (2001) 128–134. Cerca con Google

[65] X. Lin, L. Zhou, S. Li, H. Lu, X. Ding, Behavior of acid etching on titanium: Topography, hydrophility and hydrogen concentration, Biomed. Mater. 9 (2014) 015002. doi:10.1088/1748-6041/9/1/015002. Cerca con Google

[66] A. Bagno, C. Di Bello, Surface treatments and roughness properties of Ti-based biomaterials, J. Mater. Sci. Mater. Med. 15 (2004) 935–949. doi:10.1023/B:JMSM.0000042679.28493.7f. Cerca con Google

[67] E. Mohseni, E. Zalnezhad, A.R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper, Int. J. Adhes. Adhes. 48 (2014) 238–257. doi:10.1016/j.ijadhadh.2013.09.030. Cerca con Google

[68] N.N.C. Isa, Y. Mohd, N. Yury, Electrochemical Deposition and Characterization of Hydroxyapatite ( HAp ) on Titanium Substrate, APCBEE Procedia. 3 (2012) 46–52. doi:10.1016/j.apcbee.2012.06.044. Cerca con Google

[69] D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials. 29 (2008) 970–983. doi:10.1016/j.biomaterials.2007.11.009. Cerca con Google

[70] N. Koju, P. Sikder, Y. Ren, H. Zhou, S.B. Bhaduri, Biomimetic coating technology for orthopedic implants, Curr. Opin. Chem. Eng. 15 (2017) 49–55. doi:10.1016/j.coche.2016.11.005. Cerca con Google

[71] M. Patil, S. Shaikh, I. Ganesh, Recent Advances on TiO2 Thin Film Based Photocatalytic Applications (A Review), Curr. Nanosci. 11 (2015) 1–15. doi:10.2174/1573413711666150212235054. Cerca con Google

[72] J.H. Park, T.S. Sudarshan, Chemical vapor deposition - Surface engineering series, ASM International, USA, 2001. Cerca con Google

[73] K.L. Choy, Chemical Vapour Deposition of of coatings, Prog. Mater. Sci. 48 (2003) 57–170. doi:10.1016/S0079-6425(01)00009-3. Cerca con Google

[74] A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol processing of materials, Aerosol Sci. Technol. 19 (1993) 411–452. doi:10.1080/02786829308959650. Cerca con Google

[75] W. Kern, V. Ban, Chemical Vapor Deposition of Inorganic Thin Films, in: J.L. Vossen, W. Kern (Eds.), Thin Film Process., Accademic Press, Inc., San Diego, CA, 1978: p. 564. Cerca con Google

[76] H.O. Pierson, Handbook of chemical vapor deposition (CVD) Principles, Technology, and Applications, second edi, Noyes Publications/William Andrew Publishing, LLC, Norwich, New York, U.S.A., 1999. Cerca con Google

[77] A.C. Jones, M.L. Hitchman, Chemical Vapour Deposition: Precursors, Processes and Applications, The Royal Society of Chemistry, 2009. doi:10.1039/9781847558794. Cerca con Google

[78] A. Menéndez, P. Sánchez, D. Gómez, Deposition of thin films: PECVD process, Silicon Based Thin Film Sol. Cells. (2011) 1–23. doi:10.2174/9781608055180113010006. Cerca con Google

[79] Y.M. Wu, D.C. Bradley, R.M. Nix, Studies of titanium dioxide film growth from titanium tetraisopropoxide, Appl. Surf. Sci. 64 (1993) 21–28. Cerca con Google

doi:10.1016/0169-4332(93)90018-7. Cerca con Google

[80] G.H. Gilmer, M.. Grabow, Models of Thin Film Growth Modes, J. Met. 39 (1987) 19. Cerca con Google

[81] D. Perednis, L.J. Gauckler, Thin Film Deposition Using Spray Pyrolysis, J. Electroceramics. 14 (2004) 103–111. doi:10.1007/s10832-005-0870-x. Cerca con Google

[82] R.R. Chamberlin, J.S. Skarman, Chemical Spray Deposition Process for Inorganic Films, J. Electrochem. Soc. 113 (1966) 86–89. Cerca con Google

[83] H. Kim, C. Lee, M.H. Kim, J. Kim, Drop impact characteristics and structure effects of hydrophobic surfaces with micro-and/or nanoscaled structures, Langmuir. 28 (2012) 11250–11257. doi:10.1021/la302215n. Cerca con Google

[84] H. Tuller, J. Schoonman, I. Riess, Oxygen ion and mixed conductors and their technological applications, Kluwer Academic Publishers, Boston, 2000. Cerca con Google

[85] M. Aguilar-Frutis, S. Kumar, C. Falcony, Spray-pyrolyzed hydroxyapatite thin-film coatings, Surf. Coatings Technol. 204 (2009) 1116–1120. doi:10.1016/j.surfcoat.2009.07.021. Cerca con Google

[86] A.K. Alves, C.P. Bergmann, F.A. Berutti, Novel Synthesis and Characterization of Nanostructured Materials, Springer, 2013. Cerca con Google

[87] K. Okuyama, W.W. Lenggoro, Preparation of nanoparticles via spray route, Chem. Eng. Sci. 58 (2003) 537–547. doi:10.1016/S0009-2509(02)00578-X. Cerca con Google

[88] L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, Modeling Spray Pyrolysis Deposition, Proc. World Congr. Eng. II (2013) 6–11. doi:10.1021/ja411509g. Cerca con Google

[89] A.J. Kelly, Charge injection electrostatic atomizer modeling, Aerosol Sci. Technol. 12 (1990) 526–537. doi:10.1080/02786829008959367. Cerca con Google

[90] L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, C. Gspan, W. Grogger, A method for simulating spray pyrolysis deposition in the level set framework, Eng. Lett. 21 (2013) 224–240. Cerca con Google

[91] D. Perednis, Thin film deposition by spray pyrolysis and the application in solid oxide fuel cells, Swiss Federal Institute of Technology Zurich, 2003. Cerca con Google

[92] L. Lutterotti, MAUD, Material Analysis using Diffraction, Copyr. (1997). http://maud.radiographema.eu/ (accessed April 12, 2019). Vai! Cerca con Google

[93] Crystallography Open Database, (n.d.). http://www.crystallography.net/cod/ (accessed April 12, 2019). Vai! Cerca con Google

[94] Milton Ohring, Materials Science of Thin Films, Academic Press, 2001. Cerca con Google

[95] A. Wennerberg, T. Albrektsson, Suggested guidelines for the topographic evaluation of implant surfaces, Int. J. Oral Maxillofac. Implants. 15 (2000) 331–344. http://www.ncbi.nlm.nih.gov/pubmed/10874798. Vai! Cerca con Google

[96] F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, F. Hüttig, Surface characteristics of dental implants: A review, Dent. Mater. 34 (2018) 40–57. doi:10.1016/j.dental.2017.09.007. Cerca con Google

[97] M.S. Alsoufi, D.K. Suker, M.W. Alhazmi, S. Azam, Influence of Abrasive Waterjet Machining Parameters on the Surface Texture Quality of Carrara Marble, J. Surf. Eng. Mater. Adv. Technol. 07 (2017) 25–37. doi:10.4236/jsemat.2017.72003. Cerca con Google

[98] C. Drouet, Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds, Biomed Res. Int. 2013 (2013) Article ID 490946 1-12. doi:10.1155/2013/490946. Cerca con Google

[99] Pierre R. Roberge, Handbook of corrosion engineering, Second Edi, McGraw-Hill, 2000. Cerca con Google

[100] I. da S.V. Marques, M.F. Alfaro, M.T. Saito, N.C. da Cruz, C. Takoudis, R. Landers, M.F. Mesquita, F.H. Nociti Junior, M.T. Mathew, C. Sukotjo, V.A.R. Barão, Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces, Biointerphases. 11 (2016) 031008. doi:10.1116/1.4960654. Cerca con Google

[101] H.M.V. Cruz, J.C.M. Souza, M. Henriques, L.A. Rocha, Tribocorrosion and bio-tribocorrosion in the oral environment : the case of dental implants, in: J.P. Davim (Ed.), Biomed. Tribol., Nova Science Publishers, 2011: pp. 1–33. Cerca con Google

[102] N. Papageorgiou, The relevance of cathode kinetics to the interpretation of triboelectrochemical corrosion, Tribol. Int. 66 (2013) 60–71. doi:10.1016/j.triboint.2013.04.007. Cerca con Google

[103] S.W. Watson, F.J. Friedersdorf, B.W. Madsen, S.D. Cramer, Methods of measuring wear-corrosion synergism, Wear. 181–183 (1995) 476–484. Cerca con Google

doi:10.1016/0043-1648(95)90161-2. Cerca con Google

[104] M.T. Mathew, P. Srinivasa Pai, R. Pourzal, A. Fischer, M.A. Wimmer, Significance of tribocorrosion in biomedical applications: Overview and current status, Adv. Tribol. Volume 200 (2009) Article ID 250986. doi:10.1155/2009/250986. Cerca con Google

[105] J. Williams, Engineering Tribology, Cambridge University Press, 2005. Cerca con Google

[106] Z.Q. Feng, Q.C. He, Q. Zeng, P. Joli, Theory of Nanoindentation, in: K. Sattler (Ed.), Handb. Nanophysics, Taylor & Francis, 2010: pp. 1–15. Cerca con Google

doi:10.1016/S1359-6462(03)00080-0. Cerca con Google

[107] A.C. Fischer-Cripps, Nanoindentation, Springer-Verlag New York, New York, 2011. Cerca con Google

[108] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. Cerca con Google

[109] M. Wurmshuber, Towards Radiation Tolerant Materials : Evaluation of Radiation Effects in Cu-Fe-Ag, 2018. Cerca con Google

[110] Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, in: G. Bracco, B. Holst (Eds.), Surf. Sci. Tech., Springer, Berlin, Heidelberg, 2013. Cerca con Google

doi:10.1007/978-3-642-34243-1. Cerca con Google

[111] D.L. Williams, A.T. Kuhn, M.A. Amann, M.B. Hausinger, M.M. Konarik, E.I. Nesselrode, Computerised measurement of contact angles, Galvanotechnik. 101 (2010) 2502–2512. Cerca con Google

[112] D. Arya, S. Tripathi, R. Bharti, Role of surface topography of titanium endosseous implants for improved osseointegration, J. Dent. Implant. 2 (2012) 93–96. doi:10.4103/0974-6781.102217. Cerca con Google

[113] D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoffmann, A. Lussi, S.G. Steinemann, Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface, J Dent Res. 83 (2004) 529–533. Cerca con Google

[114] G.A. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD, Thin Solid Films. 239 (1994) 186–191. doi:10.1016/0040-6090(94)90849-4. Cerca con Google

[115] G.A. Battiston, R. Gerbasi, A. Tiziani, A. Figueras, G. García, Dental implants of complex form coated by nanostructured TiO2 thin films via MOCVD, Mater. Sci. Forum. 352 (2000) 151–158. Cerca con Google

[116] M.P. Casaletto, G.M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi, G. Scavia, Surface studies of in vitro biocompatibility of titanium oxide coatings, Appl. Surf. Sci. 172 (2001) 167–177. doi:10.1016/S0169-4332(00)00844-8. Cerca con Google

[117] G. Giavaresi, R. Giardino, L. Ambrosio, G. Battiston, R. Gerbasi, M. Fini, L. Rimondini, P. Torricelli, In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition, Int. J. Artif. Organs. 26 (2003) 774–780. doi:10.1002/jbm.1212. Cerca con Google

[118] S. Popescu, I. Demetrescu, V. Mitran, A.N. Gleizes, MOCVD-Fabricated TiO2 Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture, Mol. Cryst. Liq. Cryst. 483 (2008) 266–274. doi:10.1080/15421400801914301. Cerca con Google

[119] G. Giavaresi, L. Ambrosio, G.A. Battiston, U. Casellato, R. Gerbasi, M. Finia, N.N. Aldini, L. Martini, L. Rimondini, R. Giardino, Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: An in vivo study, Biomaterials. 25 (2004) 5583–5591. doi:10.1016/j.biomaterials.2004.01.017. Cerca con Google

[120] A. Radtke, A. Topolski, T. Jędrzejewski, W. Kozak, B. Sadowska, M. Więckowska-Szakiel, P. Piszczek, Bioactivity Studies on Titania Coatings and the Estimation of Their Usefulness in the Modification of Implant Surfaces, Nanomaterials. 7 (2017) 90. doi:10.3390/nano7040090. Cerca con Google

[121] R. Gerbasi, M. Bolzan, N. El Habra, G. Rossetto, L. Schiavi, A. Strini, S. Barison, Photocatalytic Activity Dependence on the Structural Orientation of MOCVD TiO2 Anatase Films, J. Electrochem. Soc. 156 (2009) K233–K237. doi:10.1149/1.3236502. Cerca con Google

[122] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J. Breme, Preparation of TiO2 layers on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating techniques and their characterization, J. Biomed. Mater. Res. 59 (2002) 18–28. doi:10.1002/jbm.1212. Cerca con Google

[123] V. Jokanovic, D. Uskokovic, Calcium Hydroxyapatite Thin Films on Titanium Substrates Prepared by Ultrasonic Spray Pyrolysis, Mater. Trans. 46 (2005) 228–235. doi:10.2320/matertrans.46.228. Cerca con Google

[124] P. Rajesh, C. V. Muraleedharan, M. Komath, H. Varma, Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer, J. Mater. Sci. Mater. Med. 22 (2011) 497–505. doi:10.1007/s10856-011-4230-x. Cerca con Google

[125] S. Leeuwenburgh, J. Wolke, J. Schoonman, J. Jansen, Electrostatic spray deposition (ESD) of calcium phosphate coatings, J. Biomed. Mater. Res. - Part A. 66 (2003) 330–334. doi:10.1002/jbm.a.10590. Cerca con Google

[126] G. Ye, T. Troczynski, Hydroxyapatite coatings by pulsed ultrasonic spray pyrolysis, Ceram. Int. 34 (2008) 511–516. doi:10.1016/j.ceramint.2006.11.014. Cerca con Google

[127] J.S. Cho, J.C. Lee, S.H. Rhee, Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density, J. Biomed. Mater. Res. - Part B Appl. Biomater. 104 (2016) 422–430. doi:10.1002/jbm.b.33406. Cerca con Google

[128] J.S. Cho, S.H. Rhee, The densification mechanism of hydroxyapatite particles during spray pyrolysis with variable carrier gas rates of flow, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B (2012) 493–500. doi:10.1002/jbm.b.31975. Cerca con Google

[129] K.A. Gross, C.S. Chai, G.S.K. Kannangara, B. Ben-Nissan, Thin hydroxyapatite coatings via sol – gel synthesis, J. Mater. Sci. Mater. Med. 9 (1998) 839–843. Cerca con Google

[130] W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, K.G.C. Senarathna, H.M.T.U. Herath, T.N. Premachandra, C.S.K. Ranasinghe, R.P.V.J. Rajapakse, R.M.G.Rajapakse, M. Edirisinghe, S. Mahalingam, I.M.C.C.D. Bandara, S. Singh, Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces, Mater. Sci. Eng. C. C 63 (2016) 172–184. doi:10.1016/j.msec.2016.02.053. Cerca con Google

[131] M. V. Diamanti, S. Codeluppi, A. Cordioli, M.P. Pedeferri, Effect of thermal oxidation on titanium oxides’ characteristics, J. Exp. Nanosci. 4 (2009) 365–372. doi:10.1080/17458080902769937. Cerca con Google

[132] J. Forsgren, F. Svahn, T. Jarmar, H. Engqvist, Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates, Acta Biomater. 3 (2007) 980–984. doi:10.1016/j.actbio.2007.03.006. Cerca con Google

[133] K. Yamamura, T. Miura, I. Kou, T. Muramatsu, M. Furusawa, M. Yoshinari, Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells, Dent. Mater. J. 34 (2015) 120–127. doi:10.4012/dmj.2014-076. Cerca con Google

[134] K. Kubo, N. Tsukimura, F. Iwasa, T. Ueno, L. Saruwatari, H. Aita, W.A. Chiou, T. Ogawa, Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model, Biomaterials. 30 (2009) 5319–5329. doi:10.1016/j.biomaterials.2009.06.021. Cerca con Google

[135] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser, Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible, J. Biomed. Mater. Res. 40 (1998) 1–11. doi:10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q. Cerca con Google

[136] C. Sarantopoulos, E. Puzenat, C. Guillard, J.M. Herrmann, A.N. Gleizes, F. Maury, Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification, Appl. Catal. B Environ. 91 (2009) 225–233. doi:10.1016/j.apcatb.2009.05.029. Cerca con Google

[137] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53–229. doi:10.1016/S0167-5729(02)00100-0. Cerca con Google

[138] M.D. Hamilton, A. Butt, S. Patel, C. Sukotjo, D. Royhman, C.G. Takoudis, Anatase Phase, Hydrophilicity, and Thickness of Thermally Oxidized TiO 2 Layer on Titanium-V Alloy, J. Undergrad. Res. 6 (2013) 16–19. doi:10.1073/pnas.1105450108. Cerca con Google

[139] W. Xia, C. Lindahl, J. Lausmaa, H. Engqvist, Biomimetic Hydroxyapatite Deposition on Titanium Oxide Surfaces for Biomedical Application, in: Prof. Marko Cavrak (Ed.), Adv. Biomimetics, InTech, 2011: p. 452. doi:10.5772/14900. Cerca con Google

[140] W. Zhou, X. Zhong, X. Wu, L. Yuan, Q. Shu, Y. Xia, K. (Ken) Ostrikov, Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response, J Biomed Mater Res A. 81 (2007) 453–464. Cerca con Google

[141] M.D. Roach, R.S. Williamson, I.P. Blakely, L.M. Didier, Tuning anatase and rutile phase ratios and nanoscale surface features by anodization processing onto titanium substrate surfaces, Mater. Sci. Eng. C. 58 (2016) 213–223. doi:10.1016/j.msec.2015.08.028. Cerca con Google

[142] B. Han, E. Zal Nezhad, F. Musharavati, F. Jaber, S. Bae, Tribo-Mechanical Properties and Corrosion Behavior Investigation of Anodized Ti–V Alloy, Coatings. 8 (2018) 459. doi:10.3390/coatings8120459. Cerca con Google

[143] H. Chatbi, M. Vergnat, G. Marchal, Thermal stability of titanium hydride thin films, Appl. Phys. Lett. 64 (1994) 1210–1211. doi:10.1063/1.111950. Cerca con Google

[144] F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, A Review on the Wettability of Dental Implant Surfaces: Theoretical and Experimental Aspects, Acta Biomater. 10 (2014) 2894–2906. doi:10.1161/ATVBAHA.114.303112.ApoA-I. Cerca con Google

[145] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, High surface energy enhances cell response to titanium substrate microstructure, J. Biomed. Mater. Res. - Part A. 74 (2005) 49–58. doi:10.1002/jbm.a.30320. Cerca con Google

[146] N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, D.D. Bosshardt, Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans, Clin. Oral Implants Res. 22 (2011) 349–356. doi:10.1111/j.1600-0501.2011.02172.x. Cerca con Google

[147] F. Rupp, L. Scheideler, D. Rehbein, D. Axmann, J. Geis-Gerstorfer, Roughness induced dynamic changes of wettability of acid etched titanium implant modifications, Biomaterials. 25 (2004) 1429–1438. doi:10.1016/j.biomaterials.2003.08.015. Cerca con Google

[148] S. Takeda, K. Yamamoto, Y. Hayasaka, K. Matsumoto, Surface OH group governing wettability of commercial glasses, J. Non. Cryst. Solids. 249 (1999) 41–46. doi:10.1016/S0022-3093(99)00297-5. Cerca con Google

[149] Y. Arima, H. Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials. 28 (2007) 3074–3082. doi:10.1016/j.biomaterials.2007.03.013. Cerca con Google

[150] H. Lu, L. Zhou, L. Wan, S. Li, M. Rong, Z. Guo, Effects of storage methods on time-related changes of titanium surface properties and cellular response, Biomed. Mater. 7 (2012). doi:10.1088/1748-6041/7/5/055002. Cerca con Google

[151] S. Li, J. Ni, X. Liu, X. Zhang, S. Yin, M. Rong, Z. Guo, L. Zhou, Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: An in vitro study, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B (2012) 1587–1598. doi:10.1002/jbm.b.32727. Cerca con Google

[152] D. Yamamoto, K. Arii, K. Kuroda, R. Ichino, M. Okido, A. Seki, Osteoconductivity of Superhydrophilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes, J. Biomater. Nanobiotechnol. 04 (2013) 45–52. doi:10.4236/jbnb.2013.41007. Cerca con Google

[153] S.C. Sartoretto, A.T.N.N. Alves, R.F.B. Resende, J. Calasans-Maia, J.M. Granjeiro, M.D. Calasans-Maia, Early osseointegration driven by the surface chemistry and wettability of dental implants, J. Appl. Oral Sci. 23 (2015) 279–287. Cerca con Google

doi:10.1590/1678-775720140483. Cerca con Google

[154] A. Mills, M. Crow, A study of factors that change the wettability of titania films, Int. J. Photoenergy. 2008 (2008) Article ID 470670. doi:10.1155/2008/470670. Cerca con Google

[155] M. Lorenzetti, D. Biglino, S. Novak, S. Kobe, Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants, Mater. Sci. Eng. C. 37 (2014) 390–398. doi:10.1016/j.msec.2014.01.029. Cerca con Google

[156] A. Galenda, F. Visentin, R. Gerbasi, M. Favaro, A. Bernardi, N. El Habra, Evaluation of self-cleaning photocatalytic paints: Are they effective under actual indoor lighting systems?, Appl. Catal. B Environ. 232 (2018) 194–204. doi:10.1016/j.apcatb.2018.03.052. Cerca con Google

[157] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1–21. doi:10.1016/S1389-5567(00)00002-2. Cerca con Google

[158] E. Gemelli, N.H.A. Camargo, Oxidation kinetics of commercially pure titanium, Rev. Matéria. 12 (2007) 525–531. Cerca con Google

[159] T. Wachi, T. Shuto, Y. Shinohara, Y. Matono, S. Makihira, Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption, Toxicology. 327 (2015) 1–9. doi:10.1016/j.tox.2014.10.016. Cerca con Google

[160] V.A.R. Barão, M.T. Mathew, W.G. Assunção, J.C.C. Yuan, M.A. Wimmer, C. Sukotjo, Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study, Clin. Oral Implants Res. 23 (2012) 1055–1062. doi:10.1111/j.1600-0501.2011.02265.x. Cerca con Google

[161] G. Wahl, Protective Coatings, in: K.F. Hitchman, M.L., Jensen (Ed.), Chem. Vap. Depos. Princ. Appl., Academic Press, San Diego, CA, 1993: pp. 591–662. Cerca con Google

[162] M. Ohring, Materials Science of Thin Films, second, Academic Press, San Diego, CA, 2002. Cerca con Google

[163] L.A. Rocha, F. Oliveira, H. V. Cruz, C. Sukotjo, M.T. Mathew, Bio-tribocorrosion in dental applications, in: Yan, Yu (Ed.), Bio-Tribocorrosion Biomater. Med. Implant., Woodhead Publishing Limited, 2013: pp. 223–249. doi:10.1533/9780857098603.3.223. Cerca con Google

[164] J.S. and Y.K. S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, Special modes of corrosion under physiological and stimulated physiological conditions, Acta Biomater. 4 (2008) 468–476. Cerca con Google

[165] D. Rodrigues, Corrosion of Dental Implants and Peri-implant Disease. Study of synergistic effects of mechanical loads and bacteria on the surface of dental implants., (n.d.). http://danieli.wikidot.com/3-corrosion-of-dental-implants-and-peri-implant-disease (accessed June 5, 2019). Vai! Cerca con Google

[166] D. Dzhurinskiy, Y. Gao, W.K. Yeung, E. Strumban, V. Leshchinsky, P.J. Chu, A. Matthews, A. Yerokhin, R.G. Maev, Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation, Surf. Coatings Technol. 269 (2015) 258–265. doi:10.1016/j.surfcoat.2015.01.022. Cerca con Google

[167] P. Soares, A. Mikowski, C.M. Lepienski, J. Emanuel Santos, G.A. Soares, V.S. Filho, Neide K. Kuromoto, Hardness and Elastic Modulus of TiO2 Anodic Films Measured by Instrumented Indentation, J. Biomed. Mater. Res. B. Appl. Biomater. 84B (2008) 524–530. doi:10.1002/jbmb. Cerca con Google

[168] D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, J. Domaradzki, Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process, Mater. Sci. Pol. 33 (2015) 660–668. doi:10.1515/msp-2015-0084. Cerca con Google

[169] A. Bendavid, P.J. Martin, H. Takikawa, Deposition and modification of titanium dioxide thin films by filtered arc deposition, Thin Solid Films. 360 (2000) 241–249. doi:10.1016/S0040-6090(99)00937-2. Cerca con Google

[170] A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, N.R. Bandyopadhyay, Nanoindentation study of microplasma sprayed hydroxyapatite coating, Ceram. Int. 35 (2009) 2295–2304. doi:10.1016/j.ceramint.2009.01.002. Cerca con Google

[171] W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, S.H. Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett. 96 (2010) 221901. doi:10.1063/1.3430005. Cerca con Google

[172] R. Snyders, D. Music, D. Sigumonrong, B. Schelnberger, J. Jensen, J.M. Schneider, Experimental and ab initio study of the mechanical properties of hydroxyapatite, Appl. Phys. Lett. 90 (2007) 193902. doi:10.1063/1.2738386. Cerca con Google

[173] L.T. de Jonge, S.C.G. Leeuwenburgh, J.J.J.P. van den Beucken, J. te Riet, W.F. Daamen, J.G.C. Wolke, D. Scharnweber, J.A. Jansen, The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium, Biomaterials. 31 (2010) 2461–2469. doi:10.1016/j.biomaterials.2009.11.114. Cerca con Google

[174] Y. Parcharoen, P. Kajitvichyanukul, S. Sirivisoot, P. Termsuksawad, Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications, Appl. Surf. Sci. 311 (2014) 54–61. doi:10.1016/j.apsusc.2014.04.207. Cerca con Google

[175] A. Tahmasbi Rad, M. Solati-Hashjin, N.A.A. Osman, S. Faghihi, Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage, Ceram. Int. 40 (2014) 12681–12691. doi:10.1016/j.ceramint.2014.04.116. Cerca con Google

[176] D. Horkavcová, B. Plešingerová, A. Helebrant, M. Vojtko, V. Procházka, Adhesion of the bioactive layer on titanium alloy substrate by tape-test, Ceram. - Silikaty. 52 (2008) 130–138. Cerca con Google

[177] A.P. Tomsia, M.E. Launey, J.S. Lee, M.H. Mankani, U.G.K. Wegst, E. Saiz, Nanotechnology Approaches for Better Dental Implants, Int J Oral Maxillofac Implant. 26 (2011) 25–49. doi:10.1038/mp.2011.182.doi. Cerca con Google

[178] T. Kokubo, H. Takadama, Simulated Body Fluid ( SBF ) as a Standard Tool to Test the Bioactivity of Implants, in: M. Epple, E. Bauerlein (Eds.), Handb. Of Biomineralization, WILEY-VCH Verlag GmbH & Co., Weinheim, 2007: pp. 97–108. Cerca con Google

[179] Y. Cai, M. Strømme, P. Zhang, H. Engqvist, K. Welch, Photocatalysis induces bioactivity of an organic polymer based material, RSC Adv. 4 (2014) 57715–57723. doi:10.1039/c4ra08805k. Cerca con Google

[180] Y. Li, I.S. Lee, F.Z. Cui, S.H. Choi, The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium, Biomaterials. 29 (2008) 2025–2032. doi:10.1016/j.biomaterials.2008.01.009. Cerca con Google

[181] H.M. Kim, T. Himeno, M. Kawashita, T. Kokubo, T. Nakamura, The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment, J. R. Soc. Interface. 1 (2004) 17–22. doi:10.1098/rsif.2004.0003. Cerca con Google

[182] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907–2915. doi:10.1016/j.biomaterials.2006.01.017. Cerca con Google

[183] C. Chen, I.S. Lee, S.M. Zhang, H.C. Yang, Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco’s phosphate-buffered saline solution containing CaCl2 with and without fibronectin, Acta Biomater. 6 (2010) 2274–2281. doi:10.1016/j.actbio.2009.11.033. Cerca con Google

[184] J.M. Anderson, R.W. Bianco, J.F. Grehan, B.C. Grubbs, S.R. Hanson, K.D. Hauch, M. Lahti, J.P. Mrachek, S.J. Northup, B.D. Ratner, F.J. Schoen, E.L. Schroeder, C.W. Schumacher, C.A. Svendsen, Biological Testing of Biomaterials, in: Buddy D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Eds.), Biomater. Sci. An Introd. to Mater. Med., 2nd Editio, Elsevier Academic Press, San Diego, California, 2004: p. 879. Cerca con Google

[185] G.N. Attik, C. Villat, F. Hallay, N. Pradelle-Plasse, H. Bonnet, K. Moreau, P. Colon, B. Grosgogeat, In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: BiodentineTM versus MTA®, Int. Endod. J. 47 (2014) 1133–1141. doi:10.1111/iej.12261. Cerca con Google

[186] S. Hattar, A. Berdal, A. Asselin, S. Loty, D. Greenspan, J.-M. Sautier, Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses, Eur. Cells Mater. 4 (2016) 61–69. doi:10.22203/ecm.v004a05. Cerca con Google

[187] A. Han, J.K.H. Tsoi, F.P. Rodrigues, J.G. Leprince, W.M. Palin, Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors, Int. J. Adhes. Adhes. 69 (2016) 58–71. doi:10.1016/j.ijadhadh.2016.03.022. Cerca con Google

[188] L.J.A. Heitz-Mayfield, G.E. Salvi, Peri-implant mucositis, J. Clin. Periodontol. 45 (2018) S237–S245. doi:10.1111/jcpe.12953. Cerca con Google

[189] W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating, Biomaterials. 27 (2006) 5512–5517. doi:10.1016/j.biomaterials.2006.07.003. Cerca con Google

[190] J. Grischke, J. Eberhard, M. Stiesch, Antimicrobial dental implant functionalization strategies —A systematic review, Dent. Mater. J. 35 (2016) 545–558. doi:10.4012/dmj.2015-314. Cerca con Google

[191] M.L.W. Knetsch, L.H. Koole, New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles, Polymers (Basel). 3 (2011) 340–366. doi:10.3390/polym3010340. Cerca con Google

[192] T. Hara, K. Matsuoka, K. Matsuzaka, M. Yoshinari, T. Inoue, Effect of Surface Roughness of Titanium Dental Implant Placed under Periosteum on Gene Expression of Bone Morphogenic Markers in Rat, Bull. Tokyo Dent. Coll. 53 (2012) 45–50. doi:10.2209/tdcpublication.53.45. Cerca con Google

[193] A. Piattelli, A. Scarano, M. Corigliano, M. Piattelli, Effects of alkaline phosphatase on bone healing around plasma-sprayed titanium implants: A pilot study in rabbits, Biomaterials. 17 (1996) 1443–1449. doi:10.1016/0142-9612(96)87288-7. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record