Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Alei, Eleonora (2019) Habitability Studies of Super Earths atmospheres. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi definitiva) - Accepted Version
18Mb

Abstract (italian or english)

Over the centuries, mankind always wondered whether other worlds existed, as well as other life forms upon their surfaces. This topic was considered “science-fiction” a few decades ago, but now it’s becoming more and more realistic: actually, different planets do exist, and some of them could bear life. Up to date, a database of more than 7000 planets or candidates is continuously updated, as current facilities keep on discovering new ones – a simple estimate suggests that in our galaxy tens of billions of new planets await to be revealed. Being extrasolar planetology a relatively new field of astrophysics, many things need to be set and done. In this case, a full characterization of the different atmospheres terrestrial exoplanets are likely to have is needed to correctly understand observational data; also, one should retrieve information about their formation and be able to presume that some form of life exists on the surface. To do that, theoretical modeling is needed: by simulating a simple imaginary exoplanet, one could have a better understanding of how all active processes interact within the system and what observable features they express so that they could be recognized when observing a real exoplanet. In this Ph.D. project, I explored the topic in various ways, starting with an overview about the detection techniques, the current knowledge about Super Earths, which are massive terrestrial exoplanets, and the concept of habitability. In the framework of a standardized, Virtual Observatory (VO) aware treatment of the exoplanets, I developed Exo-MerCat, which collects data from the most important online archives and merges the information while correcting nomenclature, status, and coordinate issues. This catalog is now a VO resource and has been positively accepted by the International Virtual Observatory Alliance (IVOA), as well as being used for PLATO and ARIEL space missions. Exo-MerCat allowed retrieving the sample of known Super Earths, which is then used as input to create a grid of atmospheric models to be run with the 1D radiative-convective model MAGRATHEA which I contributed to develop. MAGRATHEA can model Earth and Mars-like atmospheres, covering a wide range of the physical and chemical parameter space. It is able to calculate the radiative-convective equilibrium solution of an atmosphere in a very short time (a few hours of computational time), allowing us to fulfill a grid of 18000 atmospheric models of theoretical planets and 2400 ones of observed planets, as retrieved by the Exo-MerCat catalog. These models can be useful to study under which physical and atmospheric conditions it is possible to find liquid water on the surface of the planet, an essential requirement for the habitability of exoplanets. The atmospheric pressure-temperature profiles for the observed Super Earths grid, as retrieved by MAGRATHEA, were then used as an input for the Exoplanet Ozone Model to produce the corresponding ozone profile. The code is, at present, still at its early stages, but can efficiently produce the ozone profile of an atmosphere by solving the (photo-induced and thermal) chemistry of the oxygen-related species. The laboratory experiments performed at the Biology Department of the University of Padua, within the “Atmosphere in a Test-Tube project”, can benefit from the theoretical results from MAGRATHEA. The physical and chemical conditions at the surface are reproduced in the laboratory, forming exotic environments at which cyanobacteria are exposed. The study of the survival rate and the variation of the chemical composition caused by the presence of biological activity can be thus performed: this is indispensable in order to understand if, and when, a habitable planet can be actually inhabited.

Abstract (a different language)

Nei secoli, ci siamo sempre chiesti se esistessero altri mondi e altre forme di vita sulla superficie di questi. Questo argomento è stato considerato spesso “fantascienza” fino a pochi decenni fa, ma ora sta diventando sempre più realistico: in realtà, pianeti diversi esistono ed alcuni di essi possono ospitare la vita. Ad oggi, un archivio di più di 7000 pianeti confermati o candidati è costantemente aggiornato, al passo con gli strumenti che ne scoprono sempre di più - solo nella nostra Galassia, decine di miliardi di nuovi pianeti aspettano di essere scoperti. Essendo la planetologia extrasolare un campo relativamente nuovo dell'astrofisica, molte cose devono essere ancora studiate. In questo caso, una caratterizzazione più dettagliata delle possibili atmosfere di esopianeti di tipo terrestre è necessaria per comprendere meglio le osservazioni; inoltre, bisognerebbe ricavare informazioni sulla loro formazione e poter presumere se, ed in quali casi, forme di vita potrebbero esistere su quei pianeti. Per fare ciò, un approccio teorico è necessario: simulando un pianeta in maniera semplificata, si potrebbe avere una migliore comprensione di come tutti i processi attivi interagiscono tra loro e quali osservabili producono, affinché possano essere identificate quando si osserva un vero esopianeta. In questo progetto di Dottorato, ho esplorato l'argomento da diversi punti di vista, iniziando con una sintesi dei metodi di scoperta, di ciò che è noto ad oggi sulle Super Terre (pianeti terrestri massivi), e del concetto di abitabilità. In una prospettiva di un trattamento standardizzato dei dati, il quale possa rientrare nei canoni del Virtual Observatory (VO), ho sviluppato Exo-MerCat al fine di collezionare dati dai più importanti archivi online, incrociando le informazioni e correggendo problemi di nomenclatura, status e coordinate. Questo catalogo è ora una risorsa VO ed è stato accettato positivamente dall'International Virtual Observatory Alliance (IVOA), oltre ad essere usato per le missioni spaziali PLATO e ARIEL. Exo-MerCat ha permesso di ricavare l'insieme di Super Terre note, usato poi per creare una griglia di modelli atmosferici utilizzata dal modello 1D radiativo-convettivo MAGRATHEA, che ho contribuito a sviluppare. MAGRATHEA riesce a riprodurre atmosfere di tipo terrestre e marziano, coprendo un largo intervallo di parametri fisici e chimici. Il codice calcola il profilo di equilibrio radiativo-convettivo di una atmosfera in poche ore di tempo computazionale, consentendoci di riempire una griglia di 18000 modelli di pianeti teorici e una di 2400 modelli di pianeti osservati, ricavati dall'insieme prodotto da Exo-MerCat. Questi modelli possono essere utili per studiare sotto quali condizioni fisiche e atmosferiche è possibile trovare acqua liquida sulla superficie di un pianeta, requisito essenziale per l'abitabilità degli esopianeti. I modelli atmosferici delle Super Terre osservate ricavati da MAGRATHEA sono stati usati come input per l'Exoplanet Ozone Model al fine di produrre la concentrazione di ozono corrispondente ai profili stessi. Questo codice è, al momento, ancora preliminare, ma può riprodurre il profilo dell'abbondanza di ozono di una atmosfera risolvendo la chimica foto-indotta e termica delle specie legate all'ossigeno. I risultati teorici ottenuti dai vari codici sono utili agli esperimenti di laboratorio effettuati al Dipartimento di Biologia dell'Università di Padova. Considerando alcune atmosfere calcolate da MAGRATHEA, si possono riprodurre le condizioni fisiche e chimiche alla superficie in laboratorio, formando atmosfere esotiche ed esponendo cianobatteri a queste. Lo studio della sopravvivenza e dell'adattamento dei batteri, così come della variazione della composizione chimica causata dall'attività biologica, può essere eseguito. Ciò è indispensabile per comprendere se, e sotto quali condizioni, un pianeta abitabile può essere effettivamente abitato.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Claudi, Riccardo
Ph.D. course:Ciclo 32 > Corsi 32 > ASTRONOMIA
Data di deposito della tesi:27 November 2019
Anno di Pubblicazione:November 2019
Key Words:exoplanets, atmospheres, modeling, super Earths, archives, habitability, biosignatures
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:12107
Depositato il:02 Feb 2021 10:34
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abe, Y., Abe-Ouchi, A., Sleep, N. H., et al. (June 2011). “Habitable Zone Limits for Dry Planets”. In: Astrobiology 11.5, pp. 443–460 (cit. on p. 86). Cerca con Google

Airapetian, V. S., Jackman, C. H., Mlynczak, M., et al. (Nov. 2017). “Atmospheric Beacons of Life from Exoplanets Around G and K Stars”. In: Scientific Reports 7, 14141, p. 14141 (cit. on p. 95). Cerca con Google

Akeson, R. L., Chen X.and Ciardi, D., Crane, M, et al. (2013). “The NASA Exoplanet Archive: Data and Tools for Exoplanet Research”. In: Publications of the Astronomical Society of the Pacific 125.930, pp. 989–999 (cit. on pp. 103, 108). Cerca con Google

Alei, E., Claudi, R., Bignamini, A., et al. (2019). “Exo-MerCat: a merged exoplanet catalog with Virtual Observatory connection.” submitted (cit. on p. 141). Cerca con Google

Alibert, Y., Ataiee, S., and Venturini, J. (2018). “Planet Formation, Migration, and Habitability”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 2879–2895 (cit. on pp. 35, 36). Cerca con Google

Alonso, R. (2018). “Characterization of Exoplanets: Secondary Eclipses”. en. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–26 (cit. on p. 18). Cerca con Google

Anglada-Escudé, G., Amado, P. J., Barnes, J., et al. (2016). “A terrestrial planet candidate in a temperate orbit around Proxima Centauri”. In: Nature 536.7617, pp. 437–440 (cit. on pp. 1, 32). Cerca con Google

Appenzeller, I., Fricke, K., Fürtig, W., et al. (Dec. 1998). “Successful commissioning of FORS1 - the first optical instrument on the VLT.” In: The Messenger 94, pp. 1–6 (cit. on p. 24). Cerca con Google

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. (Oct. 2013). “Astropy: A community Python package for astronomy”. In: A&A 558, A33, A33. arXiv: 1307.6212 [astro-ph.IM] (cit. on p. 118). Cerca con Google

Bailey, V., Meshkat, T., Reiter, M., et al. (Dec. 2013). “HD 106906 b: A planetary-mass companion outside a massive debris disk”. In: The Astrophysical Journal 780.1. arXiv: 1312.1265, p. L4 (cit. on p. 134). Cerca con Google

Bakos, G. Á., Lázár, J., Papp, I., et al. (Sept. 2002). “System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search”. In: Publications of the Astronomical Society of the Pacific 114.799, pp. 974–987. arXiv: astro-ph/0206001 [astro-ph] (cit. on p. 20). Cerca con Google

Bashi, D., Helled, R., and Zucker, S. (2018). “A Quantitative Comparison of Exoplanet Catalogs”. In: Geosciences (cit. on pp. 104, 111, 114). Cerca con Google

Battistuzzi, M., Claudi, R., Cocola, L., et al. (2018). “An experimental setup to study by remote sensing analyses cyanobacteria growth and photosynthetic performances under non-terrestrial simulated environments”. In: 18th EANA Conference. Ed. by European Astrobiology Network Association (cit. on p. 282). Cerca con Google

Beaulieu, J. P., Bennett, D. P., Fouqué, P., et al. (Jan. 2006). “Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing”. In: Nature 439.7075, pp. 437–440. arXiv: astro-ph/0601563 [astro-ph] (cit. on p. 23). Cerca con Google

Benatti, S. (Aug. 2018). “Multi-Wavelength High-Resolution Spectroscopy for Exoplanet Detection: Motivation, Instrumentation and First Results”. en. In: Geosciences 8.8, p. 289 (cit. on pp. 7, 10). Cerca con Google

Benneke, B., Wong, I., Piaulet, C., et al. (Sept. 2019). “Water Vapor on the Habitable- Zone Exoplanet K2-18b”. In: arXiv e-prints, arXiv:1909.04642, arXiv:1909.04642. arXiv: 1909.04642 [astro-ph.EP] (cit. on p. 33). Cerca con Google

Bétrémieux, Y. and Kaltenegger, L. (Aug. 2013). “Transmission Spectrum of Earth as a Transiting Exoplanet from the Ultraviolet to the Near-infrared”. In: Astrophysical Journal Letters 772.2, L31, p. L31. arXiv: 1307.0416 [astro-ph.EP] (cit. on p. 94). Cerca con Google

Beuzit, J. L., Vigan, A., Mouillet, D., et al. (Feb. 2019). “SPHERE: the exoplanet imager for the Very Large Telescope”. In: arXiv e-prints, arXiv:1902.04080, arXiv:1902.04080. arXiv: 1902.04080 [astro-ph.IM] (cit. on p. 21). Cerca con Google

Borucki, W. J., Koch, D., Basri, G., et al. (Feb. 2010). “Kepler Planet-Detection Mission: Introduction and First Results”. In: Science 327.5968, p. 977 (cit. on p. 20). Cerca con Google

Boss, A. P., Astraatmadja, T. L., and Weinberger, A. J. (Jan. 2019). “Ground-based Astrometric Detection of Exoplanets with CAPSCam: Current Status”. In: American Astronomical Society Meeting Abstracts #233. Vol. 233. American Astronomical Society Meeting Abstracts, p. 408.08 (cit. on p. 24). Cerca con Google

Boyajian, T. S., von Braun, K., van Belle, G., et al. (2012). “Stellar Diameters and Tempera- tures II. Main Sequence K & M Stars”. In: (cit. on p. 186). Cerca con Google

Broeg, C., Fortier, A., Ehrenreich, D., et al. (Apr. 2013). “CHEOPS: A transit photometry mission for ESA’s small mission programme”. In: European Physical Journal Web of Confer- ences. Vol. 47. European Physical Journal Web of Conferences, p. 03005. arXiv: 1305.2270 [astro-ph.EP] (cit. on p. 20). Cerca con Google

Brown, T. M. (May 2001). “Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres”. In: The Astrophysical Journal 553.2, pp. 1006–1026 (cit. on p. 15). Cerca con Google

Buck, A. L. (Dec. 1981). “New Equations for Computing Vapor Pressure and Enhancement Factor”. In: Journal of Applied Meteorology 20.12, pp. 1527–1532 (cit. on p. 169). Cerca con Google

Budyko, M. I. (Oct. 1969). “The effect of solar radiation variations on the climate of the Earth”. In: Tellus Series A 21.5, pp. 611–619 (cit. on p. 86). Cerca con Google

Butler, R. P., Wright, J. T., Marcy, G. W., et al. (July 2006). “Catalog of Nearby Exoplanets”. In: ApJ 646, pp. 505–522. eprint: astro-ph/0607493 (cit. on p. 107). Cerca con Google

Cameron, A. C. (2016). “Extrasolar Planetary Transits”. en. In: Methods of Detecting Exoplanets. Ed. by Valerio Bozza, Luigi Mancini, and Alessandro Sozzetti. Vol. 428. Springer International Publishing, pp. 89–131 (cit. on pp. 12–14). Cerca con Google

Carleo, I., Benatti, S., Lanza, A. F., et al. (May 2018). “Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b. First data from the GIARPS Commissioning”. In: A&A 613, A50, A50. arXiv: 1805.01281 [astro-ph.EP] (cit. on p. 104). Cerca con Google

Chapman, S. (1932). “Discussion of memoirs. On a theory of upper-atmospheric ozone”. In: Quarterly Journal of the Royal Meteorological Society 58.243, pp. 11–13 (cit. on p. 72). Cerca con Google

Claudi, R. and Alei, E. (Sept. 2019). “Biosignatures Search in Habitable Planets”. In: Galaxies 7.4, p. 82 (cit. on pp. 93, 96, 97). Cerca con Google

Claudi, R., Benatti, S., Carleo, I., et al. (Aug. 2017). “GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy”. In: The European Physical Journal Plus 132.8, p. 364 (cit. on p. 11). Cerca con Google

Claudi, R., La Rocca, N., Poletto, L., et al. (Sept. 2018). “M Dwarfs, Super Earths and photosynthetic bacteria: a mix for laboratory studies”. In: European Planetary Science Congress, EPSC2018–228 (cit. on p. 278). Cerca con Google

Cosentino, R., Lovis, C., Pepe, F., et al. (Sept. 2012). “Harps-N: the new planet hunter at TNG”. In: Ground-based and Airborne Instrumentation for Astronomy IV. Vol. 8446. SPIE Proceedings, p. 84461V (cit. on p. 11). Cerca con Google

Crouzet, N. (2018). “Small Telescope Exoplanet Transit Surveys: XO”. In: Handbook of Exoplanets, ISBN 978-3-319-55332-0. Springer International Publishing AG, part of Springer Nature, 2018, id.129, p. 129 (cit. on p. 20). Cerca con Google

Cubillos, P., Blecic, J., Harrington, J., et al. (Aug. 2016). BART: Bayesian Atmospheric Radiative Transfer fitting code. Astrophysics Source Code Library. ascl: 1608.004 (cit. on p. 288). Cerca con Google

Deeg, H. J. and Alonso, R. (2018). “Transit Photometry as an Exoplanet Discovery Method”. en. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–25 (cit. on p. 14). Cerca con Google

Deming, D., Louie, D., and Sheets, H. (Jan. 2019). “How to Characterize the Atmosphere of a Transiting Exoplanet”. In: Publications of the Astronomical Society of the Pacific 131.995. arXiv: 1810.04175, p. 013001 (cit. on p. 18). Cerca con Google

Demory, B., Gillon, M., de Wit, J., et al. (Apr. 2016). “A map of the large day-night temperature gradient of a super-Earth exoplanet”. In: Nature 532.7598, pp. 207–209. arXiv: 1604.05725 [astro-ph.EP] (cit. on p. 18). Cerca con Google

Dole, S. H. (1964). Habitable planets for man (cit. on p. 86). Cerca con Google

Domagal-Goldman, S. D., Meadows, V. S., Claire, M. W., et al. (June 2011). “Using Biogenic Sulfur Gases as Remotely Detectable Biosignatures on Anoxic Planets”. In: Astrobiology 11, pp. 419–441 (cit. on p. 96). Cerca con Google

Dowler, P., Rixon, G., and Tody, D. (Mar. 2010). Table Access Protocol Version 1.0. Tech. rep., p. 327 (cit. on p. 118). Cerca con Google

Elkins-Tanton, L. T. and Seager, S. (2008). “Ranges of Atmospheric Mass and Composition of Super-Earth Exoplanets”. In: The Astrophysical Journal 685, pp. 1237–1246 (cit. on p. 37). Cerca con Google

Erculiani, M. S., Claudi, R., Barbisan, D., et al. (Sept. 2015). “A tunable integrated system to simulate colder stellar radiation”. In: (cit. on pp. 279, 280). Cerca con Google

Extension to the Standard Atmosphere, United States Committee on (1976). U.S. standard atmosphere, 1976. National Oceanic and Amospheric [sic] Administration : for sale by the Supt. of Docs., U.S. Govt. Print. Off. Cerca con Google

Faherty, J. K. (2018). “Spectral Properties of Brown Dwarfs and Unbound Planetary Mass Objects”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–12 (cit. on p. 136). Cerca con Google

Farinato, J., Bacciotti, F., Baffa, C., et al. (Aug. 2018). “SHARK-NIR, the coronagraphic camera for LBT, moving toward construction”. In: arXiv e-prints, arXiv:1808.00364, arXiv:1808.00364. arXiv: 1808.00364 [astro-ph.IM] (cit. on p. 22). Cerca con Google

Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (May 1985). “Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction”. In: Nature 315.6016, pp. 207–210 (cit. on p. 74). Cerca con Google

Figueira, P., Marmier, M., Bonfils, X., et al. (Apr. 2010). “Evidence against the young hot- Jupiter around BD +20 1790”. In: A&A 513, L8, p. L8. arXiv: 1003.3678 [astro-ph.EP] (cit. on p. 104). Cerca con Google

Figueira, P., Pepe, F., Santos, N. C., et al. (Apr. 2010). “TW Hya under CRIRES light: evidence against the presence of a hot Jupiter”. In: EAS Publications Series. Ed. by K. Go ̇zdziewski, A. Niedzielski, and J. Schneider. Vol. 42. EAS Publications Series, pp. 125–129 (cit. on p. 104). Cerca con Google

Fischer, D. A., Howard, A. W., Laughlin, G. P., et al. (2014). “Exoplanet Detection Techniques”. In: Protostars and Planets VI, p. 715 (cit. on pp. 7, 26, 27). Cerca con Google

Fogg, M. J. (Jan. 1992). “An Estimate of the Prevalence of Biocompatible and Habitable Planets”. In: Journal of the British Interplanetary Society 45, pp. 3–12 (cit. on p. 86). Cerca con Google

Forget, F. and Leconte, J (2014). “Possible climates on terrestrial exoplanets.” In: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 372.2014, p. 20130084 (cit. on p. 156). Cerca con Google

Fu, Q. and Liou, K. N. (1992). “On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres”. In: Journal of the Atmospheric Sciences 49.22, pp. 2139–2156. eprint: https://doi.org/10.1175/1520-0469(1992)049<2139: OTCDMF>2.0.CO;2 (cit. on p. 161). Vai! Cerca con Google

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. (Aug. 2018). “Gaia Data Release 2. Summary of the contents and survey properties”. In: A&A 616, A1, A1. arXiv: 1804.09365 (cit. on p. 126). Cerca con Google

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. (Nov. 2016). “The Gaia mission”. In: A&A 595, A1, A1. arXiv: 1609.04153 [astro-ph.IM] (cit. on pp. 25, 126). Cerca con Google

Gardner, J. P., Mather, J. C., Clampin, M., et al. (Apr. 2006). “The James Webb Space Telescope”. In: Space Science Reviews 123.4, pp. 485–606. arXiv: astro-ph/0606175 [astro-ph] (cit. on p. 20). Cerca con Google

Gelman, S. E., Elkins-Tanton, L. T., and Seager, S. (2011). “Effects of Stellar Flux on Tidally Locked Terrestrial Planets: Degree-1 Mantle Convection and Local Magma Ponds”. In: The Astrophysical Journal 735.2, p. 72 (cit. on p. 83). Cerca con Google

Goody, R. M. and Yung, Y. L. (1989). Atmospheric Radiation: Theoretical Basis. Oxford University Press, p. 519 (cit. on p. 45). Cerca con Google

Gordon, I. E., Rothman, L. S., Hill, C., et al. (Dec. 2017). “The HITRAN2016 molecular spectroscopic database”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 203, pp. 3–69 (cit. on p. 159). Cerca con Google

Grenfell, J. L. (2018). “Atmospheric Biosignatures”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 3159–3172 (cit. on pp. 92, 93). Cerca con Google

Guyon, O. (2018). “Imaging with Adaptive Optics and Coronographs for Exoplanet Research”. en. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–20 (cit. on p. 21). Cerca con Google

Haghighipour, N. (2013). “The Formation and Dynamics of Super-Earth Planets”. In: Annual Review of Earth and Planetary Sciences 41, pp. 469–495 (cit. on p. 33). Cerca con Google

Han, E., Wang, S. X., Wright, J. T., et al. (Sept. 2014). “Exoplanet Orbit Database. II. Updates to Exoplanets.org”. In: Publications of the Astronomical Society of the Pacific 126, p. 827. arXiv: 1409.7709 [astro-ph.EP] (cit. on p. 109). Cerca con Google

Hanel, R. A., Conrath, B. J., Kunde, V. G., et al. (1972). “The Nimbus 4 infrared spectroscopy experiment: 1. Calibrated thermal emission spectra”. In: Journal of Geophysical Research (1896-1977) 77.15, pp. 2629–2641. eprint: https://agupubs.onlinelibrary.wiley. com/doi/pdf/10.1029/JC077i015p02629 (cit. on p. 63). Vai! Cerca con Google

Hart, M. H. (Jan. 1979). “Habitable Zones about Main Sequence Stars”. In: Icarus 37.1, pp. 351–357 (cit. on p. 86). Cerca con Google

Hatzes, A. P. and Rauer, H. (Sept. 2015). “A Definition for Giant Planets Based on the Mass- Density Relationship”. In: Astrophysical Journal 810.2, L25, p. L25. arXiv: 1506.05097 [astro-ph.EP] (cit. on p. 136). Cerca con Google

Hearnshaw, J. B., Abe, F., Bond, I. A., et al. (Jan. 2006). “The MOA 1.8-metre alt-az Wide-field Survey Telescope and the MOA Project”. In: The 9th Asian-Pacific Regional IAU Meeting. Ed. by W. Sutantyo, P. W. Premadi, P. Mahasena, et al., p. 272. arXiv: astro-ph/0509420 [astro-ph] (cit. on p. 23). Cerca con Google

Hessman, F. V. (2018). “The Naming of Extrasolar Planets”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 85–93 (cit. on pp. 106, 107). Cerca con Google

Hollis, M. D. J., Tessenyi, M., and Tinetti, G. (Oct. 2013). “TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres”. In: Computer Physics Communications 184, pp. 2351–2361 (cit. on p. 288). Cerca con Google

Howell, S. B., Sobeck, C., Haas, M., et al. (Apr. 2014). “The K2 Mission: Characterization and Early Results”. In: Publications of the Astronomical Society of the Pacific 126.938, p. 398. arXiv: 1402.5163 [astro-ph.IM] (cit. on p. 20). Cerca con Google

Hu, R., Seager, S., and Bains, W. (2012). “Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases”. In: The Astrophysical Journal 761.2, p. 166 (cit. on pp. 70, 71, 74, 75). Cerca con Google

Huber, D., Bryson, S. T., and et al. (Sept. 2017). “VizieR Online Data Catalog: K2 Ecliptic Plane Input Catalog (EPIC) (Huber+, 2017)”. In: VizieR Online Data Catalog, IV/34, pp. IV/34 (cit. on p. 126). Cerca con Google

Huebner, W. F. and Mukherjee, J. (2015). “Photoionization and photodissociation rates in solar and blackbody radiation fields”. In: Planetary and Space Science 106, pp. 11–45 (cit. on p. 255). Cerca con Google

Izidoro, A. and Raymond, S. N. (2018). “Formation of Terrestrial Planets”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 2365–2423 (cit. on pp. 33, 35, 36). Cerca con Google

Jehin, E., Gillon, M., Queloz, D., et al. (Sept. 2011). “TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope”. In: The Messenger 145, pp. 2–6 (cit. on p. 20). Cerca con Google

Joliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag (cit. on p. 201). Kaltenegger, L., Selsis, F., Fridlund, M., et al. (2009). “Deciphering Spectral Fingerprints of Cerca con Google

Habitable Extrasolar Planets”. In: p. 17 (cit. on p. 85). Cerca con Google

Kasting, J. F. and Catling, D. (2003). “Evolution of a Habitable Planet”. In: Annual Review of Astronomy and Astrophysics 41.1, pp. 429–463. eprint: https://doi.org/10.1146/ annurev.astro.41.071601.170049 (cit. on p. 82). Vai! Cerca con Google

Kasting, J. F., Whitmire, D. P, and Reynolds, R T (1993). Habitable zones around main sequence stars. (Cit. on pp. 84, 86). Cerca con Google

Kempton, E. M. R., Lupu, R., Owusu-Asare, A., et al. (Apr. 2017). “Exo-Transmit: An Open- Source Code for Calculating Transmission Spectra for Exoplanet Atmospheres of Varied Composition”. In: Publications of the Astronomical Society of the Pacific 129.974, p. 044402. arXiv: 1611.03871 [astro-ph.EP] (cit. on p. 288). Cerca con Google

Kepler Mission Team (Nov. 2009). “VizieR Online Data Catalog: Kepler Input Catalog (Kepler Mission Team, 2009)”. In: VizieR Online Data Catalog, V/133, pp. V/133 (cit. on p. 126). Cerca con Google

Kiang, N. Y., Domagal-Goldman, S., Parenteau, M. N., et al. (2018). “Exoplanet biosignatures: At the dawn of a new era of planetary observations”. In: Astrobiology 18.6, pp. 619–629 (cit. on pp. 92, 93, 96). Cerca con Google

Kim, S., Lee, C., Park, B., et al. (Feb. 2016). “KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories”. In: Journal of Korean Astronomical Society 49.1, pp. 37–44 (cit. on p. 23). Cerca con Google

Kjeldsen, H. and Bedding, T. R. (Jan. 1995). “Amplitudes of stellar oscillations: the implications for asteroseismology.” In: A&A 293, pp. 87–106. eprint: astro-ph/9403015 (cit. on p. 10). Cerca con Google

Kopparapu, R. K. (2018). “The Habitable Zone: The Climatic Limits of Habitability”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–13 (cit. on p. 85). Cerca con Google

Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. (2013). “Habitable Zones Around Main- Sequence Stars: New Estimates”. In: The Astrophysical Journal 765.1993, p. 16 (cit. on pp. 86, 149, 151, 187–189, 219, 242, 247). Cerca con Google

Krasnopolsky, V. A., Maillard, J. P., and Owen, T. C. (Dec. 2004). “Detection of methane in the martian atmosphere: evidence for life?” In: Icarus 172, pp. 537–547 (cit. on p. 95). Cerca con Google

Kraus, A. L., Ireland, M. J., Cieza, L. A., et al. (Dec. 2013). “Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B”. In: The Astrophysical Journal 781.1. arXiv: 1311.7664, p. 20 (cit. on p. 135). Cerca con Google

La Rocca, N., Claudi, R., Erculiani, M. S., et al. (Sept. 2015). “Microorganisms suitable for studying biomarkers within the atmosphere in a test tube project”. In: 5th Workshop of the Italian Astrobiology Society, Life in a Cosmic Context (cit. on p. 280). Cerca con Google

Lacis, A. and Oinas, V. (1991). “A Description of the Correlated k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres to N2 ). Comparison cooling”. In: Journal of Geophysical Research 96, pp. 9027–9063 (cit. on pp. 160–162). Cerca con Google

Lagrange, A.M., Keppler, M., Beust, H., et al. (Dec. 2017). “Discovery of a stellar companion to HD 131399A”. en. In: Astronomy & Astrophysics 608, p. L9 (cit. on p. 134). Cerca con Google

Lammer, H., Sproß, L., Grenfell, J. L., et al. (July 2019). “The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats”. In: Astrobiology 19.7, pp. 927–950. arXiv: 1904.11716 [astro-ph.EP] (cit. on p. 95). Cerca con Google

Leconte, J., Forget, F., Charnay, B., et al. (Dec. 2013). “Increased insolation threshold for runaway greenhouse processes on Earth-like planets”. In: Nature 504.7479, pp. 268–271. arXiv: 1312.3337 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Luhman, K. L. (Sept. 2012). “The Formation and Early Evolution of Low-Mass Stars and Brown Dwarfs”. In: Annual Review of Astronomy and Astrophysics 50, pp. 65–106. arXiv: 1208.5800 [astro-ph.GA] (cit. on p. 135). Cerca con Google

Macintosh, B., Graham, J. R., Ingraham, P., et al. (2014). “First light of the Gemini Planet Imager”. In: Proceedings of the National Academy of Sciences 111.35, pp. 12661–12666 (cit. on p. 21). Cerca con Google

Madhusudhan, N. (2018). “Atmospheric Retrieval of Exoplanets”. en. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–30 (cit. on p. 19). Cerca con Google

Madhusudhan, N., Knutson, H., Fortney, J., et al. (2014). “Exoplanetary Atmospheres”. In: Protostars and Planets VI, pp. 739–762 (cit. on pp. 6, 7, 16). Cerca con Google

Magalhães, J. A., Schofield, J. T., and Seiff, A. (1999). “Results of the Mars Pathfinder atmospheric structure investigation”. In: Journal of Geophysical Research: Planets 104.E4, pp. 8943–8955. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10. 1029/1998JE900041 (cit. on p. 182). Vai! Cerca con Google

Mahadevan, S., Ramsey, L., Bender, C., et al. (Sept. 2012). “The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope”. In: SPIE Proceedings. Vol. 8446. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 84461S. arXiv: 1209.1686 [astro-ph.EP] (cit. on p. 11). Cerca con Google

Malbet, F. and Sozzetti, A. (2018). “Astrometry as an Exoplanet Discovery Method”. en. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–16 (cit. on p. 24). Cerca con Google

Manabe, S. and Strickler, R. F. (1964). “Thermal Equilibrium of the Atmosphere with a Convective Adjustment”. In: Journal of the Atmospheric Sciences 21.4, pp. 361–385 (cit. on p. 174). Cerca con Google

Manabe, S. and Wetherald, R. T. (1967). Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity (cit. on pp. 169, 174). Cerca con Google

Marconi, A., Di Marcantonio, P., D’Odorico, V., et al. (Aug. 2016). “EELT-HIRES the high- resolution spectrograph for the E-ELT”. In: Ground-based and Airborne Instrumentation for Astronomy VI. Vol. 9908. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 990823. arXiv: 1609.00497 [astro-ph.IM] (cit. on p. 11). Cerca con Google

Martin, R. G. and Livio, M. (Mar. 2016). “on the Formation of Super-Earths With Implications for the Solar System”. In: The Astrophysical Journal 822.2, p. 90 (cit. on p. 36). Cerca con Google

Mayor, M., Pepe, F., Queloz, D., et al. (Dec. 2003). “Setting New Standards with HARPS”. In: The Messenger 114, pp. 20–24 (cit. on p. 11). Cerca con Google

Mayor, M. and Queloz, D. (1995). “A Jupiter-mass companion to a solar type star”. In: Nature 378.1993, pp. 355–359 (cit. on pp. 6, 25). Cerca con Google

Meadows, V. S. and Barnes, R. K. (2018). “Factors Affecting Exoplanet Habitability”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–24 (cit. on pp. 86–88). Cerca con Google

Miller-Ricci, E., Seager, S., and Sasselov, D. (2009). “The Atmospheric Signatures of Super-Earths: how to distinguish between Hydrogen-rich and Hydrogen-poor atmospheres”. In: The Astrophysical Journal 690.2, pp. 1056–1067 (cit. on pp. 31, 32). Cerca con Google

Mischna, M., Lee, C., and Richardson, M. I. (2012). “Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present”. In: Journal of Geophysical Research 117.E10, pp. 1–22 (cit. on pp. 163, 178, 179). Cerca con Google

Montmessin, F. and Määttänen, A. (2018). “Temperature, Clouds, and Aerosols in the Terrestrial Bodies of the Solar System”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–29 (cit. on pp. 78, 89). Cerca con Google

Nielsen, E. L., De Rosa, R. J., Rameau, J., et al. (Nov. 2017). “Evidence that the Directly- Imaged Planet HD 131399 Ab is a Background Star”. In: The Astronomical Journal 154.6. arXiv: 1705.06851, p. 218 (cit. on p. 134). Cerca con Google

Nier, A. O., Hanson, W. B., Seiff, A., et al. (1976). “Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1”. In: Science 193.4255, pp. 786–788. eprint: https://science.sciencemag.org/content/193/4255/786.full.pdf (cit. on p. 182). Vai! Cerca con Google

North, G. R. and Erukhimova, T. L. (2009). Atmospheric Thermodynamics. Cambridge (cit. on pp. 58, 61, 68, 69). Cerca con Google

Ochsenbein, F., Bauer, P., and Marcout, J. (Apr. 2000). “The VizieR database of astronomical catalogues”. In: Astronomy and Astrophysics Supplement Series 143, pp. 23–32. arXiv: astro-ph/0002122 [astro-ph] (cit. on p. 126). Cerca con Google

Oliva, E., Origlia, L., Maiolino, R., et al. (Oct. 2012). “The GIANO spectrometer: towards its first light at the TNG”. In: Ground-based and Airborne Instrumentation for Astronomy IV. Ed. by Ian S. McLean, Suzanne K. Ramsay, and Hideki Takami. SPIE (cit. on p. 11). Cerca con Google

Osuna, P., Ortiz, I., Lusted, J., et al. (Oct. 2008). IVOA Astronomical Data Query Language Version 2.00. Tech. rep., p. 1030 (cit. on p. 118). Cerca con Google

Parès, L., Donati, J.-F., Dupieux, M., et al. (Sept. 2012). “Front end of the SPIRou spectropolarimeter for Canada-France Hawaii Telescope”. In: Ground-based and Airborne Instrumentation for Astronomy IV. Vol. 8446. SPIE Proceedings, 84462E (cit. on p. 11). Cerca con Google

Pepe, F. A., Cristiani, S., Rebolo Lopez, R., et al. (July 2010). “ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations”. In: Ground-based and Airborne Instrumentation for Astronomy III. Vol. 7735. Proceedings of the SPIE, 77350F (cit. on p. 11). Cerca con Google

Pepper, J., Pogge, R. W., DePoy, D. L., et al. (Aug. 2007). “The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large-Area Synoptic Surveys”. In: Publications of the Astronomical Society of the Pacific 119.858, pp. 923–935. arXiv: 0704.0460 [astro-ph] (cit. on p. 20). Cerca con Google

Petralia, A., Alei, E., Aresu, G., et al. (2019). submitted (cit. on pp. 157, 160). Cerca con Google

Pierrehumbert, R. and Gaidos, E. (June 2011). “Hydrogen Greenhouse Planets Beyond the Habitable Zone”. In: Astrophysical Journal Letters 734.1, L13, p. L13. arXiv: 1105.0021 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Pilcher, C. B. (Nov. 2003). “Biosignatures of Early Earths”. In: Astrobiology 3, pp. 471–486 (cit. on p. 96). Cerca con Google

Pino, L., Ehrenreich, D., Wyttenbach, A., et al. (Apr. 2018). “Combining low- to high- resolution transit spectroscopy of HD 189733b. Linking the troposphere and the thermosphere of a hot gas giant”. In: Astronomy & Astrophysics 612, A53, A53. arXiv: 1709.09678 [astro-ph.EP] (cit. on p. 288). Cerca con Google

Plante, R., Williams, R., Hanisch, R., et al. (Feb. 2008). Simple Cone Search Version 1.03. Tech. rep., p. 222 (cit. on p. 123). Cerca con Google

Pollacco, D. L., Skillen, I., Collier Cameron, A., et al. (Oct. 2006). “The WASP Project and the SuperWASP Cameras”. In: Publications of the Astronomical Society of the Pacific 118, pp. 1407–1418. eprint: astro-ph/0608454 (cit. on p. 20). Cerca con Google

Pravdo, S. H. and Shaklan, S. B. (Jan. 2003). “Stellar Planet Survey-STEPS”. In: Scientific Frontiers in Research on Extrasolar Planets. Ed. by Drake Deming and Sara Seager. Vol. 294. Astronomical Society of the Pacific Conference Series, pp. 107–110 (cit. on p. 24). Cerca con Google

Price-Whelan, A. M., Sipócz, B. M., Günther, H. M., et al. (Sept. 2018). “The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package”. In: ApJ 156, 123, p. 123 (cit. on p. 118). Cerca con Google

Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. (July 2014). “CARMENES instrument overview”. In: Ground-based and Airborne Instrumentation for Astronomy V. Vol. 9147. SPIE Proceedings, 91471F (cit. on p. 11). Cerca con Google

Ramirez, R. M. and Kaltenegger, L. (Mar. 2017). “A Volcanic Hydrogen Habitable Zone”. In: Astrophysical Journal Letters 837.1, L4, p. L4. arXiv: 1702.08618 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Raschka, S. (2015). Python Machine Learning. Packt Publishing (cit. on p. 202).
Raskin, G. and Winckel, H. (Jan. 2014). “HERMES at Mercator, competitive high-resolution Cerca con Google

spectroscopy with a small telescope”. In: Astronomische Nachrichten 335 (cit. on p. 11). Rasool, S. I. and de Bergh, C. (June 1970). “The Runaway Greenhouse and the Accumulation Cerca con Google

of CO2 in the Venus Atmosphere”. In: Nature 226.5250, pp. 1037–1039 (cit. on p. 86). Rauer, H., Aerts, C., Cabrera, J., et al. (Sept. 2016). “The PLATO Mission”. In: Astronomische Cerca con Google

Nachrichten 337, p. 961 (cit. on p. 20). Cerca con Google

Rauer, H., Gebauer, S., Paris, P. V., et al. (2011). “Astronomy &amp; Astrophysics Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs”. In: A&A 529 (cit. on p. 95). Cerca con Google

Rein, H. (Nov. 2012). “A proposal for community driven and decentralized astronomical databases and the Open Exoplanet Catalogue”. In: arXiv e-prints, arXiv:1211.7121, arXiv:1211.7121. arXiv: 1211.7121 [astro-ph.EP] (cit. on pp. 103, 111). Cerca con Google

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. (Jan. 2015). “Transiting Exoplanet Survey Satellite (TESS)”. In: Journal of Astronomical Telescopes, Instruments, and Systems 1, 014003, p. 014003 (cit. on p. 20). Cerca con Google

Rodet, L., Beust, H., Bonnefoy, M., et al. (May 2017). “On the origin of the wide-orbit circumbinary giant planet HD 106906: A dynamical scenario and its impact on the disk”. In: Astronomy & Astrophysics 602. arXiv: 1703.01857, A12 (cit. on p. 134). Cerca con Google

Rothman, L. S., Gordon, I. E., Barber, R. J., et al. (Oct. 2010). “HITEMP, the high-temperature molecular spectroscopic database”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 111, pp. 2139–2150 (cit. on p. 159). Cerca con Google

Rugheimer, S., Kaltenegger, L., and Sasselov, D. (Jan. 2015). “Spectral Fingerprints of Earth-like Planets Orbiting Other Stars”. In: American Astronomical Society Meeting Abstracts #225. Vol. 225. American Astronomical Society Meeting Abstracts, p. 124.02 (cit. on pp. 95, 96). Cerca con Google

Rugheimer, S., Kaltenegger, L., Zsom, A., et al. (Mar. 2013). “Spectral Fingerprints of Earth-like Planets Around FGK Stars”. In: Astrobiology 13, pp. 251–269. arXiv: 1212.2638 [astro-ph.EP] (cit. on p. 95). Cerca con Google

Rybicki, G. B. and Lightman, A. P. (May 1981). Radiative Processes in Astrophysics. Ed. by George B. Rybicki and Alan P. Lightman. Vol. 25. 4. Weinheim, Germany: Wiley-VCH Verlag GmbH, p. 432 (cit. on pp. 16, 46, 158). Cerca con Google

Salasnich, B., Claudi, R., Alei, E., et al. (2018). “Control software for the Multi-Channel Led starlight simulator”. In: Proc. SPIE. Vol. 10707 (cit. on pp. 279, 280). Cerca con Google

Sánchez-Lavega, A., Pérez-Hoyos, S., and Hueso, R. (2004). “Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation”. In: Am. J. Phys. 72.6, p. 767 (cit. on pp. 76, 77). Cerca con Google

Santerne, A. (2018). “Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–23 (cit. on p. 26). Cerca con Google

Santerne, A., Hébrard, G., Deleuil, M., et al. (Nov. 2014). “SOPHIE velocimetry of Kepler transit candidates - XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet”. en. In: Astronomy & Astrophysics 571, A37 (cit. on p. 134). Cerca con Google

Schneider, J. (2018). “Definition of Exoplanets and Brown Dwarfs”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–6 (cit. on p. 136). Cerca con Google

Schneider, J., Dedieu, C., Le Sidaner, P., et al. (2011). “Defining and cataloging exoplanets: the exoplanet.eu database”. In: Astronomy & Astrophysics 532, A79 (cit. on pp. 103, 107, 110). Cerca con Google

Schwieterman, E. W. (2018). “Surface and Temporal Biosignatures”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–29 (cit. on pp. 93, 97–101). Cerca con Google

Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., et al. (June 2018). “Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life”. In: Astrobiology 18.6, pp. 663–708. arXiv: 1705.05791 [astro-ph.EP] (cit. on pp. 93, 96). Cerca con Google

Seager, S. (2010). Exoplanet Atmospheres: Physical Processes. Princeton University Press, p. 243 (cit. on pp. 52, 54, 58, 62, 67, 68, 70, 75, 78). Cerca con Google

Seager, S., Bains, W., and Petkowski, J. (2016). “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.” In: Astrobiology 16.6, pp. 1–21 (cit. on p. 42). Cerca con Google

Seager, S. and Deming, D. (2010). “Exoplanet atmospheres”. In: Annual Review of Earth and Planetary Sciences 48, pp. 631–72 (cit. on p. 12). Cerca con Google

Seager, S., Kuchner, M. J., Hier-Majumder, C. A., et al. (2007). “Mass-Radius Relationships for Solid Exoplanets”. In: The Astrophysical Journal 669, p. 1279 (cit. on pp. 40, 145, 147, 185). Cerca con Google

Segura, A., Kasting, J. F., Meadows, V., et al. (2005). “Biosignatures from Earth-Like Planets Around M Dwarfs”. In: Astrobiology 5.6, pp. 706–725 (cit. on pp. 95, 96). Cerca con Google

Seinfeld, J. and Pandis, S. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley (cit. on p. 74). Cerca con Google

Simon, M., Ghez, A. M., Leinert, C., et al. (Apr. 1995). “A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions”. In: The Astrophysical Journal 443, pp. 625–637 (cit. on p. 135). Cerca con Google

Sing, D. K. (2018). “Observational Techniques With Transiting Exoplanetary Atmospheres 1 Background and History of Exoplanet Atmosphere Observations”. In: arXiv: 1804.07357v1 (cit. on p. 16). Cerca con Google

Sing, D. K., Fortney, J., Nikolov, N., et al. (Jan. 2016). “A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion”. In: Nature 529.7584. arXiv: 1512.04341, pp. 59–62 (cit. on p. 17). Cerca con Google

Southworth, J. (2011). “Homogeneous studies of transiting extrasolar planets - IV. Thirty systems with space-based light curves”. In: Monthly Notices of the Royal Astronomical Society 417.3, pp. 2166–2196 (cit. on p. 287). Cerca con Google

Spergel, D., Gehrels, N., Baltay, C., et al. (Mar. 2015). “Wide-Field InfrarRed Survey Telescope- Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report”. In: arXiv e-prints, arXiv:1503.03757, arXiv:1503.03757. arXiv: 1503.03757 [astro-ph.IM] (cit. on p. 23). Cerca con Google

Spiegel, D. S., Raymond, S. N., Dressing, C. D., et al. (Oct. 2010). “Generalized Milankovitch Cycles and Long-Term Climatic Habitability”. In: The Astrophysical Journal 721.2, pp. 1308– 1318. arXiv: 1002.4877 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Stam, D. M., Hovenier, J. W., and Waters, L. B. F. M. (2004). Using polarimetry to detect and characterize Jupiter-like extrasolar planets (cit. on p. 50). Cerca con Google

Stamnes, K., Tsay, S. C., Wiscombe, W., et al. (June 1988). “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media.” In: Applied optics 27.12, pp. 2502–2509 (cit. on p. 172). Cerca con Google

Strassmeier, K. G., Ilyin, I., Järvinen, A., et al. (May 2015). “PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope”. In: Astronomische Nachrichten 336, p. 324. arXiv: 1505.06492 [astro-ph.IM] (cit. on p. 11). Cerca con Google

Szentgyorgyi, A. H. and Furész, G. (June 2007). “Precision Radial Velocities for the Kepler Era”. In: Revista Mexicana de Astronomia y Astrofisica Conference Series. Ed. by S. Kurtz. Vol. 28. Revista Mexicana de Astronomia y Astrofisica Conference Series, pp. 129–133 (cit. on p. 11). Cerca con Google

Tackley, P. J., Ammann, M. M., Brodholt, J. P., et al. (2012). “Habitable Planets: Interior Dynamics and Long-Term Evolution”. In: Proceedings of the International Astronomical Union 8.293, pp. 339–349 (cit. on p. 41). Cerca con Google

Taylor, M. B. (Dec. 2005). “TOPCAT & STIL: Starlink Table/VOTable Processing Software”. In: Astronomical Data Analysis Software and Systems XIV. Ed. by P. Shopbell, M. Britton, and R. Ebert. Vol. 347. Astronomical Society of the Pacific Conference Series, p. 29 (cit. on p. 138). Cerca con Google

Tennyson, J., Yurchenko, S., Al-Refaie, A., et al. (2016). “The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres”. In: Journal of Molecular Spectroscopy 327. New Visions of Spectroscopic Databases, Volume II, pp. 73–94 (cit. on p. 159). Cerca con Google

Tinetti, G., Drossart, P., Eccleston, P., et al. (July 2016). “The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey)”. In: SPIE Proceedings. Vol. 9904. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 99041X (cit. on p. 20). Cerca con Google

Tinetti, G., Encrenaz, T., and Coustenis, A. (2013). “Spectroscopy of planetary atmospheres in our Galaxy”. In: Astron Astrophys Rev 21 (cit. on pp. 6, 7, 11). Cerca con Google

Toon, O. B., McKay, C. P., Ackerman, T. P., et al. (Nov. 1989). “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres”. In: Journal of Geophysical Research 94.89, pp. 287–301 (cit. on p. 178). Cerca con Google

Traub, W. and Oppenheimer, B. R. (2010). “Direct Imaging of Exoplanets”. In: Exoplanets, pp. 111–156 (cit. on pp. 21, 50). Cerca con Google

Tsapras, Y. (Sept. 2018). “Microlensing Searches for Exoplanets”. en. In: Geosciences 8.10. arXiv: 1810.02691, p. 365 (cit. on pp. 22, 23). Cerca con Google

Tsiaras, A., Waldmann, I. P., Tinetti, G., et al. (Sept. 2019). “Water vapour in the atmosphere of the habitable-zone eight Earth-mass planet K2-18 b”. In: arXiv e-prints, arXiv:1909.05218, arXiv:1909.05218. arXiv: 1909.05218 [astro-ph.EP] (cit. on p. 33). Cerca con Google

Udalski, A., Szymanski, M., Stanek, K. Z., et al. (Apr. 1994). “The Optical Gravitational Lensing Experiment. The Optical Depth to Gravitational Microlensing in the Direction of the Galactic Bulge”. In: Acta Astronomica 44, pp. 165–189. arXiv: astro-ph/9407014 [astro-ph] (cit. on p. 23). Cerca con Google

Valencia, D., Sasselov, D., and O’Connell (2007). “Radius and Structure Models of the First Super-Earth Planet”. In: The Astrophysical Journal 656, p. 545 (cit. on p. 38). Cerca con Google

Valencia, D., Sasselov, D., and O’Connell, R. J. (2007). “Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties?” In: The Astrophysical Journal 665.2, pp. 1413– 1420 (cit. on pp. 38, 39). Cerca con Google

Vasquez, M., Pallé, E., and Montanes Rodrigues, P. (2010). The Earth as a Distant Planet (cit. on pp. 38, 40, 43, 44, 80–84, 92). Cerca con Google

Venot, O. and Agúndez, M. (2015). “Chemical modeling of exoplanet atmospheres”. In: Experimental Astronomy 40.2-3, pp. 469–480 (cit. on p. 156). Cerca con Google

Viard, T., Mathieu, J. -C., Fer, Y., et al. (Nov. 2006). “The CoRoT Telescope”. In: The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding. Ed. by M. Fridlund, A. Baglin, J. Lochard, et al. Vol. 1306. ESA Special Publication, p. 187 (cit. on p. 20). Cerca con Google

Vladilo, G., Murante, G., Silva, L., et al. (Apr. 2013). “The Habitable Zone of Earth-like Planets with Different Levels of Atmospheric Pressure”. In: The Astrophysical Journal 767.1, 65, p. 65. arXiv: 1302.4566 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Vogt, S. S. and Donald Penrod, G. (1988). “HIRES: A High Resolution Echelle Spectrometer for the Keck 10-Meter Telescope”. In: Instrumentation for Ground-Based Optical Astronomy. Ed. by Lloyd B. Robinson. New York, NY: Springer New York, pp. 68–103 (cit. on p. 11). Cerca con Google

Vogt, S. S., Radovan, M., Kibrick, R., et al. (Apr. 2014). “APF—The Lick Observatory Automated Planet Finder”. In: PASP 126.938, p. 359. arXiv: 1402.6684 [astro-ph.IM] (cit. on p. 11). Cerca con Google

Wagner, K., Apai, D., Kasper, M., et al. (Aug. 2016). “Direct Imaging Discovery of a Jovian Exoplanet Within a Triple Star System”. In: Science 353.6300. arXiv: 1607.02525, pp. 673– 678 (cit. on p. 134). Cerca con Google

Wakelam, V., Herbst, E., Loison, J.C., et al. (2012). “A KInetic Database for Astrochemistry (KIDA)”. In: Physics (cit. on p. 156). Cerca con Google

Wayne, R. P. (2000). Chemistry of atmospheres: an introduction to the chemistry of the atmospheres of earth, the planets, and their satellites. Oxford University Press, p. 775 (cit. on pp. 63, 74). Cerca con Google

Wenger, M., Ochsenbein, F., Egret, D., et al. (Apr. 2000). “The SIMBAD astronomical database. The CDS reference database for astronomical objects”. In: A&As 143, pp. 9–22. eprint: astro-ph/0002110 (cit. on p. 123). Cerca con Google

Wildi, F., Blind, N., Reshetov, V., et al. (Sept. 2017). “NIRPS: an adaptive-optics assisted radial velocity spectrograph to chase exoplanets around M-stars”. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 10400. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 1040018 (cit. on p. 11). Cerca con Google

Winn, J. N. (2018). “Planet Occurrence: Doppler and Transit Surveys”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. Cham: Springer International Publishing, pp. 1–18 (cit. on p. 26). Cerca con Google

Winn, J. N. and Fabrycky, D. C. (2015). “The Occurrence and Architecture of Exoplanetary Systems”. In: Annual Review of Astronomy and Astrophysics 53.1, pp. 409–447 (cit. on p. 28). Cerca con Google

Wolszczan, A. and Frail, D. A. (Jan. 1992). “A planetary system around the millisecond pulsar PSR1257 + 12”. In: Nature 355, pp. 145–147 (cit. on pp. 24, 120). Cerca con Google

Wright, J. T. (2018). “Radial Velocities as an Exoplanet Discovery Method”. In: arXiv:1707.07983 [astro-ph]. arXiv: 1707.07983, pp. 619–631 (cit. on p. 10). Cerca con Google

Wright, J. T., Fakhouri, O., Marcy, G. W., et al. (2011). “THE EXOPLANET ORBIT DATABASE”. In: Astronomy & Astrophysics (cit. on pp. 103, 109). Cerca con Google

Zsom, A., Seager, S., de Wit, J., et al. (Dec. 2013). “Toward the Minimum Inner Edge Distance of the Habitable Zone”. In: The Astrophysical Journal 778.2, 109, p. 109. arXiv: 1304.3714 [astro-ph.EP] (cit. on p. 86). Cerca con Google

Webpages Cerca con Google

Jaadi, Zakaria (2005). A step by step explanation of Principal Component Analysis. URL: https://towardsdatascience.com/a-step-by-step-explanation-of-principal- component-analysis-b836fb9c97e2 (cit. on p. 202). Vai! Cerca con Google

ToolBox, Engineering (2005a). Carbon Dioxide - Specific Heat. URL: https://www.engineeringtoolbox. com/carbon-dioxide-d_974.html. Vai! Cerca con Google

– (2005b). Nitrogen - Specific Heat. URL: https://www.engineeringtoolbox.com/ nitrogen-d_977.html. Vai! Cerca con Google

– (2005c). Oxygen Gas - Specific Heat. URL: https://www.engineeringtoolbox.com/ oxygen-d_978.html. Vai! Cerca con Google

– (2005d). Water Vapor - Specific Heat. URL: https://www.engineeringtoolbox.com/ water-vapor-d_979.html. Vai! Cerca con Google

  Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record