Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

De Lazzari, Federica (2019) Exploring the physiological functions of the protein DJ-1 in redox homeostasis. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di Dottorato )
Thesis not accessible until 02 December 2022 for intellectual property related reasons.
Visibile to: nobody

3267Kb

Abstract (italian or english)

Reactive oxygen and nitrogen species, collectively called RONS, are crucial molecules involved in multiple beneficial functions at the physiological level. However, RONS can assume detrimental roles at higher concentrations.
Among the different cellular sources of RONS, mitochondria play a central role, in particular, when they are not properly functioning. In fact, a defective mitochondrial homeostasis has been recurrently associated with many pathological states, such as neurodegenerative diseases. In this scenario, the anti-oxidant defence exerts a pivotal role in counteracting the damaging effects of RONS. Among the different anti-oxidant molecules, superoxide dismutases (SODs) are often considered as the first line of defence due to their ability to eliminate superoxide anions, from which more harmful species can arise. In recent years, mounting evidence is highlighting the protective role of the Parkinson’s disease-associated protein DJ-1 against redox alterations. In fact, various reports have reported the participation of the protein in the anti-oxidant protection under different oxidative conditions, including exposure to exogenous pro-oxidants and ischemia-reperfusion injury. Nonetheless, the exact mechanism of action of DJ-1 has not been completely clarified yet.
In light of the aforementioned considerations, our project focused on the elucidation of the physiological functions of the protein in vivo. To this aim, we exploited Drosophila melanogaster as a model organism, using fruit flies lacking the expression of the fly DJ-1 homologue.
The loss of DJ-1 does not affect lifespan but results in mild locomotor dysfunctions. Moreover, the absence of the protein appears to influence the cristae morphology, supporting that the protein could play a role at the mitochondrial level. Therefore, we then explored the consequences of DJ-1 loss of function in the mitochondrial homeostasis, under basal and oxidative conditions. Our study showed that the absence of DJ-1 impairs mitochondrial functionality and morphology, especially, under oxidative stimuli. Furthermore, although not affecting the total levels of ATP, DJ-1 null flies are more sensitive to starvation than controls, suggesting a dysregulation in the mobilisation of the energetic storages.
We also set up the experimental conditions to investigate the fly metabolic response to anoxia, through the evaluation of succinate accumulation and ATP depletion, laying the ground for future experiments focused on the fly metabolic response to anoxia and on the role of DJ-1 in this pathway.
A second part of the project was dedicated to the exploration of the involvement of DJ-1 in the SOD1 maturation pathway, which is normally accomplished by a dedicated copper chaperone, named CCS. Nevertheless, a residual activity has been described in the absence of CCS, supporting the existence of a CCS-independent pathway. Our group has found that human DJ-1 can bind and transfer copper to SOD1, rendering the enzyme active in vitro, suggesting a role of DJ-1 in the alternative activation of SOD1. To investigate this pathway in vivo, we overexpressed or silenced the expression of DJ-1, under the absence of the fly CCS homologue.
Our results evidenced that DJ-1 is essential under the absence of CCS and that the ubiquitous overexpression of DJ-1 in CCS null background seems to rescue SOD1 protein levels. Since fly SOD1 is unstable in the absence of CCS, this data may suggest a possible participation of DJ-1 in the maturation of the enzyme, though further confirmation is required.
Overall, with this project, we contributed to add some pieces of information concerning the anti-oxidant role of DJ-1 in vivo. In accordance with the multifaceted nature of the protein, our data indicate that DJ-1 may exert its protective activity acting at different levels, ranging from the maintenance of the mitochondrial homeostasis to the possible activation of the anti-oxidant enzyme SOD1.


EPrint type:Ph.D. thesis
Tutor:Bisaglia, Marco
Ph.D. course:Ciclo 32 > Corsi 32 > BIOSCIENZE > BIOLOGIA CELLULARE E FISIOLOGIA
Data di deposito della tesi:30 November 2019
Anno di Pubblicazione:30 November 2019
Key Words:DJ-1, redox homeostasis, Drosophila melanogaster
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/09 Fisiologia
Struttura di riferimento:Centri > Centro Interdipartimentale di servizi A. Vallisneri
Dipartimenti > Dipartimento di Biologia
Codice ID:12174
Depositato il:25 Jan 2021 10:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdel-Aleem, G.A., Khaleel, E.F., Mostafa, D.G., Elberier, L.K., 2016. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch. Physiol. Biochem. 122, 200–213. https://doi.org/10.1080/13813455.2016.1182190 Vai! Cerca con Google

Acehan, D., Vaz, F., Houtkooper, R.H., James, J., Moore, V., Tokunaga, C., Kulik, W., Wansapura, J., Toth, M.J., Strauss, A., Khuchua, Z., 2011. Cardiac and Skeletal Muscle Defects in a Mouse Model of Human Barth Syndrome. J. Biol. Chem. 286, 899–908. https://doi.org/10.1074/jbc.M110.171439 Vai! Cerca con Google

Adams, M.D., 2000. The Genome Sequence of Drosophila melanogaster. Science 287, 2185–2195. https://doi.org/10.1126/science.287.5461.2185 Vai! Cerca con Google

Aguirre, J., Lambeth, J.D., 2010. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic. Biol. Med. 49, 1342–1353. https://doi.org/10.1016/j.freeradbiomed.2010.07.027 Vai! Cerca con Google

Albrecht, S.C., Barata, A.G., Großhans, J., Teleman, A.A., Dick, T.P., 2011. In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis. Cell Metab. 14, 819–829. https://doi.org/10.1016/j.cmet.2011.10.010 Vai! Cerca con Google

Allard, L., 2005. PARK7 and Nucleoside Diphosphate Kinase A as Plasma Markers for the Early Diagnosis of Stroke. Clin. Chem. 51, 2043–2051. https://doi.org/10.1373/clinchem.2005.053942 Vai! Cerca con Google

Allen, S., Badarau, A., Dennison, C., 2012. Cu(I) Affinities of the Domain 1 and 3 Sites in the Human Metallochaperone for Cu,Zn-Superoxide Dismutase. Biochemistry 51, 1439–1448. https://doi.org/10.1021/bi201370r Vai! Cerca con Google

Allocca, M., Zola, S., Bellosta, P., 2018a. The Fruit Fly, Drosophila melanogaster: The Making of a Model (Part I), in: Perveen, F.K. (Ed.), Drosophila Melanogaster - Model for Recent Advances in Genetics and Therapeutics. InTech. https://doi.org/10.5772/intechopen.72832 Vai! Cerca con Google

Allocca, M., Zola, S., Bellosta, P., 2018b. The Fruit Fly, Drosophila melanogaster: Modeling of Human Diseases (Part II), in: Perveen, F.K. (Ed.), Drosophila Melanogaster - Model for Recent Advances in Genetics and Therapeutics. InTech. https://doi.org/10.5772/intechopen.73199 Vai! Cerca con Google

Andretic, R., Kim, Y.-C., Jones, F.S., Han, K.-A., Greenspan, R.J., 2008. Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc. Natl. Acad. Sci. 105, 20392–20397. https://doi.org/10.1073/pnas.0806776105 Vai! Cerca con Google

Aradska, J., Bulat, T., Sialana, F.J., Birner-Gruenberger, R., Erich, B., Lubec, G., 2015. Gel-free mass spectrometry analysis of Drosophila melanogaster heads. PROTEOMICS 15, 3356–3360. https://doi.org/10.1002/pmic.201500092 Vai! Cerca con Google

Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T., Iguchi-Ariga, S.M.M., 2013. Neuroprotective Function of DJ-1 in Parkinson’s Disease. Oxid. Med. Cell. Longev. 2013, 1–9. https://doi.org/10.1155/2013/683920 Vai! Cerca con Google

Armstrong, G.A.B., Xiao, C., Krill, J.L., Seroude, L., Dawson-Scully, K., Robertson, R.M., 2011. Glial Hsp70 Protects K+ Homeostasis in the Drosophila Brain during Repetitive Anoxic Depolarization. PLoS ONE 6, e28994. https://doi.org/10.1371/journal.pone.0028994 Vai! Cerca con Google

Azad, P., Zhou, D., Russo, E., Haddad, G.G., 2009. Distinct Mechanisms Underlying Tolerance to Intermittent and Constant Hypoxia in Drosophila melanogaster. PLoS ONE 4, e5371. https://doi.org/10.1371/journal.pone.0005371 Vai! Cerca con Google

Bacon, N.C., Wappner, P., O’Rourke, J.F., Bartlett, S.M., Shilo, B., Pugh, C.W., Ratcliffe, P.J., 1998. Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Cerca con Google

Biochem. Biophys. Res. Commun. 249, 811–816. https://doi.org/10.1006/bbrc.1998.9234 Vai! Cerca con Google

Banci, L., Bertini, I., Cantini, F., Kozyreva, T., Massagni, C., Palumaa, P., Rubino, J.T., Zovo, K., 2012. Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc. Natl. Acad. Sci. 109, 13555–13560. https://doi.org/10.1073/pnas.1207493109 Vai! Cerca con Google

Bárcena, C., Mayoral, P., Quirós, P.M., 2018. Mitohormesis, an Antiaging Paradigm, in: International Review of Cell and Molecular Biology. Elsevier, pp. 35–77. https://doi.org/10.1016/bs.ircmb.2018.05.002 Vai! Cerca con Google

Becker, A., Schlöder, P., Steele, J.E., Wegener, G., 1996. The Cerca con Google

regulation of trehalose metabolism in insects. Experientia 52, 433–439. https://doi.org/10.1007/BF01919312 Vai! Cerca con Google

Bellen, H.J., Levis, R.W., He, Y., Carlson, J.W., Evans-Holm, M., Bae, E., Kim, J., Metaxakis, A., Savakis, C., Schulze, K.L., Hoskins, R.A., Spradling, A.C., 2011. The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities. Genetics 188, 731–743. https://doi.org/10.1534/genetics.111.126995 Vai! Cerca con Google

Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., Taylor, R.W., Turnbull, D.M., 2006. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517. https://doi.org/10.1038/ng1769 Vai! Cerca con Google

Bijur, G.N., Jope, R.S., 2003. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation: Translocation of Akt into mitochondria. J. Neurochem. 87, 1427–1435. https://doi.org/10.1046/j.1471-4159.2003.02113.x Vai! Cerca con Google

Biosa, A., Sanchez-Martinez, A., Filograna, R., Terriente-Felix, A., Alam, S.M., Beltramini, M., Bubacco, L., Bisaglia, M., Whitworth, A.J., 2018. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Hum. Mol. Genet. 27, 1618–1629. https://doi.org/10.1093/hmg/ddy069 Vai! Cerca con Google

Biosa, A., Sandrelli, F., Beltramini, M., Greggio, E., Bubacco, L., Bisaglia, M., 2017. Recent findings on the physiological function of DJ-1: Beyond Parkinson’s disease. Neurobiol. Dis. 108, 65–72. https://doi.org/10.1016/j.nbd.2017.08.005 Vai! Cerca con Google

Bisaglia, M., Filograna, R., Beltramini, M., Bubacco, L., 2014. Are dopamine derivatives implicated in the pathogenesis of Parkinson’s disease? Ageing Res. Rev. 13, 107–114. https://doi.org/10.1016/j.arr.2013.12.009 Vai! Cerca con Google

Bisaglia, M., Greggio, E., Beltramini, M., Bubacco, L., 2013. Cerca con Google

Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson’s disease therapies. FASEB J. 27, 2101–2110. https://doi.org/10.1096/fj.12-226852 Vai! Cerca con Google

Björkblom, B., Adilbayeva, A., Maple-Grødem, J., Piston, D., Ökvist, M., Xu, X.M., Brede, C., Larsen, J.P., Møller, S.G., 2013. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity. J. Biol. Chem. 288, 22809–22820. https://doi.org/10.1074/jbc.M113.482091 Vai! Cerca con Google

Bonifati, V., 2003. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 299, 256–259. https://doi.org/10.1126/science.1077209 Vai! Cerca con Google

Bose, A., Beal, M.F., 2016. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 216–231. https://doi.org/10.1111/jnc.13731 Vai! Cerca con Google

Boutilier, R.G., St-Pierre, J., 2000. Surviving hypoxia without really dying. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 126, 481–490. https://doi.org/10.1016/S1095-6433(00)00234-8 Vai! Cerca con Google

Brand, A.H., Perrimon, N., 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Dev. Camb. Engl. 118, 401–415. Cerca con Google

Braunersreuther, V., Montecucco, F., Ashri, M., Pelli, G., Galan, K., Frias, M., Burger, F., Quinderé, A.L.G., Montessuit, C., Krause, K.-H., Mach, F., Jaquet, V., 2013. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 64, 99–107. https://doi.org/10.1016/j.yjmcc.2013.09.007 Vai! Cerca con Google

Bunik, V.I., Sievers, C., 2002. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species: Radicals upon oxidation of 2-oxo acids. Eur. J. Biochem. 269, 5004–5015. https://doi.org/10.1046/j.1432-1033.2002.03204.x Vai! Cerca con Google

Burté, F., Carelli, V., Chinnery, P.F., Yu-Wai-Man, P., 2015. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24. https://doi.org/10.1038/nrneurol.2014.228 Vai! Cerca con Google

Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O.M., 1977. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180, 248–257. https://doi.org/10.1016/0003-9861(77)90035-2 Vai! Cerca con Google

Calì, T., Ottolini, D., Soriano, M.E., Brini, M., 2015. A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum. Mol. Genet. 24, 1045–1060. https://doi.org/10.1093/hmg/ddu519 Vai! Cerca con Google

Campbell, J.B., Andersen, M.K., Overgaard, J., Harrison, J.F., 2018. Paralytic hypo-energetic state facilitates anoxia tolerance despite ionic imbalance in adult Drosophila melanogaster. J. Exp. Biol. 221, jeb177147. https://doi.org/10.1242/jeb.177147 Vai! Cerca con Google

Campbell, J.B., Werkhoven, S., Harrison, J.F., 2019. Metabolomics of anoxia tolerance in Drosophila melanogaster : evidence against substrate limitation and for roles of protective metabolites and paralytic hypometabolism. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 317, R442–R450. https://doi.org/10.1152/ajpregu.00389.2018 Vai! Cerca con Google

Canet-Avilés, R.M., Wilson, M.A., Miller, D.W., Ahmad, R., McLendon, C., Bandyopadhyay, S., Baptista, M.J., Ringe, D., Petsko, G.A., Cookson, M.R., 2004a. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. 101, 9103–9108. https://doi.org/10.1073/pnas.0402959101 Vai! Cerca con Google

Cao, J., Chen, X., Ying, M., He, Q., Yang, B., 2017. DJ-1 as a Therapeutic Target Against Cancer, in: Ariga, H., Iguchi-Ariga, S.M.M. (Eds.), DJ-1/PARK7 Protein. Springer Singapore, Singapore, pp. 203–222. https://doi.org/10.1007/978-981-10-6583-5_13 Vai! Cerca con Google

Carelli, V., Musumeci, O., Caporali, L., Zanna, C., La Morgia, C., Del Dotto, V., Porcelli, A.M., Rugolo, M., Valentino, M.L., Iommarini, L., Maresca, A., Barboni, P., Carbonelli, M., Trombetta, C., Valente, E.M., Patergnani, S., Giorgi, C., Pinton, P., Rizzo, G., Tonon, C., Lodi, R., Avoni, P., Liguori, R., Baruzzi, A., Toscano, A., Zeviani, M., 2015. Syndromic parkinsonism and dementia associated with OPA 1 missense mutations: OPA1 Mutations. Ann. Neurol. 78, 21–38. https://doi.org/10.1002/ana.24410 Vai! Cerca con Google

Carroll, M.C., Girouard, J.B., Ulloa, J.L., Subramaniam, J.R., Wong, P.C., Valentine, J.S., Culotta, V.C., 2004. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. 101, 5964–5969. https://doi.org/10.1073/pnas.0308298101 Vai! Cerca con Google

Castello, P.R., Drechsel, D.A., Patel, M., 2007. Mitochondria Are a Major Source of Paraquat-induced Reactive Oxygen Species Production in the Brain. J. Biol. Chem. 282, 14186–14193. https://doi.org/10.1074/jbc.M700827200 Vai! Cerca con Google

Celotto, A.M., 2006. Mitochondrial Encephalomyopathy in Drosophila. J. Neurosci. 26, 810–820. https://doi.org/10.1523/JNEUROSCI.4162-05.2006 Vai! Cerca con Google

Centanin, L., Gorr, T.A., Wappner, P., 2010. Tracheal remodelling in response to hypoxia. J. Insect Physiol. 56, 447–454. https://doi.org/10.1016/j.jinsphys.2009.05.008 Vai! Cerca con Google

Chaudhuri, A., Bowling, K., Funderburk, C., Lawal, H., Inamdar, A., Wang, Z., O’Donnell, J.M., 2007. Interaction of Genetic and Environmental Factors in a Drosophila Parkinsonism Model. J. Neurosci. 27, 2457–2467. https://doi.org/10.1523/JNEUROSCI.4239-06.2007 Vai! Cerca con Google

Chen, Q., Behar, K.L., Xu, T., Fan, C., Haddad, G.G., 2003. Expression of Drosophila Trehalose-Phosphate Synthase in HEK-293 Cells Increases Hypoxia Tolerance. J. Biol. Chem. 278, 49113–49118. https://doi.org/10.1074/jbc.M308652200 Vai! Cerca con Google

Chen, Q., Ma, E., Behar, K.L., Xu, T., Haddad, G.G., 2002. Role of Trehalose Phosphate Synthase in Anoxia Tolerance and Development in Drosophila melanogaster. J. Biol. Chem. 277, 3274–3279. https://doi.org/10.1074/jbc.M109479200 Vai! Cerca con Google

Chen, R., Park, H.-A., Mnatsakanyan, N., Niu, Y., Licznerski, P., Wu, J., Miranda, P., Graham, M., Tang, J., Boon, A.J.W., Cossu, G., Mandemakers, W., Bonifati, V., Smith, P.J.S., Alavian, K.N., Jonas, E.A., 2019. Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis. 10. https://doi.org/10.1038/s41419-019-1679-x Vai! Cerca con Google

Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijević, D., Sundier, S.Y., Robb, E.L., Logan, A., Nadtochiy, S.M., Ord, E.N.J., Smith, A.C., Eyassu, F., Shirley, R., Hu, C.-H., Dare, A.J., James, A.M., Rogatti, S., Hartley, R.C., Eaton, S., Costa, A.S.H., Brookes, P.S., Davidson, S.M., Duchen, M.R., Saeb-Parsy, K., Shattock, M.J., Robinson, A.J., Work, L.M., Frezza, C., Krieg, T., Murphy, M.P., 2014. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435. https://doi.org/10.1038/nature13909 Vai! Cerca con Google

Chouchani, E.T., Pell, V.R., James, A.M., Work, L.M., Saeb-Parsy, K., Frezza, C., Krieg, T., Murphy, M.P., 2016. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 23, 254–263. https://doi.org/10.1016/j.cmet.2015.12.009 Vai! Cerca con Google

Chu, C.-C., 2005. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis. PLANT Physiol. 139, 425–436. https://doi.org/10.1104/pp.105.065284 Vai! Cerca con Google

Cleeter, M.W.J., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., Schapira, A.H.V., 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: Implications for neurodegenerative diseases. FEBS Lett. 345, 50–54. https://doi.org/10.1016/0014-5793(94)00424-2 Vai! Cerca con Google

Clements, C.M., McNally, R.S., Conti, B.J., Mak, T.W., Ting, J.P.-Y., 2006. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. 103, 15091–15096. https://doi.org/10.1073/pnas.0607260103 Vai! Cerca con Google

Cobley, J.N., Fiorello, M.L., Bailey, D.M., 2018. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503. https://doi.org/10.1016/j.redox.2018.01.008 Vai! Cerca con Google

Cochemé, H.M., Murphy, M.P., 2008. Complex I Is the Major Site of Mitochondrial Superoxide Production by Paraquat. J. Biol. Chem. 283, 1786–1798. https://doi.org/10.1074/jbc.M708597200 Vai! Cerca con Google

Cogliati, S., Enriquez, J.A., Scorrano, L., 2016. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 41, 261–273. https://doi.org/10.1016/j.tibs.2016.01.001 Vai! Cerca con Google

Cookson, M.R., 2010. DJ-1, PINK1, and their effects on mitochondrial pathways. Mov. Disord. 25, S44–S48. https://doi.org/10.1002/mds.22713 Vai! Cerca con Google

Copeland, J.M., Cho, J., Lo, T., Hur, J.H., Bahadorani, S., Arabyan, T., Rabie, J., Soh, J., Walker, D.W., 2009. Extension of Drosophila Life Span by RNAi of the Mitochondrial Respiratory Chain. Curr. Biol. 19, 1591–1598. https://doi.org/10.1016/j.cub.2009.08.016 Vai! Cerca con Google

Corthals, K., Heukamp, A.S., Kossen, R., Großhennig, I., Hahn, N., Gras, H., Göpfert, M.C., Heinrich, R., Geurten, B.R.H., 2017. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster. Front. Psychiatry 8, 113. https://doi.org/10.3389/fpsyt.2017.00113 Vai! Cerca con Google

Coxhead, J., Kurzawa-Akanbi, M., Hussain, R., Pyle, A., Chinnery, P., Hudson, G., 2016. Somatic mtDNA variation is an important component of Parkinson’s disease. Neurobiol. Aging 38, 217.e1-217.e6. https://doi.org/10.1016/j.neurobiolaging.2015.10.036 Vai! Cerca con Google

Culotta, V.C., Yang, M., O’Halloran, T.V., 2006. Activation of superoxide dismutases: Putting the metal to the pedal. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1763, 747–758. https://doi.org/10.1016/j.bbamcr.2006.05.003 Vai! Cerca con Google

De Lazzari, F., Bubacco, L., Whitworth, A.J., Bisaglia, M., 2018. Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson’s Disease. Aging Dis. 9, 716. https://doi.org/10.14336/AD.2017.1018 Vai! Cerca con Google

Deng, H., Wang, P., Jankovic, J., 2018. The genetics of Parkinson disease. Ageing Res. Rev. 42, 72–85. https://doi.org/10.1016/j.arr.2017.12.007 Vai! Cerca con Google

Dennis, E.A., Norris, P.C., 2015. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523. https://doi.org/10.1038/nri3859 Vai! Cerca con Google

Deshpande, P., Gogia, N., Singh, A., 2019. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen. Res. 14, 1321. https://doi.org/10.4103/1673-5374.253509 Vai! Cerca con Google

Dhawan, V., 2014. Reactive Oxygen and Nitrogen Species: General Considerations, in: Ganguly, N.K., Jindal, S.K., Biswal, S., Barnes, P.J., Pawankar, R. (Eds.), Studies on Respiratory Disorders. Springer New York, New York, NY, pp. 27–47. https://doi.org/10.1007/978-1-4939-0497-6_2 Vai! Cerca con Google

Dias-Santagata, D., Fulga, T.A., Duttaroy, A., Feany, M.B., 2007. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J. Clin. Invest. 117, 236–245. https://doi.org/10.1172/JCI28769 Vai! Cerca con Google

Dickson, D.W., 2012. Parkinson’s Disease and Parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2, a009258–a009258. https://doi.org/10.1101/cshperspect.a009258 Vai! Cerca con Google

Dikalov, S.I., Harrison, D.G., 2014. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxid. Redox Signal. 20, 372–382. https://doi.org/10.1089/ars.2012.4886 Vai! Cerca con Google

Dikalov, S.I., Polienko, Y.F., Kirilyuk, I., 2018. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes. Antioxid. Redox Signal. 28, 1433–1443. https://doi.org/10.1089/ars.2017.7396 Vai! Cerca con Google

Ding, H., Xu, X.-W., Wang, H., Xiao, L., Zhao, L., Duan, G.-L., Li, X.-R., Ma, Z.-X., Chen, H.-P., 2018. DJ-1 plays an obligatory role in the cardioprotection of delayed hypoxic preconditioning against hypoxia/reoxygenation-induced oxidative stress through maintaining mitochondrial complex I activity. Cell Biochem. Funct. 36, 147–154. https://doi.org/10.1002/cbf.3326 Vai! Cerca con Google

Dinkova-Kostova, A.T., Abramov, A.Y., 2015. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88, 179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036 Vai! Cerca con Google

Dölle, C., Flønes, I., Nido, G.S., Miletic, H., Osuagwu, N., Kristoffersen, S., Lilleng, P.K., Larsen, J.P., Tysnes, O.-B., Haugarvoll, K., Bindoff, L.A., Tzoulis, C., 2016. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat. Commun. 7, 13548. https://doi.org/10.1038/ncomms13548 Vai! Cerca con Google

Dongworth, R.K., Mukherjee, U.A., Hall, A.R., Astin, R., Ong, S.-B., Yao, Z., Dyson, A., Szabadkai, G., Davidson, S.M., Yellon, D.M., Hausenloy, D.J., 2014. DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury. Cell Death Dis. 5, e1082–e1082. https://doi.org/10.1038/cddis.2014.41 Vai! Cerca con Google

Drahota, Z., Chowdhury, S.K.R., Floryk, D., Mrácek, T., Wilhelm, J., Rauchová, H., Lenaz, G., Houstek, J., 2002. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J. Bioenerg. Biomembr. 34, 105–113. Cerca con Google

Drazic, A., Winter, J., 2014. The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta BBA - Proteins Proteomics 1844, 1367–1382. https://doi.org/10.1016/j.bbapap.2014.01.001 Vai! Cerca con Google

Edwards, T.C.R., Candido, E.P.M., Chovnick, A., 1977. Xanthine dehydrogenase from Drosophila melanogaster: A comparison of the kinetic parameters of the pure enzyme from two wild-type isoalleles differing at a putative regulatory site. MGG Mol. Gen. Genet. 154, 1–6. https://doi.org/10.1007/BF00265570 Vai! Cerca con Google

Faust, K., Gehrke, S., Yang, Y., Yang, L., Beal, M.F., Lu, B., 2009. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci. 10, 109. https://doi.org/10.1186/1471-2202-10-109 Vai! Cerca con Google

Feala, J.D., Coquin, L., McCulloch, A.D., Paternostro, G., 2007. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Mol. Syst. Biol. 3, 99. https://doi.org/10.1038/msb4100139 Vai! Cerca con Google

Feala, J.D., Coquin, L., Zhou, D., Haddad, G.G., Paternostro, G., McCulloch, A.D., 2009. Metabolism as means for hypoxia adaptation: metabolic profiling and flux balance analysis. BMC Syst. Biol. 3, 91. https://doi.org/10.1186/1752-0509-3-91 Vai! Cerca con Google

Feany, M.B., Bender, W.W., 2000. A Drosophila model of Parkinson’s disease. Nature 404, 394–398. https://doi.org/10.1038/35006074 Vai! Cerca con Google

Fernández-Agüera, M.C., Gao, L., González-Rodríguez, P., Pintado, C.O., Arias-Mayenco, I., García-Flores, P., García-Pergañeda, A., Pascual, A., Ortega-Sáenz, P., López-Barneo, J., 2015. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metab. 22, 825–837. https://doi.org/10.1016/j.cmet.2015.09.004 Vai! Cerca con Google

Fernandez-Ayala, D.J.M., Sanz, A., Vartiainen, S., Kemppainen, K.K., Babusiak, M., Mustalahti, E., Costa, R., Tuomela, T., Zeviani, M., Chung, J., O’Dell, K.M.C., Rustin, P., Jacobs, H.T., 2009. Expression of the Ciona intestinalis Alternative Oxidase (AOX) in Drosophila Complements Defects in Mitochondrial Oxidative Phosphorylation. Cell Metab. 9, 449–460. https://doi.org/10.1016/j.cmet.2009.03.004 Vai! Cerca con Google

Filograna, R., Godena, V.K., Sanchez-Martinez, A., Ferrari, E., Casella, L., Beltramini, M., Bubacco, L., Whitworth, A.J., Bisaglia, M., 2016. Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity: IMPLICATIONS FOR PARKINSON DISEASE. J. Biol. Chem. 291, 9257–9267. https://doi.org/10.1074/jbc.M115.708057 Vai! Cerca con Google

Forman, H.J., Kennedy, J., 1976. Dihydroorotate-dependent superoxide producton in rat brain and liver. Arch. Biochem. Biophys. 173, 219–224. https://doi.org/10.1016/0003-9861(76)90252-6 Vai! Cerca con Google

Franco-Iborra, S., Cuadros, T., Parent, A., Romero-Gimenez, J., Vila, M., Perier, C., 2018. Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis. 9, 1122. https://doi.org/10.1038/s41419-018-1154-0 Vai! Cerca con Google

Friguet, B., 2006. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett. 580, 2910–2916. https://doi.org/10.1016/j.febslet.2006.03.028 Vai! Cerca con Google

Furukawa, Y., O’halloran, T.V., 2006. Posttranslational Modifications in Cu,Zn-Superoxide Dismutase and Mutations Associated with Amyotrophic Lateral Sclerosis. Antioxid. Redox Signal. 8, 847–867. https://doi.org/10.1089/ars.2006.8.847 Vai! Cerca con Google

Furukawa, Y., Torres, A.S., O’Halloran, T.V., 2004. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23, 2872–2881. https://doi.org/10.1038/sj.emboj.7600276 Vai! Cerca con Google

Gao, H.-M., Zhang, F., Zhou, H., Kam, W., Wilson, B., Hong, J.-S., 2011. Neuroinflammation and α-Synuclein Dysfunction Potentiate Each Other, Driving Chronic Progression of Neurodegeneration in a Mouse Model of Parkinson’s Disease. Environ. Health Perspect. 119, 807–814. https://doi.org/10.1289/ehp.1003013 Vai! Cerca con Google

Gegg, M.E., Cooper, J.M., Chau, K.-Y., Rojo, M., Schapira, A.H.V., Taanman, J.-W., 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870. https://doi.org/10.1093/hmg/ddq419 Vai! Cerca con Google

Gertz, B., Wong, M., Martin, L.J., 2012. Nuclear Localization of Human SOD1 and Mutant SOD1-Specific Disruption of Survival Motor Neuron Protein Complex in Transgenic Amyotrophic Lateral Sclerosis Mice: J. Neuropathol. Exp. Neurol. 71, 162–177. https://doi.org/10.1097/NEN.0b013e318244b635 Vai! Cerca con Google

Girotto, S., Cendron, L., Bisaglia, M., Tessari, I., Mammi, S., Zanotti, G., Bubacco, L., 2014. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. J. Biol. Chem. 289, 10887–10899. https://doi.org/10.1074/jbc.M113.535112 Vai! Cerca con Google

Glauser, L., Sonnay, S., Stafa, K., Moore, D.J., 2011. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1: Parkin promotes the ubiquitination of mitofusin 1. J. Neurochem. 118, 636–645. https://doi.org/10.1111/j.1471-4159.2011.07318.x Vai! Cerca con Google

Goo, C.K., Lim, H.Y., Ho, Q.S., Too, H.-P., Clement, M.-V., Wong, K.P., 2012. PTEN/Akt Signaling Controls Mitochondrial Respiratory Capacity through 4E-BP1. PLoS ONE 7, e45806. https://doi.org/10.1371/journal.pone.0045806 Vai! Cerca con Google

Grünewald, A., Rygiel, K.A., Hepplewhite, P.D., Morris, C.M., Picard, M., Turnbull, D.M., 2016. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons: PD: Mitochondrial-Nuclear Interplay. Ann. Neurol. 79, 366–378. https://doi.org/10.1002/ana.24571 Vai! Cerca con Google

Gu, X.Q., Haddad, G.G., 1999. Drosophila neurons respond Cerca con Google

differently to hypoxia and cyanide than rat neurons. Brain Res. 845, 6–13. https://doi.org/10.1016/S0006-8993(99)01877-6 Vai! Cerca con Google

Guarás, A., Perales-Clemente, E., Calvo, E., Acín-Pérez, R., Loureiro-Lopez, M., Pujol, C., Martínez-Carrascoso, I., Nuñez, E., García-Marqués, F., Rodríguez-Hernández, M.A., Cortés, A., Cerca con Google

Diaz, F., Pérez-Martos, A., Moraes, C.T., Fernández-Silva, P., Trifunovic, A., Navas, P., Vazquez, J., Enríquez, J.A., 2016. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep. 15, 197–209. https://doi.org/10.1016/j.celrep.2016.03.009 Vai! Cerca con Google

Guzy, R.D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K.D., Simon, M.C., Hammerling, U., Schumacker, P.T., 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408. https://doi.org/10.1016/j.cmet.2005.05.001 Vai! Cerca con Google

Haddad, D., Nakamura, K., 2015. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett. 589, 3702–3713. https://doi.org/10.1016/j.febslet.2015.10.021 Vai! Cerca con Google

Hales, K.G., Korey, C.A., Larracuente, A.M., Roberts, D.M., 2015. Genetics on the Fly: A Primer on the Drosophila Model System. Genetics 201, 815–842. https://doi.org/10.1534/genetics.115.183392 Vai! Cerca con Google

Halio, S.B., Blumentals, I.I., Short, S.A., Merrill, B.M., Kelly, R.M., 1996. Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178, 2605–2612. https://doi.org/10.1128/jb.178.9.2605-2612.1996 Vai! Cerca con Google

Halliwell, B., Gutteridge, J.M.C., 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14. https://doi.org/10.1042/bj2190001 Vai! Cerca con Google

Han, D., Antunes, F., Canali, R., Rettori, D., Cadenas, E., 2003. Cerca con Google

Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. J. Biol. Chem. 278, 5557–5563. https://doi.org/10.1074/jbc.M210269200 Vai! Cerca con Google

Hao, L.-Y., Giasson, B.I., Bonini, N.M., 2010. DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. 107, 9747–9752. https://doi.org/10.1073/pnas.0911175107 Vai! Cerca con Google

Hastings, T.G., Lewis, D.A., Zigmond, M.J., 1996. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. U. S. A. 93, 1956–1961. https://doi.org/10.1073/pnas.93.5.1956 Vai! Cerca con Google

Hattingen, E., Magerkurth, J., Pilatus, U., Mozer, A., Seifried, C., Steinmetz, H., Zanella, F., Hilker, R., 2009. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132, 3285–3297. https://doi.org/10.1093/brain/awp293 Vai! Cerca con Google

Hattori, N., Tanaka, M., Ozawa, T., Mizuno, Y., 1991. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in parkinson’s disease. Ann. Neurol. 30, 563–571. https://doi.org/10.1002/ana.410300409 Vai! Cerca con Google

Hayashi, T., Ishimori, C., Takahashi-Niki, K., Taira, T., Kim, Y., Maita, H., Maita, C., Ariga, H., Iguchi-Ariga, S.M.M., 2009. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem. Biophys. Res. Commun. 390, 667–672. https://doi.org/10.1016/j.bbrc.2009.10.025 Vai! Cerca con Google

Heo, J.Y., Park, J.H., Kim, S.J., Seo, K.S., Han, J.S., Lee, S.H., Kim, J.M., Park, J.I., Park, S.K., Lim, K., Hwang, B.D., Shong, M., Kweon, G.R., 2012. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly. PLoS ONE 7, e32629. https://doi.org/10.1371/journal.pone.0032629 Vai! Cerca con Google

Herrmann, J.M., Riemer, J., 2010. The Intermembrane Space of Mitochondria. Antioxid. Redox Signal. 13, 1341–1358. https://doi.org/10.1089/ars.2009.3063 Vai! Cerca con Google

Hetru, C., Hoffmann, J.A., 2009. NF- B in the Immune Response of Drosophila. Cold Spring Harb. Perspect. Biol. 1, a000232–a000232. https://doi.org/10.1101/cshperspect.a000232 Vai! Cerca con Google

Hwang, S., Song, S., Hong, Y.K., Choi, G., Suh, Y.S., Han, S.Y., Lee, M., Park, S.H., Lee, J.H., Lee, S., Bang, S.M., Jeong, Y., Chung, W.-J., Lee, I.-S., Jeong, G., Chung, J., Cho, K.S., 2013. Drosophila DJ-1 Decreases Neural Sensitivity to Stress by Negatively Regulating Daxx-Like Protein through dFOXO. PLoS Genet. 9, e1003412. https://doi.org/10.1371/journal.pgen.1003412 Vai! Cerca con Google

Ighodaro, O.M., Akinloye, O.A., 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54, 287–293. https://doi.org/10.1016/j.ajme.2017.09.001 Vai! Cerca con Google

Iglesias, D.E., Bombicino, S.S., Valdez, L.B., Boveris, A., 2015. Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. Free Radic. Biol. Med. 89, 602–613. https://doi.org/10.1016/j.freeradbiomed.2015.08.024 Vai! Cerca con Google

Irrcher, I., Aleyasin, H., Seifert, E.L., Hewitt, S.J., Chhabra, S., Phillips, M., Lutz, A.K., Rousseaux, M.W.C., Bevilacqua, L., Jahani-Asl, A., Callaghan, S., MacLaurin, J.G., Winklhofer, K.F., Rizzu, P., Rippstein, P., Kim, R.H., Chen, C.X., Fon, E.A., Slack, R.S., Harper, M.E., McBride, H.M., Mak, T.W., Park, D.S., 2010. Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746. https://doi.org/10.1093/hmg/ddq288 Vai! Cerca con Google

Jassem, W., Fuggle, S.V., Rela, M., Koo, D.D.H., Heaton, N.D., Cerca con Google

2002. The role of mitochondria in ischemia/reperfusion injury. Transplantation 73, 493–499. https://doi.org/10.1097/00007890-200202270-00001 Vai! Cerca con Google

Jensen, L.T., Culotta, V.C., 2005. Activation of CuZn Superoxide Dismutases from Caenorhabditis elegans Does Not Require the Copper Chaperone CCS. J. Biol. Chem. 280, 41373–41379. https://doi.org/10.1074/jbc.M509142200 Vai! Cerca con Google

Joselin, A.P., Hewitt, S.J., Callaghan, S.M., Kim, R.H., Chung, Y.-H., Mak, T.W., Shen, J., Slack, R.S., Park, D.S., 2012. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum. Mol. Genet. 21, 4888–4903. https://doi.org/10.1093/hmg/dds325 Vai! Cerca con Google

Junn, E., Jang, W.H., Zhao, X., Jeong, B.S., Mouradian, M.M., 2009a. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. 87, 123–129. https://doi.org/10.1002/jnr.21831 Vai! Cerca con Google

Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H., Mouradian, M.M., 2005. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. 102, 9691–9696. https://doi.org/10.1073/pnas.0409635102 Vai! Cerca con Google

Kalia, L.V., Lang, A.E., 2015. Parkinson’s disease. The Lancet 386, 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3 Vai! Cerca con Google

Kalogeris, T., Baines, C.P., Krenz, M., Korthuis, R.J., 2012. Cell Biology of Ischemia/Reperfusion Injury, in: International Review of Cell and Molecular Biology. Elsevier, pp. 229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7 Vai! Cerca con Google

Kaneko, Y., Tajiri, N., Shojo, H., Borlongan, C.V., 2014. Oxygen-Glucose-Deprived Rat Primary Neural Cells Exhibit DJ-1 Translocation into Healthy Mitochondria: A Potent Stroke Therapeutic Target. CNS Neurosci. Ther. 20, 275–281. https://doi.org/10.1111/cns.12208 Vai! Cerca con Google

Karunasinghe, R.N., Lipski, J., 2013. Oxygen and glucose deprivation (OGD)-induced spreading depression in the Substantia Nigra. Brain Res. 1527, 209–221. https://doi.org/10.1016/j.brainres.2013.06.016 Vai! Cerca con Google

Kato, I., Maita, H., Takahashi-Niki, K., Saito, Y., Noguchi, N., Iguchi-Ariga, S.M.M., Ariga, H., 2013. Oxidized DJ-1 Inhibits p53 by Sequestering p53 from Promoters in a DNA-Binding Affinity-Dependent Manner. Mol. Cell. Biol. 33, 340–359. https://doi.org/10.1128/MCB.01350-12 Vai! Cerca con Google

Kaufman, T.C., 2017. A Short History and Description of Drosophila melanogaster Classical Genetics: Chromosome Aberrations, Forward Genetic Screens, and the Nature of Mutations. Genetics 206, 665–689. https://doi.org/10.1534/genetics.117.199950 Vai! Cerca con Google

Kawamata, H., Manfredi, G., 2010. Import, Maturation, and Function of SOD1 and Its Copper Chaperone CCS in the Mitochondrial Intermembrane Space. Antioxid. Redox Signal. 13, 1375–1384. https://doi.org/10.1089/ars.2010.3212 Vai! Cerca con Google

Kettenmann, H., Hanisch, U.-K., Noda, M., Verkhratsky, A., 2011. Physiology of Microglia. Physiol. Rev. 91, 461–553. https://doi.org/10.1152/physrev.00011.2010 Vai! Cerca con Google

Kim, H.W., Park, J.-S., Jeong, H.-S., Jang, M.J., Kim, B.-C., Kim, M.-K., Cho, K.-H., Kim, T.S., Park, S.W., 2004. Nitric oxide modulation of the spontaneous firing of rat medial vestibular nuclear neurons. J. Pharmacol. Sci. 96, 224–228. Cerca con Google

Kim, J.-M., Shin, H.-I., Cha, S.-S., Lee, C.S., Hong, B.S., Lim, S., Jang, H.-J., Kim, J., Yang, Y.R., Kim, Y.-H., Yun, S., Rijal, G., Lee-Kwon, W., Seo, J.K., Gho, Y.S., Ryu, S.H., Hur, E.-M., Suh, P.-G., 2012. DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nat. Commun. 3, 1296. https://doi.org/10.1038/ncomms2313 Vai! Cerca con Google

Kim, J.-S., Jin, Y., Lemasters, J.J., 2006. Reactive oxygen species, but not Ca 2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am. J. Physiol.-Heart Circ. Physiol. 290, H2024–H2034. https://doi.org/10.1152/ajpheart.00683.2005 Vai! Cerca con Google

Kim, R.H., Peters, M., Jang, Y., Shi, W., Pintilie, M., Fletcher, G.C., DeLuca, C., Liepa, J., Zhou, L., Snow, B., Binari, R.C., Manoukian, A.S., Bray, M.R., Liu, F.-F., Tsao, M.-S., Mak, T.W., 2005. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273. https://doi.org/10.1016/j.ccr.2005.02.010 Vai! Cerca con Google

Kim, S.-J., Park, Y.-J., Hwang, I.-Y., Youdim, M.B.H., Park, K.-S., Oh, Y.J., 2012. Nuclear translocation of DJ-1 during oxidative stress-induced neuronal cell death. Free Radic. Biol. Med. 53, 936–950. https://doi.org/10.1016/j.freeradbiomed.2012.05.035 Vai! Cerca con Google

Kim, Y.-C., Kitaura, H., Taira, T., Iguchi-Ariga, S.M.M., Ariga, H., 2009. Oxidation of DJ-1-dependent cell transformation through direct binding of DJ-1 to PTEN. Int. J. Oncol. 35, 1331–1341. Cerca con Google

Kirby, K., Jensen, L.T., Binnington, J., Hilliker, A.J., Ulloa, J., Culotta, V.C., Phillips, J.P., 2008. Instability of Superoxide Dismutase 1 of Drosophila in Mutants Deficient for Its Cognate Copper Chaperone. J. Biol. Chem. 283, 35393–35401. https://doi.org/10.1074/jbc.M807131200 Vai! Cerca con Google

Kiss, R., Zhu, M., Jójárt, B., Czajlik, A., Solti, K., Fórizs, B., Nagy, É., Zsila, F., Beke-Somfai, T., Tóth, G., 2017. Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease. Biochim. Biophys. Acta BBA - Gen. Subj. 1861, 2619–2629. https://doi.org/10.1016/j.bbagen.2017.08.017 Vai! Cerca con Google

Klawitter, Jelena, Klawitter, Jost, Agardi, E., Corby, K., Leibfritz, D., Lowes, B.D., Christians, U., Seres, T., 2013. Association of DJ-1/PTEN/AKT- and ASK1/p38-mediated cell signalling with ischaemic cardiomyopathy. Cardiovasc. Res. 97, 66–76. https://doi.org/10.1093/cvr/cvs302 Vai! Cerca con Google

Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K., 2006. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520. https://doi.org/10.1038/ng1778 Vai! Cerca con Google

Krebiehl, G., Ruckerbauer, S., Burbulla, L.F., Kieper, N., Maurer, B., Waak, J., Wolburg, H., Gizatullina, Z., Gellerich, F.N., Woitalla, D., Riess, O., Kahle, P.J., Proikas-Cezanne, T., Krüger, R., 2010. Reduced Basal Autophagy and Impaired Mitochondrial Dynamics Due to Loss of Parkinson’s Disease-Associated Protein DJ-1. PLoS ONE 5, e9367. https://doi.org/10.1371/journal.pone.0009367 Vai! Cerca con Google

Krishnan, S.N., Sun, Y.-A., Mohsenin, A., Wyman, R.J., Haddad, G.G., 1997. Behavioral and Electrophysiologic Responses of Drosophila melanogaster to Prolonged Periods of Anoxia. J. Insect Physiol. 43, 203–210. https://doi.org/10.1016/S0022-1910(96)00084-4 Vai! Cerca con Google

Kudin, A.P., Bimpong-Buta, N.Y.-B., Vielhaber, S., Elger, C.E., Kunz, W.S., 2004. Characterization of Superoxide-producing Sites in Isolated Brain Mitochondria. J. Biol. Chem. 279, 4127–4135. https://doi.org/10.1074/jbc.M310341200 Vai! Cerca con Google

Le Naour, F., Misek, D.E., Krause, M.C., Deneux, L., Giordano, T.J., Scholl, S., Hanash, S.M., 2001. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 7, 3328–3335. Cerca con Google

Lee, K.H., Kim, D.G., Shin, N.Y., Song, W.K., Kwon, H., Chung, C.H., Kang, M.-S., 1997. NF- κ B-dependent expression of nitric oxide synthase is required for membrane fusion of chick embryonic myoblasts. Biochem. J. 324, 237–242. https://doi.org/10.1042/bj3240237 Vai! Cerca con Google

Lee, S., Tak, E., Lee, J., Rashid, M., Murphy, M.P., Ha, J., Kim, S.S., 2011. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res. 21, 817–834. https://doi.org/10.1038/cr.2011.55 Vai! Cerca con Google

Lee, S.B., Kim, W., Lee, S., Chung, J., 2007. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358, 534–539. https://doi.org/10.1016/j.bbrc.2007.04.156 Vai! Cerca con Google

Lefkowitz, D.L., Lefkowitz, S.S., 2008. Microglia and myeloperoxidase: A deadly partnership in neurodegenerative disease. Free Radic. Biol. Med. 45, 726–731. https://doi.org/10.1016/j.freeradbiomed.2008.05.021 Vai! Cerca con Google

Leitch, J.M., Jensen, L.T., Bouldin, S.D., Outten, C.E., Hart, P.J., Culotta, V.C., 2009a. Activation of Cu,Zn-Superoxide Dismutase in the Absence of Oxygen and the Copper Chaperone CCS. J. Biol. Chem. 284, 21863–21871. https://doi.org/10.1074/jbc.M109.000489 Vai! Cerca con Google

Leitch, J.M., Yick, P.J., Culotta, V.C., 2009b. The Right to Choose: Multiple Pathways for Activating Copper,Zinc Superoxide Dismutase. J. Biol. Chem. 284, 24679–24683. https://doi.org/10.1074/jbc.R109.040410 Vai! Cerca con Google

Lessing, D., Bonini, N.M., 2009. Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat. Rev. Genet. 10, 359–370. https://doi.org/10.1038/nrg2563 Vai! Cerca con Google

Lin, B., Levy, S., Raval, A.P., Perez-Pinzon, M.A., DeFazio, R.A., 2010. Forebrain Ischemia Triggers GABAergic System Degeneration in Substantia Nigra at Chronic Stages in Rats. Cardiovasc. Psychiatry Neurol. 2010, 1–16. https://doi.org/10.1155/2010/506952 Vai! Cerca con Google

Lin, J., Prahlad, J., Wilson, M.A., 2012. Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1. Biochemistry 51, 3799–3807. https://doi.org/10.1021/bi3003296 Vai! Cerca con Google

Liu, J., Liu, W., Li, R., Yang, H., 2019. Mitophagy in Parkinson’s Disease: From Pathogenesis to Treatment. Cells 8, 712. https://doi.org/10.3390/cells8070712 Vai! Cerca con Google

Liu, Z., Celotto, A.M., Romero, G., Wipf, P., Palladino, M.J., 2012. Genetically encoded redox sensor identifies the role of ROS in degenerative and mitochondrial disease pathogenesis. Neurobiol. Dis. 45, 362–368. https://doi.org/10.1016/j.nbd.2011.08.022 Vai! Cerca con Google

Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., Ross, C.A., Montell, C., Smith, W.W., 2008. A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. 105, 2693–2698. https://doi.org/10.1073/pnas.0708452105 Vai! Cerca con Google

Liu, Z., Zhou, T., Ziegler, A.C., Dimitrion, P., Zuo, L., 2017. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 1–11. https://doi.org/10.1155/2017/2525967 Vai! Cerca con Google

Luan, H., Peabody, N.C., Vinson, C.R., White, B.H., 2006. Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression. Neuron 52, 425–436. https://doi.org/10.1016/j.neuron.2006.08.028 Vai! Cerca con Google

Lucas, J.I., Marin, I., 2006. A New Evolutionary Paradigm for the Parkinson Disease Gene DJ-1. Mol. Biol. Evol. 24, 551–561. https://doi.org/10.1093/molbev/msl186 Vai! Cerca con Google

Lushchak, V.I., 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016 Vai! Cerca con Google

Lye, S., Chtarbanova, S., 2018. Drosophila as a Model to Study Brain Innate Immunity in Health and Disease. Int. J. Mol. Sci. 19, 3922. https://doi.org/10.3390/ijms19123922 Vai! Cerca con Google

Ma, E., Haddad, G.G., 1997. Anoxia regulates gene expression in the central nervous system of Drosophila melanogaster. Brain Res. Mol. Brain Res. 46, 325–328. Cerca con Google

Ma, Q., 2013. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320 Vai! Cerca con Google

Madabattula, S.T., Strautman, J.C., Bysice, A.M., O’Sullivan, J.A., Androschuk, A., Rosenfelt, C., Doucet, K., Rouleau, G., Bolduc, F., 2015. Quantitative Analysis of Climbing Defects in a Drosophila Model of Neurodegenerative Disorders. J. Vis. Exp. 52741. https://doi.org/10.3791/52741 Vai! Cerca con Google

Maitra, U., Ciesla, L., 2019. Using Drosophila as a platform for drug discovery from natural products in Parkinson’s disease. MedChemComm 10, 867–879. https://doi.org/10.1039/C9MD00099B Vai! Cerca con Google

Mandel, S.A., Morelli, M., Halperin, I., Korczyn, A.D., 2010. Biomarkers for prediction and targeted prevention of Alzheimer’s and Parkinson’s diseases: evaluation of drug clinical efficacy. EPMA J. 1, 273–292. https://doi.org/10.1007/s13167-010-0036-z Vai! Cerca con Google

Manning, B.D., Toker, A., 2017. AKT/PKB Signaling: Navigating the Network. Cell 169, 381–405. https://doi.org/10.1016/j.cell.2017.04.001 Vai! Cerca con Google

Mao, Z., 2009. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3. https://doi.org/10.3389/neuro.04.005.2009 Vai! Cerca con Google

Maryon, E.B., Molloy, S.A., Kaplan, J.H., 2013. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am. J. Physiol.-Cell Physiol. 304, C768–C779. https://doi.org/10.1152/ajpcell.00417.2012 Vai! Cerca con Google

McGeer, P.L., Itagaki, S., Boyes, B.E., McGeer, E.G., 1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1285. https://doi.org/10.1212/WNL.38.8.1285 Vai! Cerca con Google

Menzies, F.M., Yenisetti, S.C., Min, K.-T., 2005. Roles of Drosophila DJ-1 in Survival of Dopaminergic Neurons and Oxidative Stress. Curr. Biol. 15, 1578–1582. https://doi.org/10.1016/j.cub.2005.07.036 Vai! Cerca con Google

Meulener, M., Whitworth, A.J., Armstrong-Gold, C.E., Rizzu, P., Heutink, P., Wes, P.D., Pallanck, L.J., Bonini, N.M., 2005. Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinson’s Disease. Curr. Biol. 15, 1572–1577. https://doi.org/10.1016/j.cub.2005.07.064 Vai! Cerca con Google

Meulener, M.C., Xu, K., Thomson, L., Ischiropoulos, H., Bonini, N.M., 2006. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl. Acad. Sci. 103, 12517–12522. https://doi.org/10.1073/pnas.0601891103 Vai! Cerca con Google

Mills, E.L., Kelly, B., Logan, A., Costa, A.S.H., Varma, M., Bryant, C.E., Tourlomousis, P., Däbritz, J.H.M., Gottlieb, E., Latorre, I., Corr, S.C., McManus, G., Ryan, D., Jacobs, H.T., Szibor, M., Xavier, R.J., Braun, T., Frezza, C., Murphy, M.P., O’Neill, L.A., 2016. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 167, 457-470.e13. https://doi.org/10.1016/j.cell.2016.08.064 Vai! Cerca con Google

Missirlis, F., Phillips, J.P., Jäckle, H., 2001. Cooperative action of antioxidant defense systems in Drosophila. Curr. Biol. 11, 1272–1277. https://doi.org/10.1016/S0960-9822(01)00393-1 Vai! Cerca con Google

Miwa, S., St-Pierre, J., Partridge, L., Brand, M.D., 2003. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35, 938–948. https://doi.org/10.1016/S0891-5849(03)00464-7 Vai! Cerca con Google

Mizote, T., Tsuda, M., Nakazawa, T., Nakayama, H., 1996. The thiJ locus and its relation to phosphorylation of hydroxymethylpyrimidine in Escherichia coli. Microbiol. Read. Engl. 142 ( Pt 10), 2969–2974. https://doi.org/10.1099/13500872-142-10-2969 Vai! Cerca con Google

Mockett, R.J., Sohal, B.H., Sohal, R.S., 2010. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 49, 2028–2031. https://doi.org/10.1016/j.freeradbiomed.2010.09.029 Vai! Cerca con Google

Moehle, M.S., Webber, P.J., Tse, T., Sukar, N., Standaert, D.G., DeSilva, T.M., Cowell, R.M., West, A.B., 2012. LRRK2 Inhibition Attenuates Microglial Inflammatory Responses. J. Neurosci. 32, 1602–1611. https://doi.org/10.1523/JNEUROSCI.5601-11.2012 Vai! Cerca con Google

Molcho, L., Ben-Zur, T., Barhum, Y., Offen, D., 2018. DJ-1 based peptide, ND-13, promote functional recovery in mouse model of focal ischemic injury. PLOS ONE 13, e0192954. https://doi.org/10.1371/journal.pone.0192954 Vai! Cerca con Google

Monzani, E., Nicolis, S., Dell’Acqua, S., Capucciati, A., Bacchella, C., Zucca, F.A., Mosharov, E.V., Sulzer, D., Zecca, L., Casella, L., 2019. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson’s and Other Neurodegenerative Diseases. Angew. Chem. Int. Ed. 58, 6512–6527. https://doi.org/10.1002/anie.201811122 Vai! Cerca con Google

Muller, F.L., Liu, Y., Van Remmen, H., 2004. Complex III Releases Superoxide to Both Sides of the Inner Mitochondrial Membrane. J. Biol. Chem. 279, 49064–49073. https://doi.org/10.1074/jbc.M407715200 Vai! Cerca con Google

Murphy, M.P., 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13. https://doi.org/10.1042/BJ20081386 Vai! Cerca con Google

Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S.M.M., Ariga, H., 1997a. DJ-1, a Novel Oncogene Which Transforms Mouse NIH3T3 Cells in Cooperation withras. Biochem. Biophys. Res. Commun. 231, 509–513. https://doi.org/10.1006/bbrc.1997.6132 Vai! Cerca con Google

Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S.M.M., Ariga, H., 1997b. DJ-1, a Novel Oncogene Which Transforms Mouse NIH3T3 Cells in Cooperation withras. Biochem. Biophys. Res. Commun. 231, 509–513. https://doi.org/10.1006/bbrc.1997.6132 Vai! Cerca con Google

Nelson, R.E., Fessler, L.I., Takagi, Y., Blumberg, B., Keene, D.R., Olson, P.F., Parker, C.G., Fessler, J.H., 1994. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438–3447. Cerca con Google

Ng, C.-H., Mok, S.Z.S., Koh, C., Ouyang, X., Fivaz, M.L., Tan, E.-K., Dawson, V.L., Dawson, T.M., Yu, F., Lim, K.-L., 2009. Parkin Protects against LRRK2 G2019S Mutant-Induced Dopaminergic Neurodegeneration in Drosophila. J. Neurosci. 29, 11257–11262. https://doi.org/10.1523/JNEUROSCI.2375-09.2009 Vai! Cerca con Google

Nichols, C.D., Becnel, J., Pandey, U.B., 2012. Methods to Assay Drosophila Behavior. J. Vis. Exp. 3795. https://doi.org/10.3791/3795 Vai! Cerca con Google

Niveditha, S., Deepashree, S., Ramesh, S.R., Shivanandappa, T., 2017. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J. Comp. Physiol. B 187, 899–909. https://doi.org/10.1007/s00360-017-1061-1 Vai! Cerca con Google

Ong, C., Yung, L.-Y.L., Cai, Y., Bay, B.-H., Baeg, G.-H., 2015. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9, 396–403. https://doi.org/10.3109/17435390.2014.940405 Vai! Cerca con Google

Onodera, H., Okabe, S., Kikuchi, Y., Tsuda, T., Itoyama, Y., 2000. Impaired chemosensitivity and perception of dyspnoea in Parkinson’s disease. The Lancet 356, 739–740. https://doi.org/10.1016/S0140-6736(00)02638-6 Vai! Cerca con Google

Orr, W.C., Mockett, R.J., Benes, J.J., Sohal, R.S., 2003. Effects of Overexpression of Copper-Zinc and Manganese Superoxide Dismutases, Catalase, and Thioredoxin Reductase Genes on Longevity in Drosophila melanogaster. J. Biol. Chem. 278, 26418–26422. https://doi.org/10.1074/jbc.M303095200 Vai! Cerca con Google

Oswald, M.C., Brooks, P.S., Zwart, M.F., Mukherjee, A., West, R.J., Giachello, C.N., Morarach, K., Baines, R.A., Sweeney, S.T., Landgraf, M., 2018. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. eLife 7, e39393. https://doi.org/10.7554/eLife.39393 Vai! Cerca con Google

Ottolini, D., Cali, T., Negro, A., Brini, M., 2013. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168. https://doi.org/10.1093/hmg/ddt068 Vai! Cerca con Google

Owusu-Ansah, E., Song, W., Perrimon, N., 2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712. https://doi.org/10.1016/j.cell.2013.09.021 Vai! Cerca con Google

Palladino, M.J., Keegan, L.P., O’Connell, M.A., Reenan, R.A., 2000. A-to-I Pre-mRNA Editing in Drosophila Is Primarily Involved in Adult Nervous System Function and Integrity. Cell 102, 437–449. https://doi.org/10.1016/S0092-8674(00)00049-0 Vai! Cerca con Google

Pantcheva, P., Elias, M., Duncan, K., Borlongan, C.V., Tajiri, N., Kaneko, Y., 2014. The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regen. Res. 9, 1430–1433. https://doi.org/10.4103/1673-5374.139458 Vai! Cerca con Google

Paradies, G., Paradies, V., Ruggiero, F.M., Petrosillo, G., 2019. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 8, 728. https://doi.org/10.3390/cells8070728 Vai! Cerca con Google

Pardo, M., García, Á., Thomas, B., Piñeiro, A., Akoulitchev, A., Dwek, R.A., Zitzmann, N., 2006. The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int. J. Cancer 119, 1014–1022. https://doi.org/10.1002/ijc.21942 Vai! Cerca con Google

Park, J., Kim, S.Y., Cha, G.-H., Lee, S.B., Kim, S., Chung, J., 2005. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361, 133–139. https://doi.org/10.1016/j.gene.2005.06.040 Vai! Cerca con Google

Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.-M., Chung, J., 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161. https://doi.org/10.1038/nature04788 Vai! Cerca con Google

Parsanejad, M., Zhang, Y., Qu, D., Irrcher, I., Rousseaux, M.W.C., Aleyasin, H., Kamkar, F., Callaghan, S., Slack, R.S., Mak, T.W., Lee, S., Figeys, D., Park, D.S., 2014. Regulation of the VHL/HIF-1 Pathway by DJ-1. J. Neurosci. 34, 8043–8050. https://doi.org/10.1523/JNEUROSCI.1244-13.2014 Vai! Cerca con Google

Peng, L., Zhao, Yipeng, Li, Y., Zhou, Y., Li, L., Lei, S., Yu, S., Zhao, Yong, 2019. Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury. J. Mol. Med. 97, 189–199. https://doi.org/10.1007/s00109-018-1719-5 Vai! Cerca con Google

Perkins, G., Hsiao, Y., Yin, S., Tjong, J., Tran, M.T., Lau, J., Xue, J., Liu, S., Ellisman, M.H., Zhou, D., 2012. Ultrastructural Modifications in the Mitochondria of Hypoxia-Adapted Drosophila melanogaster. PLoS ONE 7, e45344. https://doi.org/10.1371/journal.pone.0045344 Vai! Cerca con Google

Phillips, J.P., Campbell, S.D., Michaud, D., Charbonneau, M., Hilliker, A.J., 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. 86, 2761–2765. https://doi.org/10.1073/pnas.86.8.2761 Vai! Cerca con Google

Phillips, J.P., Tainer, J.A., Getzoff, E.D., Boulianne, G.L., Kirby, K., Hilliker, A.J., 1995. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc. Natl. Acad. Sci. U. S. A. 92, 8574–8578. https://doi.org/10.1073/pnas.92.19.8574 Vai! Cerca con Google

Pickles, S., Vigié, P., Youle, R.J., 2018. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. 28, R170–R185. https://doi.org/10.1016/j.cub.2018.01.004 Vai! Cerca con Google

Pickrell, A.M., Youle, R.J., 2015. The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease. Neuron 85, 257–273. https://doi.org/10.1016/j.neuron.2014.12.007 Vai! Cerca con Google

Pitoniak, A., Bohmann, D., 2015. Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic. Biol. Med. 88, 302–313. https://doi.org/10.1016/j.freeradbiomed.2015.06.020 Vai! Cerca con Google

Pong, K., 2003. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin. Biol. Ther. 3, 127–139. https://doi.org/10.1517/14712598.3.1.127 Vai! Cerca con Google

Pou, S., Pou, W.S., Bredt, D.S., Snyder, S.H., Rosen, G.M., 1992. Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 267, 24173–24176. Cerca con Google

Przedborski, S., 2017. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251–259. https://doi.org/10.1038/nrn.2017.25 Vai! Cerca con Google

Puno, M.R., Patel, N.A., Møller, S.G., Robinson, C.V., Moody, P.C.E., Odell, M., 2013. Structure of Cu(I)-Bound DJ-1 Reveals a Biscysteinate Metal Binding Site at the Homodimer Interface: Insights into Mutational Inactivation of DJ-1 in Parkinsonism. J. Am. Chem. Soc. 135, 15974–15977. https://doi.org/10.1021/ja406010m Vai! Cerca con Google

Purisai, M.G., McCormack, A.L., Cumine, S., Li, J., Isla, M.Z., Di Monte, D.A., 2007. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis. 25, 392–400. https://doi.org/10.1016/j.nbd.2006.10.008 Vai! Cerca con Google

Quijano, C., Trujillo, M., Castro, L., Trostchansky, A., 2016. Interplay between oxidant species and energy metabolism. Redox Biol. 8, 28–42. https://doi.org/10.1016/j.redox.2015.11.010 Vai! Cerca con Google

Ramalingam, M., Kim, S.-J., 2012. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural Transm. 119, 891–910. https://doi.org/10.1007/s00702-011-0758-7 Vai! Cerca con Google

Raninga, P.V., Di Trapani, G., Tonissen, K.F., 2017. The Multifaceted Roles of DJ-1 as an Antioxidant, in: Ariga, H., Iguchi-Ariga, S.M.M. (Eds.), DJ-1/PARK7 Protein. Springer Singapore, Singapore, pp. 67–87. https://doi.org/10.1007/978-981-10-6583-5_6 Vai! Cerca con Google

Ren, H., Fu, K., Mu, C., Li, B., Wang, D., Wang, G., 2010. DJ-1, a cancer and Parkinson’s disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett. 297, 101–108. https://doi.org/10.1016/j.canlet.2010.05.001 Vai! Cerca con Google

Ristow, M., Zarse, K., 2010. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418. https://doi.org/10.1016/j.exger.2010.03.014 Vai! Cerca con Google

Robb, E.L., Hall, A.R., Prime, T.A., Eaton, S., Szibor, M., Viscomi, C., James, A.M., Murphy, M.P., 2018. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 293, 9869–9879. https://doi.org/10.1074/jbc.RA118.003647 Vai! Cerca con Google

Rodriguez-Grande, B., Blackabey, V., Gittens, B., Pinteaux, E., Denes, A., 2013. Loss of substance P and inflammation precede delayed neurodegeneration in the substantia nigra after cerebral ischemia. Brain. Behav. Immun. 29, 51–61. https://doi.org/10.1016/j.bbi.2012.11.017 Vai! Cerca con Google

Rothenfluh, A., Heberlein, U., 2002. Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr. Opin. Neurobiol. 12, 639–645. Cerca con Google

Russo, I., Berti, G., Plotegher, N., Bernardo, G., Filograna, R., Bubacco, L., Greggio, E., 2015. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J. Neuroinflammation 12, 230. https://doi.org/10.1186/s12974-015-0449-7 Vai! Cerca con Google

S. Hernandes, M., R.G. Britto, L., 2012. NADPH Oxidase and Neurodegeneration. Curr. Neuropharmacol. 10, 321–327. https://doi.org/10.2174/157015912804499483 Vai! Cerca con Google

Sala, F.A., Wright, G.S.A., Antonyuk, S.V., Garratt, R.C., Hasnain, S.S., 2019. Molecular recognition and maturation of SOD1 by its evolutionarily destabilised cognate chaperone hCCS. PLOS Biol. 17, e3000141. https://doi.org/10.1371/journal.pbio.3000141 Vai! Cerca con Google

Sánchez-Blanco, A., Fridell, Y.-W.C., Helfand, S.L., 2006. Involvement of Drosophila uncoupling protein 5 in metabolism and aging. Genetics 172, 1699–1710. https://doi.org/10.1534/genetics.105.053389 Vai! Cerca con Google

Santabárbara-Ruiz, P., Esteban-Collado, J., Pérez, L., Viola, G., Milán, M., Corominas, M., Serras, F., 2018. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila (preprint). Developmental Biology. https://doi.org/10.1101/451070 Vai! Cerca con Google

Sanz, A., 2016. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochim. Biophys. Acta BBA - Bioenerg. 1857, 1116–1126. https://doi.org/10.1016/j.bbabio.2016.03.018 Vai! Cerca con Google

Sanz, A., Fernández-Ayala, D.J.M., Stefanatos, R.K., Jacobs, H.T., 2010a. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2, 200–223. https://doi.org/10.18632/aging.100137 Vai! Cerca con Google

Sanz, A., Stefanatos, R., McIlroy, G., 2010b. Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. J. Bioenerg. Biomembr. 42, 135–142. https://doi.org/10.1007/s10863-010-9281-z Vai! Cerca con Google

Sanz, F.J., Solana-Manrique, C., Muñoz-Soriano, V., Calap-Quintana, P., Moltó, M.D., Paricio, N., 2017. Identification of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. Free Radic. Biol. Med. 108, 683–691. https://doi.org/10.1016/j.freeradbiomed.2017.04.364 Vai! Cerca con Google

Satta, R., Dimitrijevic, N., Manev, H., 2003. Drosophila metabolize 1,4-butanediol into gamma-hydroxybutyric acid in vivo. Eur. J. Pharmacol. 473, 149–152. Cerca con Google

Schapansky, J., Nardozzi, J.D., LaVoie, M.J., 2015. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson’s disease. Neuroscience 302, 74–88. https://doi.org/10.1016/j.neuroscience.2014.09.049 Vai! Cerca con Google

Schapira, A.H.V., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B., Marsden, C.D., 1990. Anatomic and Disease Specificity of NADH CoQ 1 Reductase (Complex I) Deficiency in Parkinson’s Disease. J. Neurochem. 55, 2142–2145. https://doi.org/10.1111/j.1471-4159.1990.tb05809.x Vai! Cerca con Google

Schieber, M., Chandel, N.S., 2014. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/j.cub.2014.03.034 Vai! Cerca con Google

Schroedl, C., McClintock, D.S., Budinger, G.R.S., Chandel, N.S., 2002. Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am. J. Physiol.-Lung Cell. Mol. Physiol. 283, L922–L931. https://doi.org/10.1152/ajplung.00014.2002 Vai! Cerca con Google

Scialò, F., Fernández-Ayala, D.J., Sanz, A., 2017. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front. Physiol. 8, 428. https://doi.org/10.3389/fphys.2017.00428 Vai! Cerca con Google

Scialò, F., Sriram, A., Fernández-Ayala, D., Gubina, N., Lõhmus, M., Nelson, G., Logan, A., Cooper, H.M., Navas, P., Enríquez, J.A., Murphy, M.P., Sanz, A., 2016. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metab. 23, 725–734. https://doi.org/10.1016/j.cmet.2016.03.009 Vai! Cerca con Google

Seidlmayer, L.K., Juettner, V.V., Kettlewell, S., Pavlov, E.V., Blatter, L.A., Dedkova, E.N., 2015. Distinct mPTP activation mechanisms in ischaemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 106, 237–248. https://doi.org/10.1093/cvr/cvv097 Vai! Cerca con Google

Semenza, G.L., 2009. Regulation of vascularization by hypoxia-inducible factor 1. Ann. N. Y. Acad. Sci. 1177, 2–8. https://doi.org/10.1111/j.1749-6632.2009.05032.x Vai! Cerca con Google

Shafqat, M.N., Aadil, M., Shoaib, M., 2017. Sleep apnea leading to Parkinson’s disease – an important association. Neuropsychiatr. Dis. Treat. Volume 13, 1491–1492. https://doi.org/10.2147/NDT.S140283 Vai! Cerca con Google

Shi, S.Y., Lu, S.-Y., Sivasubramaniyam, T., Revelo, X.S., Cai, E.P., Luk, C.T., Schroer, S.A., Patel, P., Kim, R.H., Bombardier, E., Quadrilatero, J., Tupling, A.R., Mak, T.W., Winer, D.A., Woo, M., 2015. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat. Commun. 6, 7415. https://doi.org/10.1038/ncomms8415 Vai! Cerca con Google

Shill, H., Stacy, M., 2002. Respiratory Complications of Parkinson’s Disease. Semin. Respir. Crit. Care Med. 23, 261–266. https://doi.org/10.1055/s-2002-33034 Vai! Cerca con Google

Shimizu, Y., Lambert, J.P., Nicholson, C.K., Kim, J.J., Wolfson, D.W., Cho, H.C., Husain, A., Naqvi, N., Chin, L.-S., Li, L., Calvert, J.W., 2016. DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission. J. Mol. Cell. Cardiol. 97, 56–66. https://doi.org/10.1016/j.yjmcc.2016.04.008 Vai! Cerca con Google

Snyder, B., Shell, B., Cunningham, J.T., Cunningham, R.L., 2017. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol. Rep. 5, e13258. https://doi.org/10.14814/phy2.13258 Vai! Cerca con Google

Srivastava, S., Blower, P.J., Aubdool, A.A., Hider, R.C., Mann, G.E., Siow, R.C., 2016. Cardioprotective effects of Cu(II)ATSM in human vascular smooth muscle cells and cardiomyocytes mediated by Nrf2 and DJ-1. Sci. Rep. 6, 7. https://doi.org/10.1038/s41598-016-0012-5 Vai! Cerca con Google

St Johnston, D., 2002. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188. https://doi.org/10.1038/nrg751 Vai! Cerca con Google

Stapper, Z.A., Jahn, T.R., 2018. Changes in Glutathione Redox Potential Are Linked to Aβ42-Induced Neurotoxicity. Cell Rep. 24, 1696–1703. https://doi.org/10.1016/j.celrep.2018.07.052 Vai! Cerca con Google

Starkov, A.A., 2004. Mitochondrial -Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species. J. Neurosci. 24, 7779–7788. https://doi.org/10.1523/JNEUROSCI.1899-04.2004 Vai! Cerca con Google

Stefanatos, R., Sanz, A., 2018. The role of mitochondrial ROS in the aging brain. FEBS Lett. 592, 743–758. https://doi.org/10.1002/1873-3468.12902 Vai! Cerca con Google

Stefanatos, R., Sriram, A., Kiviranta, E., Mohan, A., Ayala, V., Jacobs, H.T., Pamplona, R., Sanz, A., 2012. dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster. Cell Cycle 11, 3876–3886. https://doi.org/10.4161/cc.22073 Vai! Cerca con Google

Stokes, A.H., Hastings, T.G., Vrana, K.E., 1999. Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659–665. https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C Vai! Cerca con Google

St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., 2002. Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. J. Biol. Chem. 277, 44784–44790. https://doi.org/10.1074/jbc.M207217200 Vai! Cerca con Google

Strobbe, D., Robinson, A.A., Harvey, K., Rossi, L., Ferraina, C., de Biase, V., Rodolfo, C., Harvey, R.J., Campanella, M., 2018. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control. Front. Mol. Neurosci. 11. https://doi.org/10.3389/fnmol.2018.00068 Vai! Cerca con Google

Stuehr, D., Pou, S., Rosen, G.M., 2001. Oxygen Reduction by Nitric-oxide Synthases. J. Biol. Chem. 276, 14533–14536. https://doi.org/10.1074/jbc.R100011200 Vai! Cerca con Google

Swaminath, P.V., Ragothaman, M., Muthane, U.B., Udupa, S.A.H., Rao, S.L., Govindappa, S.S., 2006. Parkinsonism and personality changes following an acute hypoxic insult during mountaineering. Mov. Disord. 21, 1296–1297. https://doi.org/10.1002/mds.20941 Vai! Cerca con Google

Tanner, C.M., Kamel, F., Ross, G.W., Hoppin, J.A., Goldman, S.M., Korell, M., Marras, C., Bhudhikanok, G.S., Kasten, M., Chade, A.R., Comyns, K., Richards, M.B., Meng, C., Priestley, B., Fernandez, H.H., Cambi, F., Umbach, D.M., Blair, A., Sandler, D.P., Langston, J.W., 2011. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 119, 866–872. https://doi.org/10.1289/ehp.1002839 Vai! Cerca con Google

Tao, X., Tong, L., 2003. Crystal Structure of Human DJ-1, a Protein Associated with Early Onset Parkinson’s Disease. J. Biol. Chem. 278, 31372–31379. https://doi.org/10.1074/jbc.M304221200 Vai! Cerca con Google

Teulier, L., Weber, J.-M., Crevier, J., Darveau, C.-A., 2016. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333. https://doi.org/10.1098/rspb.2016.0333 Vai! Cerca con Google

Thomas, K.J., McCoy, M.K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., Miller, D., Maric, D., Cedazo-Minguez, A., Cookson, M.R., 2011. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 20, 40–50. https://doi.org/10.1093/hmg/ddq430 Vai! Cerca con Google

Tretter, L., 2004. Generation of Reactive Oxygen Species in the Reaction Catalyzed by -Ketoglutarate Dehydrogenase. J. Neurosci. 24, 7771–7778. https://doi.org/10.1523/JNEUROSCI.1842-04.2004 Vai! Cerca con Google

Tretter, L., Takacs, K., Hegedus, V., Adam-Vizi, V., 2007. Characteristics of ?-glycerophosphate-evoked H 2 O 2 generation in brain mitochondria. J. Neurochem. 100, 650–663. https://doi.org/10.1111/j.1471-4159.2006.04223.x Vai! Cerca con Google

Trist, B.G., Hare, D.J., Double, K.L., 2018. A Proposed Mechanism for Neurodegeneration in Movement Disorders Characterized by Metal Dyshomeostasis and Oxidative Stress. Cell Chem. Biol. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record