Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cerminara, Giulia (2019) Optimized management of old municipal solid waste landfill with in-situ aeration technique. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di Dottorato in formato PDF) - Accepted Version
Thesis not accessible until 03 December 2039 for intellectual property related reasons.
Visibile to: nobody

6Mb

Abstract (italian or english)

La presente tesi di dottorato è stata focalizzata sulla gestione ottimizzata delle vecchie discariche per rifiuti solidi urbani (RSU). In particolare, si è ipotizzato di applicare la tecnica dell’aerazione in-situ all’interno di una vecchia discarica al fine di ridurre il potenziale impatto a lungo termine e massimizzare la rimozione dei composti del carbonio e dell’azoto. Precedenti studi hanno dimostrato l’efficacia dell’aerazione in-situ intermittente per il miglioramento della stabilità biologica di una discarica di rifiuti solidi urbani.
Considerandone dunque anche i vantaggi economici, l'aerazione in-situ è stata applicata in modalità intermittente e sono stati così valutati due principali aspetti:

1. La fattibilità del processo di denitrificazione in una vecchia discarica RSU caratterizzata da contenuto molto basso di carbonio organico biodegradabile, sfruttando le condizioni anossiche generate dall'aerazione intermittente. In particolare, è stata analizzata la capacità di un vecchio sistema discarica di ricorrere sia alla via eterotrofa che a quella autotrofa per la rimozione dei nitrati, a seconda del substrato disponibile;
2. I possibili effetti dell’aerazione intermittente sul potenziale rilascio dei metalli pesanti in fase liquida ed il loro comportamento nel percolato e nel rifiuto solido, considerando la possibile influenza della tecnica dell’aerazione in-situ sulle condizioni interne del sistema discarica.

Un ulteriore esperimento è stato condotto per valutare un aumento della rimozione della sostanza organica residua in una vecchia discarica RSU, accoppiando l’aerazione in-situ alla tecnologia a celle combustibili microbiche (MFC) al fine di sfruttare i vantaggi di entrambi.
Tutti gli aspetti sono stati analizzati durante numerosi test in scala di laboratorio mediante l’impiego di reattori di simulazione di discarica.
I risultati dell’attività di ricerca possono essere riassunti come segue:
Il processo di denitrificazione non sembra essere inibito all’interno di una vecchia discarica per RSU, in quanto i nitrati possono essere rimossi per via eterotrofa e/o autotrofa a seconda della tipologia di substrato disponibile nel sistema. Sebbene la via eterotrofa possa essere considerata preferenziale, quando la sostanza organica biodegradabile non risulta disponibile o è prossima allo zero, la rimozione dei nitrati può avvenire in modo autotrofo, anche se più lentamente.
I risultati relativi ai test effettuati sui metalli pesanti nel percolato e nel rifiuto solido sembrano confermare il ruolo dominante del meccanismo di adsorbimento all’interno del sistema discarica, che ha ridotto il rilascio di metalli pesanti nel percolato dopo l'aerazione e ha mantenuto piuttosto costante il contenuto di metalli nel rifiuto solido. Conseguentemente, i metalli pesanti non sembrano costituire un fattore di rischio a seguito dell’aerazione in-situ in discarica.
I risultati preliminari relativi l’integrazione della tecnologia MFC con i reattori di simulazione di discarica hanno evidenziato alcuni aspetti critici del sistema, quali la debolezza del materiale catodico, la grande influenza della modalità di ricircolo del percolato sulle prestazioni dell'intero sistema e la scelta ottimale del flusso di aerazione necessario per mantenere aerato il compartimento catodico.
Queste considerazioni evidenziano la necessità di modificare la configurazione MFC all'interno dei reattori di simulazione di discarica.
La presente tesi di dottorato è divisa in due parti principali. Nella prima parte sono sintetizzati l’attività di ricerca svolta ed i principali risultati. La seconda parte descrive in dettaglio tutti gli esperimenti e i relativi risultati, riportando gli articoli scritti durante il corso di dottorato.

Abstract (a different language)

The Ph.D. research project was focused on the optimized management of old municipal solid waste (MSW) landfills. In particular, it was supposed to apply the in-situ aeration technique within an old landfill in order to reduce the long-term pollution potential and to maximize the removal of nitrogen and carbon compounds. Previous studies proved that intermittent in-situ aeration is an effective tool to improve the biological stability of a MSW landfill.
Considering the economic advantages, the in-situ aeration technique was applied in an intermittent way; two main aspects, not still well understood were considered:

1. the occurrence of denitrification process in old MSW landfills characterized by very low biodegradable organic carbon content, taking advantage of the anoxic conditions of the intermittent aeration. In particular, it was analysed the capacity of an old landfill system to exploit both the heterotrophic and autotrophic pathway for nitrogen removal, according to the available substrate;
2. the possible effects of the intermittent aeration on the potential release of heavy metals into the liquid phase and their behaviour both in the leachate and in the solid waste material, considering that the application of in-situ aeration technique may affect the internal conditions of the landfill system.

A further lab-scale experiment was carried out to evaluate the increase of the in-situ aeration efficiency to remove the residual organic carbon within an old landfill. The in-situ aeration was coupled with the microbial fuel cells (MFCs) technology in order to exploit the advantages of both of them.
All aspects have been evaluated during several lab-scale tests by means of landfill simulating bioreactors.
Results of all experiments carried out during the Ph.D. Course can be summarized as follows.
Denitrification process does not seem to be limited in a very old MSW landfill as it can occur in a heterotrophic and/or autotrophic way according to the kind of available substrate.
Although the heterotrophic pathway can be considered the preferred one, when the biodegradable organic matter is not available or it is close to zero, nitrate can be removed in a autotrophic way, even if more slowly.
The results of the experiments on the behaviour of heavy metals in the leachate and in the solid waste matrix seem to confirm the dominant role of adsorption mechanism within the landfill system that reduces the release of heavy metals in the leachate after aeration and keeps quite constant the metals content in the solid waste material. Therefore, heavy metals in landfill leachate do not seem a major concern in case of in-situ aeration.
The preliminary results of the integration of MFCs with landfill bioreactors pointed out some critical aspects of the system, such as the weakness of the cathode material, the great influence of the leachate recirculation mode on the performance of the whole system and the optimal choice of the aeration flux required to keep the cathodic compartment aerated. These considerations highlight the need of slightly modify the configuration of the MFC system within the landfill simulation reactors.
The present Ph.D. thesis includes the description of the research activities with the related results and it is divided in two main parts.
In the first part, named “Thesis development” the Ph.D. research activity and the main results are briefly summarized. The second part, named “List of Papers” describes in details all the experiments and the related results, listing all the papers written during the Ph.D. course.

EPrint type:Ph.D. thesis
Tutor:Raga, Roberto
Ph.D. course:Ciclo 32 > Corsi 32 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:27 November 2019
Anno di Pubblicazione:02 December 2019
Key Words:Aerazione, in-situ, discarica, landfill, management, aeration, denitrification, heavy metals,
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/03 Ingegneria sanitaria-ambientale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:12112
Depositato il:25 Jan 2021 08:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abu-Daabes, M., Qdais, H.A., Alsyouri, H., (2013). Assessment of Heavy Metals and Organics in Municipal Solid Waste Leachates from Landfills with Different Ages in Jordan. Journal of Environmental Protection 4, 344-352; Cerca con Google

Aulin, C., Neretnieks, I., (1995). Material balance fora n industrial landfill. In Proceedings Sardinia 1995, Fifth International Waste Management and Landfill Symposium, Volume III. S. Margherita di Pula, Cagliari, Italy; 2-6 October 1995; Cerca con Google

Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J.K., Umar, M., (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management 91, 2608-2614; Cerca con Google

Barlaz, M.A., Bareither, C.A., Hossain, A., Saquing, J., Mezzari, I., Benson, C.H., Tolaymat, T.M.m Yazdani, R., (2010). Performance of North American bioreactor landfills. II: chemical and biological chatacteristics. Journal of Environmental Engineering 136, 839-853; Cerca con Google

Baun, D.L., Christensen, T.H., (2004). Speciation of heavy metals in landfill leachate: a review. Waste Management and Research 22(1), 3-23; Cerca con Google

Berge, N., Reinhart, D., Townsend, T.G., (2005). The Fate of Nitrogen in Bioreactors Landfills. Critical Reviews in Environmental Science and Technology 35, 365 - 399; Cerca con Google

Berge, N.D., Reinhart, D.R., Dietz, J., Townsend, T.G., (2006). In situ ammonia removal in bioreactor landfill leachate. Waste Management 26, 334-343; Cerca con Google

Bozkurt, S., Moreno, L., Neretnieks, I., (1999). Long-term fate of organics in waste deposits and its effect on metal release. Science of Total Environment 228. 135; Cerca con Google

Campos, J.L., Carvalho, S., Portela, R., Mosquera-Corral, A., Méndez, R., (2008). Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology 99, 1293-1299. Cerca con Google

CEN (2002). NEN-EN 12457-4:2002en. Compliance test for leaching of granular waste materials and sludges. Cerca con Google

Chai, X., Hao, Y., Liu, G., Zhao, X., Zhao, Y., (2013a). Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment. Chemosphere 91, 1058-1063; Cerca con Google

Chai, X., Hao, Y., Liu, G., Li, Z., Zhao, Y., (2013b). The effects of aerobic conditions on the complexation ability between mercury and humic acid from landfill leachate and its implication for the environment. Chemosphere 92, 458-463; Cerca con Google

Chen, Y.C., Wu, S.W., Wu, W.X., Sun, H., Ding, Y., (2009). Denitrification capacity of bioreactors filled with refuse at different landfill ages. Journal of Hazardous Materials 172, 159-165; Cerca con Google

Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., (2001). Biogeochmistry of landfill leachate plumes. Applied Geochemistry 16 (7-8), 659-718; Cerca con Google

Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., Bae, W., (2014). Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research 58, 168-178; Cerca con Google

Chung, J., Kim, S., Baek, S., Lee, N.-H., Park, S., Lee, J., Lee, H., Bae, W., (2015). Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study. J. Hazard. Mater. 285, 436–444. doi:10.1016/j.jhazmat.2014.12.013; Cerca con Google

Di Capua, F., Ahoranta, S.H., Papirio, S., Lens, P.N.L., Esposito, G., (2016). Impacts of sulphur source and temperature on sulphur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry 51, 1576-1584; Cerca con Google

Do, M.H., Ngo, H.H., Guo, W.S., Liu, Y., Chang, S.W., Nguyen, D.D., Nghiem, L.D., NI, B.J., (2018). Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of the Total Environment 639, 910-920; Cerca con Google

Du, Z., Li, H., Gu, T., (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25, 464-482; Cerca con Google

Ehrig, H.-J., (1983). Quality and quantity of sanitary landfill leachate. Waste Management Resource 1, 53-68; Cerca con Google

Ehrig, H.-J., (1988). Water and element balances of Landfills, in The Landfill, Baccini, P., Ed., Springer Verlag, Berlin, Germany, 1988. (Lecture Notes in Earth Sciences, Vol. 20); Cerca con Google

Erses A.S., Onay, T.T., (2003). In situ heavy metal attenuation in landfills under methanogenic conditions. Journal of Hazardous Materials 99, 159-175; Cerca con Google

Erses, S.A., Fazal, M.A., Onay, T.T., Craig, W.H., (2005). Determination of solid waste sorption capacity for selected heavy metals in landfills, Journal of Hazardous Materials B121, 223-232; Cerca con Google

Flyhammar, P., (1995). Analysis of the cadmium flux in Sweden with special emphasis on landfill leachate. Journal of Environmental Quality 24, 612; Cerca con Google

Flyhammar, P., Tamaddon, F., Bengtsson, L., (1998). Heavy metals in a solid waste deposition cell. Waste Management Resource 16, 403-410; Cerca con Google

Flyhammar, P., Håkansson, K., (1999). The release of heavy metals in stabilised MSW by oxidation. The Science of the Total Environment 243/244, 291-303; Cerca con Google

Gálvez, A., Greenman, J., Ieropoulos, I., (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology 100, 5085-5091; Cerca con Google

Gude, V.G., (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production 122, 287-307; Cerca con Google

Hassan, M., Wei, H., Qiu, H., Jaafry, S.W.H., Su, Y., (2018). Power generation and pollutants removal from landfill leachate in microbial fuel cell: variation and influence of anodic microbiomes. Bioresource Technology 247, 434-442; Cerca con Google

He, P.-J., Xue, J.-F., Shao, L.-M., Li, G.-J., Lee, D.-J., (2006). Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill. Water Research 40, 1465-1473; Cerca con Google

He, P.-J., Xiao, Z., Shao, L.-M., Yu, J.-Y., Lee, D.-J., (2006b). In situ distribution and characteristivs of heavy metals in full-scale landfill layers. Journal of Hazardous Materials B137, 1385-1394; Cerca con Google

He, Z., Huang, Y., Manohar, A.K., Mansfeld, F., (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74, 78e82. https://doi.org/10.1016/j.bioelechem.2008.07.007; Vai! Cerca con Google

He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., Wang, Z., (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews 71, 388-403; Cerca con Google

Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., Van Loosdrecht, M.C.M., Heijnen, J.J., (1998). The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 135–142; Cerca con Google

Hogland, W., Marques, M., Nimmermark, S., (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management; Cerca con Google

Hu, J., Zhang, Q., Lee, D.-J., Ngo, H. H., 2018. Feasible use of microbial fuel cells for pollution treatment. Renewable Energy 129, 824-829; Cerca con Google

Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., Kihl, A., (2016). Characterization of excavated fine fraction and waste composition from a swedish landfill. Waste Management & Research 34 (12), 1292-1299; Cerca con Google

Jensen, D.L., Christensen, T.H., (1999). Colloidal and dissolved metals in leachates from four Danish landfills. Water Research 33 (9), 2139-2147; Cerca con Google

Kjeldsen, P., Christophersen, M., (2001). Composition of leachate from old landfills in Denmark. Waste Management and Research 19(3), 249-256; Cerca con Google

Kjeldsen P., Barlaz M.A., Rooker A.P., Baun A., Ledin A. and Christensen T.H., (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology 32, 297-336; Cerca con Google

Klein, T., Niessner, R., (1998). Characterization of heavy-metal containing seepage water colloids by flow FFF, ultrafiltration, ELISA ans AAS. Microchimica Acta 129 (1-2), 47-55; Cerca con Google

Koening, A., Liu, L. H., (2001). Kinetic model of autrotophic denitrification in sulphur packed-bed reactors. Water Research 35(8), 1969-1978; Cerca con Google

Kristanto, G.A., Rialdi, H., Gusniani, I., (2017). Nitrogen removal from landfill leachate via ex-situ nitrification and in-situ denitrification in laboratory scale bioreactor. Procedia Engineering 171, 425-433; Cerca con Google

Kruempelbeck, I., Ehrig, H.-J., (1999). Long-term behaviour of municipal solid waste landfills in Germany, in Sardinia '99, Seventh International Waste Management and Landfill Symposium, 4-8 October, S. Margherita di Pula, Cagliari, Proceedings vol. 1, Christensen, T.H., Cossu, R. and Stegmann, R. Eds., CISA - Environmental Sanitary Engineering Centre, Cagliari, Italy, (1999), 27; Cerca con Google

Long, Y., Hu, L.-F., Shen, D.-S., (2009). Nitrogen transformation in the hybrid bioreactor landfill. Bioresource Technology 100, 2527-2533; Cerca con Google

Lu, J.C.S., Eichenberger, B., Stearns, R.J., (1985). Leachate from Municipal Landfills, Production and Management. Noyes Publications, Park Ridge, NJ; Cerca con Google

Mårtensson, A.M., Aulin, C., Wahlberg, O., Agren, S., (1999). Effect of humic substances on the mobility of toxic metals in a mature landfill. Waste Management and Research 17, 296–304; Cerca con Google

Marzorati, S., Schievano, A., Colombo, A., Lucchini, G., Cristiani, P., (2018). Ligno-cellulosic materials as air-water separators in low-tech microbial fuel cells for nutrients recovery. Journal of Cleaner Production 170, 1167-1176. Cerca con Google

Morello, L., Raga, R., Sgarbossa, P., Rosson, E., Cossu, R., (2018). Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment. Waste Management 75, 372 - 383; Cerca con Google

Nguyen, H.T.H., Kakarla, R., Min, B., (2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. International Journal of Hydrogen Energy 42, 29433-29442; Cerca con Google

Oh, S.E., Bum, M.S., Yoo, Y.B., Zubair, A., Kim, I.S., (2002). Nitrate removal by simultaneous sulfur utilizing autothrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments. Water Science and Technology 47(1), 237-244; Cerca con Google

Øygard, J.K., Måge, A., Gjengedal, E., (2004). Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Research 38, 2851-2858; Cerca con Google

Øygard, J.K., Gjengedal, E., Røyset, O., (2007). Size charge fractionation of metals in municipal solid waste landfill leachate. Water research 41, 47-54; Cerca con Google

Park, J.-H., Kim, S.-H., Delaune, R.D., Cho, J.-S., Heo, J.-S., Ok, Y.S., Seo, D.-C., (2015). Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentration. Agricultural Water Management 162, 1-14; Cerca con Google

Peng, W., Lü, F., Shao, L., He, P., (2015). Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia. Appl. Microbiol. Biotechnol. 99, 3317–3326. doi:10.1007/s00253-015-6432-5; Cerca con Google

Peng, W., Pivato, A., (2017). Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste and Biomass Valorization. in press. doi:10.1007/s12649-017-0071-2; Cerca con Google

Puig, S., Serra, M., Coma, M., Cabré, M., Dolors Balaguer, M., Colprim, J., (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials 185, 763-767; Cerca con Google

Qu, X., He, P.-J., Shao, L.-M., Lee, D.-J., (2008). Heavy metals mobility in full-scale bioreactor landfill initial stage. Chemosphere 70, 769-777; Cerca con Google

Rabaey, K., Verstraete, W., (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology 23, 291-298; Cerca con Google

Robinson, H.D., (1995). The technical aspects of controlled waste management. A review of the composition of leachates from domestic wastes in landfill sites. Report for the UK Department of the Environment. Waste Science and Research, Aspinwall & Company, Ltd., London, UK, 1995; Cerca con Google

Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J., Buisman, C.J.N., (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26, 450-459; Cerca con Google

Santini, M., Marzorati, S., Fest-Santini, S., Trasatti, S., Cristiani, P., 2017. Carbonate scale deactivating the biocathode in a microbial fuel cell. J. Power Sour. 356, 400e407. Cerca con Google

https://doi.org/10.1016/j.jpowsour.2017.02.088; Vai! Cerca con Google

Saveyn, H., Eder, P., (2014). End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Publ. Off. Eur. Union, Luxemb. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC87124/eow%20biodegradable%20waste%20final%20report.pdf (accessed 08/04/2018); Vai! Cerca con Google

Schroth, B.K., Sposito, G., (1998). Effect of landfill leachate organic acids on trace metal adsorption by kaolinite. Environmental Science and Technology 32, 1404–1408; Cerca con Google

Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., Field, J.A., (2007). Chemolithotrophic denitrification with elemental sulfur for groundwater treatment.Water Research 41 (6), 1253-1262; Cerca con Google

Slack, R.J., Gronow, J.R., Voulvoulis, N., (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of Total Environment 337, 119-137; Cerca con Google

Sonawane, J.M., Adeloju, S.B., Ghosh, P.C., (2017). Landfill leachate: a promising substrate for microbial fuel cells. International Journal of Hydrogen Energy 42, 23794-23798; Cerca con Google

Sponza, D.T., Agdag, O.N., 2004. Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry 39, 2157–2165. Cerca con Google

Sun, F., Wu, S., Liu, J., Li, B., Chen, Y., Wu, W., (2012). Denitification capacity of a landfilled refuse in response to the variations of COD/NO3-N in the injected leachate. Bioresource Technology 103, 109-115; Cerca con Google

Sun, F., Sun, B., Li, Q., Deng, X., Hu, J., Wu, W., (2014). Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor. Chemosphere 101, 77-85; Cerca con Google

Sun, X., Zhang, H., Cheng, Z., Wang, S., (2017). Effects of low aeration rate on simultaneous nitrification and denitrification in an intermittent aeration aged refuse bioreactor treating leachate. Waste Management 63, 410-416; Cerca con Google

Trouve, C., Chazal, P.M., Gueroux, B., Sauvaitre, N., (1998). Denitrification by new strains of Thiobacillus denitrificans under non-standard physicochemical conditions. Effect of temperature, pH, and sulphur source. Environmental Technology 19, 601-610; Cerca con Google

Vigneron, V., Ponthieu, M., Barina, G., Audic, J.-M., Duquennoi, C., Mazéas, L., Bernet, N., Bouchez, T. (2007). Nitrate and nitrite injection during municipal solid waste anaerobic biodegration. Waste Management 27(6), 778-791; Cerca con Google

Virdis, B., Rabaey, K., Yuan, Z., Keller, J., (2008). Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research 42, 3013-3024; Cerca con Google

Wu, W., Hao, Y., Ding, Y., Chen, Y., (2009). Denitrification capacity in response to increasing nitrate loads and decreasing organic carbon contents in injected leachate of a simulated landfill reactor. Process Biochemistry 44, 486-48; Cerca con Google

Wu, L., Zhang, L., Xu, Y., Liang, C., Kong, H., Shi, X., Peng, Y., (2016). Advanced nitrogen removal using bio-refractory organics as carbon source for biological treatment of landfill leachate. Sep. Purif. Technol. 170, 306–313. doi:10.1016/j.seppur.2016.06.033; Cerca con Google

Wu, D., Lü, F., Shao, L., He, P., (2017). Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: Use of intact polar lipid analysis for microbes monitoring to enhance process evaluation. Renew. Energy. 103, 38–48; doi:10.1016/j.renene.2016.11.016 Cerca con Google

Xie, S., Ma, Y., Strong, P.J., Clarke, W.P., (2015). Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms. Journal of Hazardous Materials, 299, 577-583. Cerca con Google

Yamamoto-Ikemoto, R., Komori, T., Nomura, M., Matsukami, T., (2000). Nitrogen removal from hydroponic culture wastewater by autotrophic denitrification using thiosulphate. Water Science Technology 42 (3-4), 369-376; Cerca con Google

You, S.J., Zhao, Q.L., Jiang, J.Q., Zhang, J.N., Zhao, S.Q., (2006). Sustainable Approach for Leachate Treatment: Electricity Generation in Microbial Fuel Cell. Journal of Environmental Science and Health Part A, 41: 2721-2734; Cerca con Google

Zhang, S., Peng, Y., Wang, S., Zheng, S., Guo, J., (2007). Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate. J. Environ. Sci. 19, 647–651. doi:10.1016/S1001-0742(07)60108-9; Cerca con Google

Zhou, W., Liu, X., Dong, X., Wang, Z., Yuan, Y., Wang, H., He, S., (2016). Sulfur-based autotrophic denitrification from the micro-polluted water. Journal of Environmental Sciences 44, 180-188; Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record