Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Buonomo, Marco (2019) Study of thin film devices and organic biosensors: parasitic phenomena, modelling and characterization. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di dottorato) - Updated Version
Thesis not accessible until 02 December 2022 for intellectual property related reasons.
Visibile to: nobody

6Mb

Abstract (italian or english)

I transistor a film sottile organici e inorganici (O-TFT e I-TFT) sono stati ampiamente studiati, per via delle loro peculiarità, quali: processi di fabbricazione a basso costo, flessibilità, leggerezza e semitrasparenza. Pertanto, abbiamo presentato e discusso una nuova tecnica per l'estrazione dei parametri nei transistor a film sottile. Convalidandola sperimentalmente per via di una caratterizzazione completa di transistor sia organici che inorganici avendo come semiconduttore rispettivamente diossil-quatertiofene e indio-gallio-zinco-ossido (IGZO). Tuttavia, l'affidabilità degli IGZO TFT non è completamente compresa e perciò, abbiamo studiato l'impatto di uno stress elettrico a gradini sul gate stimando cosi la tensione di rottura per i diversi fattori di forma del canale. I nostri risultati mostrano che la tensione di rottura ha una parziale dipendenza dalla larghezza del canale, mentre presenta soltanto una dipendenza marginale o nulla dalla sua lunghezza. Al fine di garantire l'accuratezza dei risultati sopra menzionati, il modello utilizzato richiede che il principio di funzionamento dei dispositivi analizzati sia ben noto a priori. Sfortunatamente, nell'elettronica organica e amorfa, questo avviene raramente. In particolare, ci siamo concentrati sugli effetti parassiti non lineari nella regione tra gli elettrodi Source/Drain e il canale del transistor. Infatti, possiamo rappresentare tale regione come una struttura metallo-isolante-metallo (MIM). Abbiamo quindi sviluppato un modello in grado di descrivere la caduta di tensione parassita ai contatti dell'OTFT spiegando al contempo le proprietà dei dispositivi MIM. Inoltre, abbiamo proposto un modello che considera anche gli effetti della rugosità superficiale all'interfaccia metallo/semiconduttore e, mediante simulazioni, ne abbiamo evidenziato gli effetti principali. Tra le tecnologie a film sottile, i ricercatori hanno effettuato sforzi anche nell'area sanitaria, lavorando con diversi polimeri e molecole in cui i semiconduttori organici sono all'interfaccia con una soluzione ionica. Inoltre, il miglioramento dei dispositivi "ad acqua", come i transistor elettrochimici organici e gli OTFT elettrolitici (EGOFET), sta aprendo la strada allo sviluppo di nuovi biosensori. Quindi, abbiamo presentato un modello generale per il sistema metallo/semiconduttore organico/liquido/metallo. Per sottolineare l'importanza del nostro modello, abbiamo riportato due casi di studio tramite la spettroscopia di impedenza elettrochimica, rispettivamente per l'NaCl e MilliQ come mezzo di gate, dimostrando che entrambi i casi possono essere considerati come un caso particolare del modello generale. Tra i diversi materiali organici, il TIPS-Pentacene è stato recentemente impiegato per realizzare degli EGOFET, che sono dispositivi promettenti per i biosensori. Quindi, abbiamo fabbricato degli EGOFET utilizzando il TIPS-pentacene. Nonostante il semiconduttore sia stato depositato in aria per drop casting, i nostri EGOFET hanno mostrato prestazioni paragonabili a quelli realizzati con tecnologie all'avanguardia. Inoltre, abbiamo studiato con successo la biocompatibilità del materiale, promuovendo l'uso degli EGOFET basati sul TIPS -pentacene come biosensori. Tali dispositivi possono essere utilizzati anche come EGOGET senza elettrodo di riferimento (RL-EGOFET) rilevandosi dei nuovi candidati per la stimolazione in vivo e la registrazione dell'attività cellulare. Pertanto, abbiamo studiato tali dispositivi, facendo luce sul meccanismo di auto-polarizzazione e dimostrando che gli EGOFET possono presentare un comportamento ad effetto di campo anche senza la presenza dell'elettrodo di gate. In sintesi, i lavori e i risultati di questa tesi hanno permesso uno studio più approfondito e accurato dei dispositivi a film sottile. Pertanto, riteniamo che i risultati qui rappresentati potrebbero aiutare a migliorare sia i dispositivi attuali sia nello sviluppo di nuovi dispositivi.

Abstract (a different language)

Organic and Inorganic Thin-Film Transistors (O-TFTs and I-TFTs, respectively) have been widely studied during the last years, due to appealing properties such as low-cost fabrication processes, flexibility, lightweight and (semi-) transparency. Therefore, to help the study and development of such technologies, we presented and discussed a new simple and easy to use technique for parameter extraction in thin film transistors. We experimentally validate our procedure by performing a complete characterization of both organic and inorganic transistors featuring dihexyl-quaterthiophene and indium-gallium-zinc-oxide (IGZO) as semiconducting materials, respectively. However, the reliability of IGZO TFTs are not fully understood and for this reason, we studied the impact of stair-case gate bias stress on them and we estimated the breakdown voltage for different channel aspect ratios. Our results show that the breakdown voltage exhibits a remarkable dependence on the channel width, while exposing no, or marginal, dependence on the channel length. In order to ensure the accuracy of the above-mentioned results, the used model require that working principle of the analysed devices must be well known at priori. Unfortunately, in organic and amorphous electronic this hardly ever the case. In particular, we focused on the non-linear parasitic effects in the region between the Source/Drain electrodes and the transistor channel. We can represent this region as metal-insulator-metal (MIM) structure. Hence, we propose a model that can describe the parasitic voltage drop at the contacts of the OTFT and at the same time we explained the properties of the MIM devices. Furthermore, we proposed an enhanced model that consider also the effects of the surface roughness on the metal semiconductor interface, and, by means of simulations, we highlighted the macroscopic effect of the surface roughness. Among the thin film transistor technology, researchers have spent many efforts in the healthcare area, working with different polymers and small molecules where organic semiconductors are at the interface with an ionic solution.
In addition, the improvement of water gated devices, such as organic electrochemical transistors and electrolyte-gated organic field effect transistors (EGOFETs), is paving the way to the development of new biosensors. Hence, we presented a general equivalent circuit model for the metal/organic semiconductor /liquid/metal system. To underline the importance of our model, we reported two cases of study of electrochemical impedance spectroscopy of devices featuring NaCl and MilliQ water as gate medium, showing that both cases can be considered as a particular case of the general model presented in this thesis. Among the different organic materials, TIPS-Pentacene was recently employed to make EGOFETs, which are promising devices for biosensing applications. For this reason, we fabricated EGOFETs using TIPS-pentacene as active material. Despite the organic semiconductor being deposited in air by drop casting, our EGOFETs showed performance comparable with state-of-the-art technologies. In addition, we successfully investigated, the biocompatibility of the material, promoting the use of TIPS-pentacene-based EGOFETs for biosensing applications. Such devices can be used also as Reference-Less EGOGET (RL-EGOFETs) that are a new candidate for in vivo stimulation and recording of cells activity. Therefore, we characterized the fabricated EGOFETs in Reference-Less configuration, shedding light on the self-polarization mechanism, demonstrating that EGOFETs can feature a field-effect behavior even without the presence of the gate electrode. In summary, the works and the results of this thesis allowed a deeper and accurate study of thin film devices. Hence, we believe that the results here represented could help the in improvement of state of art devices and in the development of new devices.

EPrint type:Ph.D. thesis
Tutor:Cester, Andrea
Ph.D. course:Ciclo 32 > Corsi 32 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:01 December 2019
Anno di Pubblicazione:01 December 2019
Key Words:Transistor Organici, Dispositivi Organici, Biosensori Organici
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:12206
Depositato il:02 Feb 2021 11:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[Atkins] P. Atkins, and J.d. Paula, “Physical chemistry”, Eighth Edition, 2006, Oxford University Press, ISBN: 0-7167-8759-8 Cerca con Google

[Atkins2] P. Atkins, J.d. Paula, and Ronald Friedman, “Quanta, Matter, and Change: A molecular approach to physical chemistry”, 2009, W. H. Freeman and Company, ISBN: 0-7167-6117-3 Cerca con Google

[Brütting] W. Brütting, “Physics of Organic Semiconductors”, 2005, Willey, ISBN-13: 978-3-527-40550-3 Cerca con Google

[Petty] Micheal C. Petty, “Molecular Electronics From Principles to Practice”, 2007, John Wiley & Sons Ltd, ISBN 978-0-470-01307-6 Cerca con Google

[Callister] W. D. Callister, “Fundamentals of Materials Science and Engineering”, Fifth Edition, 2001, John Wiley & Sons, Inc., ISBN 0-471-39551-X Cerca con Google

[Peierls] R. Peierls “Bird of Passage: Recollections of a Physicist”, 1985, Princeton, New Jersey: Princeton University Press. ISBN 0-691-08390-8. OCLC 925040112. Cerca con Google

[Bassler] H. Bassler, ``Charge transport in disordered organic photoconductors,'' Phys. Stat. Sol.(b), vol. 175, pp. 15-55, 1993. Cerca con Google

[Coehoorn] R. Coehoorn and P.A. Bobbert, “Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors”, 2012, Phys. Status Solidi A 209, No.12, pp 2354-2377. Cerca con Google

[Klauk] Hagen Klauk, “Organic Electronics”, Willey 2006 Cerca con Google

[Klauk2] Hagen Klauk, “Organic Electronics II”, Willey 2006 Cerca con Google

[Hirsch] J. Hirsch, "Hopping transport in disordered aromatic solids: a re-interpretation of mobility measurements on PKV and TNF", J. Phys. C: Solid State Phys. 12 (1979) pp. 321-335, DOI: https://iopscience.iop.org/0022-3719/12/2/020/ Vai! Cerca con Google

[Franky] S. Franky, “Organic electronics Materials, Processing, Devices and Applications”, 2010, CRC Press Taylor & Francis Group, ISBN: 978-1-4200-7290-7 (Hardback) Cerca con Google

[Kymissis] I. Kymissis,“Organic Field Effect Transistors Theory, Fabrication and Characterization”, 2009, Springer, ISBN: 978-0-387-92133-4 Cerca con Google

[Bao] Z. Bao and J. Locklin, “Organic Field-Effect Transitors”, 2007, CRC Press Taylor & Francis Group,ISBN-10: 0-8493-8080-4 (Hardcover) Cerca con Google

[Dimitrakopoulos] C. D. Dimitrakopoulos; D. J. Mascaro, “Organic thin-film transistor: A review of recent advances”, 2001, 45, pp 11-27, DOI: 10.1147/rd.451.0011 Cerca con Google

[Muller] R. S. Muller, T.I. Kamins, and M. Cha “Device Electronics for integrated circtuits”, Willey Cerca con Google

[Mishra] U.K. Mishra, J. Singh, “Semiconductor Device Physics and Design”,2008, Springer, ISBN 978-1-4020-6480-7 (HB) Cerca con Google

[Simonetti] O. Simonetti, L. Giraudet, T. Maurel, J.-L. Nicolas, A. Belkhir, “Organic transistor model with nonlinear injection: effect of uneven source contact on apparent mobility and threshold voltage”, Org. Electron. 11 (2010) 1381–1393, https://doi.org/10.1016/j.orgel.2010.06.001. Vai! Cerca con Google

[Horowitz] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. E. Hajlaoui, “The Concept of “Threshold Voltage” in Organic Field‐Effect Transistors”, 1998, Advanced Materials 10 (12) pp: 923 – 927, DOI: 10.1002/(SICI)1521-4095(199808)10:12<923::AID-ADMA923>3.0.CO;2-W Cerca con Google

[Yang] W. Ou-Yang et Al., “Modeling of threshold voltage in pentacene organic field-effect transistors”, 1998, Journal of Applied Physics Cerca con Google

[Servati] P. Servati, D. Striakhilev, A. Nathan, “Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors”, IEEE Trans. Electron. Dev. 50 (2003) 2227–2235, https://doi.org/10.1109/TED.2003.818156. Vai! Cerca con Google

[SCL] S. NĕŠpurek, P. Smejtek, “Space-charge limited currents in insulators with the Gaussian distribution of traps”, Czech. J. Phys. 22 (1972) 160–175. Cerca con Google

[Steiger] J. Steiger, R. Schmechel, H. von Seggern, “Energetic trap distributions in organic semiconductors”, Synth. Met. 129 (2002) 1–7, https://doi.org/10.1016/S0379-6779(02)00012- Vai! Cerca con Google

[Colinge] J.P. Colinge, “Silicon on Insulator Technology: Material to VLSI”, 1997, Springer Cerca con Google

[Simon] S.G.J. Mathijssen et Al. “Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field-Effect Transistors”,2007, Advanced Materials DOI: 10.1002/adma.200602798 Cerca con Google

[Wöll] C.Wöll, “Organic Electronics Structural and Electronic Properties of OFETs”, Willey, ISBN: 978-3-527-40810-8 Cerca con Google

[Amara] A. Amara, O. Rozeau, “Planar Double-Gate Transistor From Technology to Circuit”, 2009, Springer, ISBN 978-1-4020-9327-2 Cerca con Google

[Lago] N. Lago, A. Cester, “Flexible and organic neural interfaces: a review”, Appl. Sci. 7 (2017), http://dx.doi.org/10.3390/app7121292. Vai! Cerca con Google

[DuBois] Marc L. DuBois, “Action Potential”, 2010, Nova Science Publishers Cerca con Google

[Maccione] A. Maccione, et Al. “Sensing and actuating electrophysiological activity on brain tissue and neuronal cultures with a high-density CMOS-MEA”, Transducers 2013, Barcelona, SPAIN, 16-20 June 2013, 978-1-4673-5983-2/13/$31.00 Cerca con Google

[Boinagrov] D. Boinagrov et Al. “Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes”,2014, Journal of Neural Engineering, DOI:10.1088/1741-2560/11/2/026008 Cerca con Google

[Schoen] I. Shoen and P. Fromherz, “The Mechanism of Extracellular Stimulation of Nerve Cells on an Electrolyte-Oxide-Semiconductor Capacitor”, 2007, Biophysical Journal, DOI: 10.1529/biophysj.106.094763 Cerca con Google

[Purves] D. Purves et Al. “Neuroscience”, Third Edition, 2004, Sinnauer Associates, Inc, Cerca con Google

[Ulmann] Hartmut Wendt, Ullmann's “Encyclopedia of Industrial Chemistry, "Electrochemistry"”, seventh edition, 2004, Wiley-VCH, , DOI:10.1002/14356007.a09_183. Cerca con Google

[Bard] Allen J. Bard and Larry R. Faulkner, “Electrochemical methods – Fundamentals and application”, Wiley, 2001 Cerca con Google

[Zoski] C.G. Zoski, “Handbook of Electrochemistry”, 2007, Elsevier Science, ISBN 978-0-444-51958-0. Cerca con Google

[McNaught] M. McNaught, A. Wilkinson, “IUPAC. Compendium of Chemical Terminology ("Gold Book")”, second edition, 1997 Oxford, Blackwell Scientific Publications, DOI:10.1351/goldbook, ISBN 0-9678550-9-8. Cerca con Google

[Paunovic] M. Paunovic, and M. Schlesinger, “Fundamentals of electrochemical deposition”, first edition, 1998, Wiley, ISBN 0-471-16820-3. Cerca con Google

[Kergoat] L. Kergoat et Al. “Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors”, Anal. Bioanal. Chem, (2012) Cerca con Google

[Wang] D. Wang et Al., “Electrolytic Gated Organic Field-Effect Transistor for Application in Biosensor—A review”,2016, Electronics Cerca con Google

[Cramer] T.Cramer et Al., “Double Layer capacitance measured by organic field effect transtior operated in water”, 2012, Appl, Phys, Lett, 100, 143302 Cerca con Google

[Lago3] N. Lago, A. Cester, N. Wrachien, E. Benvenuti, S.D. Quiroga, M. Natali, S. Toffanin, M. Muccini, G. Meneghesso, “Investigation of mobility transient on organic transistor by means of DLTS technique”, IEEE Trans. Electron. Dev. 63 (2016) 4432–4439, https://doi.org/10.1109/TED.2016.2611142. Vai! Cerca con Google

[He] Z. He, J. Chen, and D. Li, “Review Article: Crystal alignment for high performance organic electronics devices”, 2019, J. Vac. Sci. Thecnol, DOI:10.1116/1.5094904 Cerca con Google

[Shioya] N. Shioya et Al., “Alternative Face-on Thin Film Structure of Pentacene”, 2019, Scientific Reports, DOI: 10.1038/s41598-018-37166-6 Cerca con Google

[Giraldo] A. Giraldo, A. Paccagnella, A. Minzoni, “Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout”, 2000, Solid-State Electronics (44), pp: 981-989 Cerca con Google

[Lago4] N. Lago, N. Wrachien, M. G. Pedersen, and A. Cester, “Simultaneous stimulation and recording of cell activity with reference-less sensors: Is it feasible?,” Organic Electronics, vol. 62, pp. 676–684, Nov. 2018. Cerca con Google

[Lago6] N. Lago, A. Cester, N. Wrachien, I. Tomasino, S. Toffanin, S.D. Quiroga, E. Benvenuti, M. Natali, M. Muccini, G. Meneghesso, “On the pulsed and transient characterization of organic field-effect transistors”, IEEE Electron. Device Lett. 36 (2015) 1359–1362, https://doi.org/10.1109/LED.2015.2496336. Vai! Cerca con Google

[Wranchien] N. Wrachien et al., “Near-UV irradiation effects on pentacene-based organic thin film transistors”, IEEE Transaction on Nuclear Science, 2011, pp-2911-2917, DOI: 10.1109/TNS.2011.2170432 Cerca con Google

[Lago7] N. Lago et Al., “A physical-based equivalent circuit model for an organic/electrolyteinterface”, 2016, Organic Electronic, pp:175-185, DOI: https://doi.org/10.1016/j.orgel.2016.05.018 Vai! Cerca con Google

[Ch] Ch. Pannemann, T. Diekmann, U. Hilleringmann, “Degradation of organic field-effect transistors made of pentacene”, J. Mater. Res. 19 (2004), https://doi.org/10.1557/JMR.2004.0267. Vai! Cerca con Google

[Shij] M.R. Shijeesh, L.S. Vikas, M.K. Jayaraj, J. Puigdollers, “Degradation study and calculation of density-of-states in PTCDI-C8 channel layer from the electrical characteristics of thin-film transistors”, J. Appl. Phys. 116 (2014), https://doi.org/10.1063/1.4890023. Vai! Cerca con Google

[Zhang] Y.-H. Zhang, Z.-X. Mei, H.-L. Liang, X.-L. Du, “Review of flexible and transparent thin-film transistor based on zinc oxide and related materials”, Chin. Phys. 26 (2017), http://dx.doi.org/10.1088/1674-1056/26/4/047307. Vai! Cerca con Google

[Domen] K. Domen, T. Miyase, K. Abe, H. Hosono, T. Kamiya, “Positive-bias stress test on amorphous In–Ga–Zn–O thin film transistor: annealing-temperature dependence”, J. Disp. Technol. 10 (2014) 975–978, http://dx.doi.org/10.1109/JDT.2014.2350518. Vai! Cerca con Google

[Hasan] M.M. Hasan, M.M. Billah, J. Jamg, “Electrical stability of flexible a-IGZO TFT under strained condition”, Active-matrix Flatpanel Displays and Devices, Kyoto, Japan, July 2016, http://dx.doi.org/10.1109/AM-FPD.2016.7543660. Vai! Cerca con Google

[Münzenrieder] N. Münzenrieder, K.H. Cherenack, G. Tröster, “The effects of mechanical bendingand illumination on the performance of flexible IGZO TFTs”, IEEE Trans. Electron Devices 58 (2011) 2041–2048, http://dx.doi.org/10.1109/TED.2011.2143416. Vai! Cerca con Google

[Bochang] L. Bochang et Al., “Effects of source/drain-electrode material, thickness and fabrication method on the electrical performance of pentacene thin-film transistor”, 2018, Thin solid Films, pp: 28-33, DOI: https://doi.org/10.1016/j.tsf.2018.10.004 Vai! Cerca con Google

[Oh] J. Oh et Al., “Bending Performance of Flexible Organic Thin-Film Transistors With/Without Encapsulation Layer”, 2018, IEEE Transaction on Device Materials Reliability, pp:1-4, DOI: 10.1109/TDMR.2017.2780267 Cerca con Google

[Raghuwanshi] V. Raghuwanshi et Al., “Effect of thermal annealing on electrical stability of TIPS-pentacene flexible OFETs”, 2017, IEEE 12th Nanotechnology Materials and Devices Conference (NMDC), DOI: 10.1109/NMDC.2017.8350552 Cerca con Google

[Singh] S. Singh and Y.N. Mohapatra “Degradation and Bias-Stress Effect in TIPS-Pentacene Based Organic Thin Film Transistors with Polymer Dielectric”, 2019, The Physics of Semiconductor Devices pp 1077-1081, ISBN: 978-3-319-97603-7, DOI: https://doi.org/10.1007/978-3-319-97604-4_165 Vai! Cerca con Google

[Fanelli] D. Fanelli “Negative results are disappearing from most disciplines and countries”, 2012, Scientometrics, DOI 10.1007/s11192-011-0494-7 Cerca con Google

[Kim_D] Kim D-H., et Al., “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics”, 2010 Nat. Mater, 9, pp. 511–517 Cerca con Google

[Shoen] I. Schoen, P. Fromherz, “Mechanism of Extracellular Stimulation of Nerve Cells on an Electrolyte-Oxide-Semiconductor Capacitor.”, 2007 Biophys. J., 92, pp. 1096–1111. Cerca con Google

[Cant] G. Cantarella, C. Vogt, R. Hopf, N. Munzenrieder, P. Andrianakis, L. Petti, A. Daus, S. Knobelspies, L. Buthe, G. Troster, G.A. Salvatore, “Buckled thin-film transistors and circuits on soft elastomers for stretchable electronics”, ACS Appl. Mater. Interfaces 9 (2017), https://doi.org/10.1021/acsami.7b08153 29750-28757. Vai! Cerca con Google

[Igor] Igor F. Perepichka, Dmitrii F. Perepichka, “Handbook of Thiophene-based Materials”, John Wiley & Sons ltd, 2009. Cerca con Google

[Beni] T. Benincori, M. Capaccio, F. De Angelis, L. Falciola, M. Muccini, P. Mussini, A. Ponti, S. Toffanin, P. Traldi, F. Sannicolo, “Spider-like oligothiophenes”, Chem. Eur J. 14 (2007) 459–471, https://doi.org/10.1002/chem.200701117. Vai! Cerca con Google

[Hong] X. Michael Hong, Howard E. Katz, Andrew J. Lovinger, Bo-Cheng Wang, Krishnan “Raghavachari, Thiophene-phenylene and Thiophene-Thiazole oligomeric semiconductors with high field-effect transistor on/off ratios”, Chem. Mater. 13 (2001) 4686–4691, https://doi.org/10.1021/cm010496z. Vai! Cerca con Google

[Capelli] R. Capelli, F. Dinelli, S. Toffanin, F. Todescato, M. Murgia, M. Muccini, A. Facchetti, T.J. Marks, “Investigation of the optoelectronic properties of organic light-emitting transistors based on an intrinsically ambipolar material”, J. Phys. Chem. C 112 (2008) 12993–12999, https://doi.org/10.1021/jp7118235. Vai! Cerca con Google

[Lago1] N. Lago, A. Cester, N. Wrachien, E. Benvenuti, S.D. Quiroga, M. Natali, S. Toffanin, M. Muccini, G. Meneghesso, “Investigation of mobility transient on organic transistor by means of DLTS technique”, IEEE Trans. Electron. Dev. 63 (2016) 4432–4439, https://doi.org/10.1109/TED.2016.2611142. Vai! Cerca con Google

[Ch] Ch. Pannemann, T. Diekmann, U. Hilleringmann, “Degradation of organic field-effect transistors made of pentacene”, J. Mater. Res. 19 (2004), https://doi.org/10.1557/JMR.2004.0267. Vai! Cerca con Google

[Shij] M.R. Shijeesh, L.S. Vikas, M.K. Jayaraj, J. Puigdollers, “Degradation study and calculation of density-of-states in PTCDI-C8 channel layer from the electrical characteristics of thin-film transistors”, J. Appl. Phys. 116 (2014), https://doi.org/10.1063/1.4890023. Vai! Cerca con Google

[Nec] P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, “Contact resistance extractionin pentacene thin film transistors”, Solid State Electron. 47 (2003), https://doi.org/10.1016/S0038-1101(02)00204-6. Vai! Cerca con Google

[Mittal] P. Mittal, Y.S. Negi, R.K. Singh, “An analytical approach for parameter extraction in linear and saturation regions of top and bottom contact organic transistors”, J.Comput. Electron. 14 (2015) 828–843, https://doi.org/10.1007/s10825-015-0719-8. Vai! Cerca con Google

[Servati] P. Servati, D. Striakhilev, A. Nathan, “Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors”, IEEE Trans. Electron. Dev. 50 (2003) 2227–2235, https://doi.org/10.1109/TED.2003.818156. Vai! Cerca con Google

[Xu] Y. Xu, T. Minari, K. Tsukagoshi, J.A. Chroboczek, G. Ghibaudo, “Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors”, J. Appl.Phys. 107 (2010), https://doi.org/10.1063/1.3432716. Vai! Cerca con Google

[Horowitz] G. Horowitz, P. Lang, M. Mottaghi, H. Aubin, “Extracting parameters from the current-voltage characteristics of organic field-effect transistors”, Adv. Funct. Mater. 14 (2004) 1069–1074, https://doi.org/10.1002/adfm.200305122. Vai! Cerca con Google

[Takagaki] S. Takagaki, H. Yamada, K. Noda, “Extraction of contact resistance and channel parameters from the electrical characteristics of a single bottom-gate/top-contact organic transistor”, Jpn. J. Appl. Phys. 55 (2016), https://doi.org/10.7567/JJAP.55.03DC07. Vai! Cerca con Google

[Iniguez] B. Iniguez, J. Pallares, L.F. Marsal, A. Castro-Carranza, A. Cerdeira, M.Estrada, “Compact modeling of organic thin-film transistors”, IEEE International Conference on Solid-state and Integrated Circuit Technology,1-4 Nov, 2010, https://doi.org/10.1109/ICSICT.2010.5667631. Vai! Cerca con Google

[Wang] S.D. Wang, Y. Yan, K. Tsukagoshi, “Transition-voltage method for estimating contact resistance in organic thin-film transistors”, IEEE Electron. Device Lett. 31 (2010) 509–511, https://doi.org/10.1109/LED.2010.2044137. Vai! Cerca con Google

[Generali] G. Generali, F. Dinelli, R. Capelli, S. Toffanin, F. di Maria, M. Gazzano, G. Barbarella, M. Muccini, “Correlation among morphology, crystallinity, and chargemmobility in OFETs made of quaterthiophene alkyl derivatives on a transparentmsubstrate platform”, J. Phys. Chem. C 115 (2011) 23164–23169, https://doi.org/10.1021/jp2090704. Vai! Cerca con Google

[Capelli2] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, “Organic lightemitting transistors with an efficiency that outperforms the equivalent light-emitting diodes”, Nat. Mater. 9 (2010) 496–503, https://doi.org/10.1038/nmat2751. Vai! Cerca con Google

[Muccini] M. Muccini, W. Koopman, S. Toffanin, “The photonic perspective of organic lightemitting transistors”, Laser Photon. Rev. 6 (2011) 258–275, https://doi.org/10. 1002/lpor.201100008. Vai! Cerca con Google

[Yabutaa] H. Yabutaa, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett. 89 (2006), https://doi.org/10.1063/1.2353811. Vai! Cerca con Google

[Jeonga] J.K. Jeonga, H.W. Yang, J.H. Jeong, Y.-G. Mob, H.D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors”, Appl. Phys. Lett. 93 (2008), https://doi.org/10.1063/1.2990657. Vai! Cerca con Google

[Lago2] N. Lago, A. Cester, N. Wrachien, I. Tomasino, S. Toffanin, S.D. Quiroga, E. Benvenuti, M. Natali, M. Muccini, G. Meneghesso, “On the pulsed and transient characterization of organic field-effect transistors”, IEEE Electron. Device Lett. 36 (2015) 1359–1362, https://doi.org/10.1109/LED.2015.2496336. Vai! Cerca con Google

[Simonetti] O. Simonetti, L. Giraudet, T. Maurel, J.-L. Nicolas, A. Belkhir, “Organic transistor model with nonlinear injection: effect of uneven source contact on apparent mobility and threshold voltage”, Org. Electron. 11 (2010) 1381–1393, https://doi.org/10.1016/j.orgel.2010.06.001. Vai! Cerca con Google

[Marinov] O. Marinov, M.J. Denn, U. Zshieschamg, H. Klauk, Organic thin-film transistors: Part I—compact DC modeling, IEEE Trans. Electron. Dev. 56 (2009) 2952–2961, https://doi.org/10.1109/TED.2009.2033308. Vai! Cerca con Google

[SCL] S. NĕŠpurek, P. Smejtek, “Space-charge limited currents in insulators with the Gaussian distribution of traps”, Czech. J. Phys. 22 (1972) 160–175. Cerca con Google

[Steiger] J. Steiger, R. Schmechel, H. von Seggern, “Energetic trap distributions in organic semiconductors”, Synth. Met. 129 (2002) 1–7, https://doi.org/10.1016/S0379-6779(02)00012-. Vai! Cerca con Google

[Natali] D. Natali, L. Fumagalli, M. Sampietro, “Modeling of organic thin film transistors: effect of contact resistances”, J. Appl. Phys. 101 (2007), https://doi.org/10.1063/1.2402349. Vai! Cerca con Google

[Deen] M.J. Deen, O. Marinov, U. Zschieschang, H. Klauk, “Organic thin-film transistors: Part II-parameter extraction”, IEEE Trans. Electron. Dev. 56 (2009) 2962–2968, https://doi.org/10.1109/TED.2009.2033309. Vai! Cerca con Google

[Wrachien] N. Wrachien, A. Cester, N. Lago, A. Rizzo, R. D'Alpaos, A. Stefani, G. Turatti, M. Muccini, G. Meneghesso, “Reliability study of organic complementary logic inverters using constant voltage stress”, Solid State Electron. 113 (2015) 151–156, https://doi.org/10.1016/j.sse.2015.05.028. Vai! Cerca con Google

[Khan] S. Khan, L. Lorenzelli, R. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: a review”, IEEE Sensors J. 15 (2015) 3164–3185, http://dx.doi.org/10.1109/JSEN.2014.2375203. Vai! Cerca con Google

[Nathan] A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A.J. Flewitt, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A.J. Amaratunga, W.I. Milne, “Flexible electronics: the next ubiquitous platform”, Proc. IEEE 100 (2012) 1486–1517, http://dx.doi.org/10.1109/JPROC.2012.2190168. Vai! Cerca con Google

[An] B.W. An, J.H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho, S. Jo, J.-U. Park, “Smart sensor systems for wearable electronic devices”, Polymer 9 (2017), http://dx.doi.org/10.3390/polym9080303. Vai! Cerca con Google

[Lago3] N. Lago, A. Cester, “Flexible and organic neural interfaces: a review”, Appl. Sci. 7 (2017), http://dx.doi.org/10.3390/app7121292. Vai! Cerca con Google

[Kim] J.-H. Kim, I. Lee, T.-S. Kim, N. Rolston, B.L. Watson, R.H. Dauskardt, “Understanding Mechanical Behavioir and Reliability of Organic Electronic Materials”, 42 (2017), pp. 115–123, http://dx.doi.org/10.1557/mrs.2017.3. Vai! Cerca con Google

[Zhang] Y.-H. Zhang, Z.-X. Mei, H.-L. Liang, X.-L. Du, “Review of flexible and transparent thin-film transistor based on zinc oxide and related materials”, Chin. Phys. 26 (2017), http://dx.doi.org/10.1088/1674-1056/26/4/047307. Vai! Cerca con Google

[Jeon] J.H. Jeon, J. Kim, M.-K. Ryu, “Instability of an amorphous indium gallium zinc oxide TFT under bias and light illumination”, J. Korean Phys. Soc. 58 (2011) 158–162, http://dx.doi.org/10.3938/jkps.58.158. Vai! Cerca con Google

[Domen] K. Domen, T. Miyase, K. Abe, H. Hosono, T. Kamiya, “Positive-bias stress test on amorphous In–Ga–Zn–O thin film transistor: annealing-temperature dependence”, J. Disp. Technol. 10 (2014) 975–978, http://dx.doi.org/10.1109/JDT.2014.2350518. Vai! Cerca con Google

[Hasan] M.M. Hasan, M.M. Billah, J. Jamg, “Electrical stability of flexible a-IGZO TFT under strained condition”, Active-matrix Flatpanel Displays and Devices, Kyoto, Japan, July 2016, http://dx.doi.org/10.1109/AM-FPD.2016.7543660. Vai! Cerca con Google

[Münzenrieder] N. Münzenrieder, K.H. Cherenack, G. Tröster, “The effects of mechanical bendingand illumination on the performance of flexible IGZO TFTs”, IEEE Trans. Electron Devices 58 (2011) 2041–2048, http://dx.doi.org/10.1109/TED.2011.2143416. Vai! Cerca con Google

[Groner] M.D. Groner, F.H. Fabreguette, J.W. Ealm, S.M. George, “Low-temperature Al2O3atomic layer deposition”, Chem. Mater. 16 (2004) 639–645, http://dx.doi.org/10.1021/cm0304546. Vai! Cerca con Google

[Hwang] B.-U. Hwang, D.-I. Kim, S.-W. Cho, N.-E. Lee, “Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thinfilm transistors”, Org. Electron. 15 (2014), http://dx.doi.org/10.1016/j.orgel.2014.04.003. Vai! Cerca con Google

[Petti] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, “Metal oxide semiconductro thin-film transisotrs for flexible electronics”, Appl. Phys. Rev. 3 (2016), http://dx.doi.org/10.1063/1.4953034. Vai! Cerca con Google

[Daus] A. Daus, C. Vogt, N. Munzenrieder, L. Petti, S. Knobelspies, G. Cantarella, M. Luisier, G.A. Salvatore, G. Troster, “Positive charge trapping phenomenon in n channel thin-film transistors with amorphous alumina gate insulators”, J. Appl. Phys. 120 (2016), http://dx.doi.org/10.1063/1.4972475. Vai! Cerca con Google

[Petti2] L. Petti, A. Frutiger, N. Munzenrieder, G.A. Salvatore, L. Buthe, C. Vogt, G. Cantarella, G. Troster, “Flexible quasi-vertical In-Ga-Zn-O thin-film transistor with 300-nm channel length”, IEEE Electron Device Lett. 36 (2015) 475–477, http://dx.doi.org/10.1109/LED.2015.2418295. Vai! Cerca con Google

[FND] R.H. Fowler, L. Nordheim, “Electron emission in intense electric fields”, Proc. R. Soc. London, Ser. A 119 (1928) 173–181, http://dx.doi.org/10.1098/rspa.1928.0091. Vai! Cerca con Google

[Wrachien2] N. Wrachien, A. Cester, Y.Q. Wu, P.D. Ye, E. Zanoni, “Effects of positive and negative stresses on III-V MOSFETs with Al2O3 gate dielectric”, IEEE Electron Device Lett. 32(2011) 488–490, http://dx.doi.org/10.1109/LED.2011.210610. Vai! Cerca con Google

[Yu] M.-J. Yu, R.-P. Lin, Y.-H. Chang, T.-H. Hou, “High-voltage amorphous InGaZnO TFT with Al2O3 high-k dielectric for low-temperature monolithic 3-D integration”, IEEE Trans. Electron Devices 63 (2016) 3944–3949, http://dx.doi.org/10.1109/TED.2016.2598396. Vai! Cerca con Google

[Cartier] E. Cartier, “Characterization of the hot-electron-induced degradation in thin SiO2 gate oxides”, Microelectron. Reliab. 38 (1998) 201–211, http://dx.doi.org/10.1016/S0026-2714(97)00168-6. Vai! Cerca con Google

[Davila] R.A. R-Davila et Al., “A New Integration-Based Procedure to Extract the Threshold Voltage, the Mobility Enhancement Factor, and the Series Resistance of Thin-Film MOSFETs”, 2019, IEEE Transaction on Electron Devices pp:1-7, DOI: 10.1109/TED.2019.2913699 Cerca con Google

[Bnm1] M. Buonomo, N. Lago, G. Cantarella, N. Wrachien, M. Natali, F. Prescimone, E. Benvenuti, Cerca con Google

M. Muccini, S. Toffanin, A. Cester “Simple and accurate single transistor technique for Cerca con Google

parameters extraction from organic and inorganic thin film devices”, Organic Electronics, Cerca con Google

DOI: 10.1016/j.orgel.2018.08.008 Cerca con Google

[Bnm2] M. Buonomo, N. Wrachien, N. Lago, G. Cantarella, A. Cester “Effects of stair case gate Cerca con Google

bias stress in IGZO/Al2O3 flexible TFTs”, Microelectronics Reliability, 2018, DOI: Cerca con Google

10.1016/j.microrel.2018.06.056 Cerca con Google

[Jason_D1] J. A. Röhr, et al., “Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films”, J. Phys.: Condens. Matter 30 (2018) 105901 (13pp), https://doi.org/10.1088/1361-648X/aaabad Vai! Cerca con Google

[Mott_1940] Mott. N. F. and Gurney R. W. 1940, Electronic Process in Ionic Crystals (Oxford: Oxford University Press) Cerca con Google

[Murg_frenk_1] P. N. MURGATROYD et al., “Theory of space-charge-limited current enhanced by Frenkel Effect”, PHYS. D: APPL. PHYS., 1970, VOL. 3. Cerca con Google

[Lampert_1] LAMPERT M. A., 1956, Phys. Rev.,103, 1648-56. Cerca con Google

[Frenk_1] R. I. Frank and J. G. Simmons “Space-charge Effects on Emission-Limited Current Flow in Insulator” ,1967, J. Appl. Phys., 38, (2), 832-40, doi: 10.1063/1.1709421 Cerca con Google

[Hartke_1] HARTKE J. L., 1968, J. Appl. Phys., 39, 4871-3. Cerca con Google

[Frenkel_1] FRENKEL J., 1938, Phys. Rev., 54, 647. Cerca con Google

[Santoni_2014] F. Santoni et al., “The relevance of correct injection model to simulate electrical properties of organic semiconductors”, 2014, Organic Electronics 15(7): 1557–1570, DOI: 10.1016/j.orgel.2014.04.023 Cerca con Google

[Kim] Chang Hyun Kim, et Al., “Modeling the low-voltage regime of organic diodes: Origin of the ideality factor”, J. Appl. Phys. 110, 093722 (2011); https://doi.org/10.1063/1.3660221 Vai! Cerca con Google

[Zubair] Muhammad Zubair et Al., “Thickness Dependence on Space-Charge-Limited Current in Spatially Disordered Organic Semiconductors”, 2018, IEEE Transaction on electron devices, vol 65, no., DOI: 10.1109/TED.2018.2841920 Cerca con Google

[Malliaras] J.C. Scott and G. Malliaras, “Charge injection and recombination at the metal-organic interface”, 1999, Chemical Physics Letters, 299, 115-119 Cerca con Google

[Scott] J.C. Scott “Metal-organic interface and charge injection in organic electronic devices”, Journal of Vacuum Science and Technology A, 2003, Volume 21, 521-530 Cerca con Google

[Emtage] P.R.Emtage and J.J O’Dwyer, “Richardson-schottky effect in insulators”, Physical Review Letters, 1996, Volume 16, Number 9, 356-358 Cerca con Google

[Varo] P. L. Varo, et al., “Space-charge and injection limited current in organic diodes: A unified model”, Organic Electronics, 15 (2014), 2526-2535, http://dx.doi.org/10.1016/j.orgel.2014.05.039 Vai! Cerca con Google

[Agrawal] R. Agrawal et al., “Thickness dependence of space charge limited current and injection limited current in organic molecular semiconductors”, Appl. Phys. Lett. 93, 073311 (2008); doi: 10.1063/1.2974084 Cerca con Google

[Chandra] W. Chandra et Al., “Two-dimensional analytical Mott-Gurney law for a trap-filled solid”, 2007, Appl. Phys. Lett. 90, 153505, https://doi.org/10.1063/1.2721382 Vai! Cerca con Google

[Buffett] Z. P. Buffett and W. R. Datars, “A lattice gas approach to conduction in organic material”, 2005, J. Phys.: Condens. Matter 17, 2919–2933 DOI:10.1088/0953-8984/17/19/008 Cerca con Google

[Limketkai] B.N. Limketkai ans M.A. Baldo “Charge injection into cathode-doped amorphous organic semiconductors”, Physical Review, 71, 085207 (2005); doi:10.1103/PhyRevB.71.085207 Cerca con Google

[Kryszewski] M.Kryszewski, A. Szymański, “Space Charge Limited Current in Polymers”, Journal of Polymer Science: Macromolecular Reviews Volume 4, Issue 1, 1970 doi:10.1002/pol.1970.230040105 Cerca con Google

[Prachi] P. Mantri, S.M.H. Rizvi, B. Mazhari “Estimation of built-in voltage from steady-state current-voltage characteristics of organic diodes”, Organic Electronics 13, 2013, 2034-2038, doi: 10.1016/j.orgel.2013.04.030 Cerca con Google

[Vissenberg] M.C.J.M. Vissenberg and M.Matters “Theory of the field-effect mobility in amorphous organic transistors”, 1998, Phusical review B volume 57, number 20, pp. 964-967 Cerca con Google

[Lago_dlts] N. Lago, A. Cester, N. Wrachien, E. Benvenuti, S.D. Quiroga, M. Natali, S. Toffanin, M. Muccini, G. Meneghesso, “Investigation of mobility transient on organic transistor by means of DLTS technique”, IEEE Trans. Electron. Dev. 63 (2016) 4432–4439, https://doi.org/10.1109/TED.2016.2611142. Vai! Cerca con Google

[Morana] M. Morana et Al., “Organic Field‐Effect Devices as Tool to Characterize the Bipolar Transport in Polymer‐Fullerene Blends: The Case of P3HT‐PCBM”, 2007, Advanced Functional Materials, DOI: https://doi.org/10.1002/adfm.200700124 Vai! Cerca con Google

[Ishii] H. Ishii et Al., “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces**”, 1999, Advanced Materials, (11) No. 8 pp.605-625 Cerca con Google

[Jonda]CH. Jonda, A.B.R. Mayer, U. Stolz., “Surface roughness effects and their influence on the degradation of organic light emitting device”, 2000, Journal of material science, (35) pp. 5645– 5651 Cerca con Google

[Zhang_R], P. Zhang et Al “100 year of physics of diodes”, 2017, Applied Physics review. DOI: http://dx.doi.org/10.1063/1.4978231 Vai! Cerca con Google

[Taleb] M. Taleb, G. Teyssèdre, S. Le Roy., “Role of the Interface on Charge Build-up in a Low-Density Polyethylene: Surface Roughness and Nature of the Electrode”, 2009, IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 112– 115 Cerca con Google

[Nakayama] K. Nakayama et Al., “Photocurrent multiplication at organic/metal interface and surface morphology of organic films”, 2000, Journal of Applied Physics (87) DOI: 10.1063/1.372351 Cerca con Google

[Hsu] B.-C. Hsu et Al., “Oxide Roughness Effect on Tunneling Current of MOS Diodes”, 2002, IEEE Transaction On Electron Devices (49) No. 12, pp. 2204-2208, DOI: 10.1109/TED.2002.805229 Cerca con Google

[Shariff] N.S.M. Shariff and P.M.M.A Saad, “Optical and Morphological Properties of Different P3HT Concentration”, 2016, IEEE Student Conference on Research and Development Cerca con Google

[Knipp] D. Knipp, et Al., “Morphology and electronic transport of polycrystalline pentacene thin-film transistors” 2003, DOI: 10.1063/1.1578536 Cerca con Google

[Natali_M] D. Natali and M. Caironi., “Charge Injection in Solution-Processed Organic Field-Effect Transistor: Physics, Models and Characterization Methods” 2012, Advanced Materials, DOI:10.1002/adma.201104206 Cerca con Google

[Silveira] W. R. Silveira and J.A. Marohn, “Microscopic View of Charge Injection in an Organic Semiconductors” 2004, Physical Review Letters DOI: 10.1103/PhysRevLett.93.116104 Cerca con Google

[Jung]Y. Jung, “The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of High-Performance Polythiophenes**” 2008, Advanced Functional Materials DOI: 10.1103/PhysRevLett.93.116104 Cerca con Google

[Bullejos] P.L. Bullejos et. Al., “Unified model for the injection and transport of charge in organic diodes” 2008, Journal of Applied Physics, DOI: 10.1063/1.2884711 Cerca con Google

[Kim_R] K-B. Kim et Al., “Relationship between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light-Emitting Diode”,2003, Japanese Journal of Applied Physics, Vol. 42 pp. L 438–L 440 Cerca con Google

[Kant] R. Kant and S.K. Rangarajan, “Effect of surface roughness on diffusion-limited charge transfer”,1993, Journal of Electroanalytical Chemistry, 368, pp. 1-21 Cerca con Google

[Boudinet] D. Boudinet et Al., “Influence of the semi-conductor layer thickness on electricalperformance of staggered n- and p-channel organic thin-film transistors”,2010, Organic Electronics, (11), pp 291-298, DOI: :10.1016/j.orgel.2009.11.008 Cerca con Google

[Nigam] A. Nigam, et Al., “Impact of Morphology on Charge Carrier Mobility in Top Gate C60 Organic Field Effect Transistors”, 2014, Conference: IEEE 2nd International Conference on Emerging Electronics, DOI: 10.1109/ICEmElec.2014.7151134 Cerca con Google

[Roberson] L.B.Roberson, “Correlation of morphology and device performance in inorganic–organic TiO2–polythiophene hybrid solid-state solar cells”,2004, Coordination Chemistry Reviews pp. 1491-1499, DOI:1 0.1016/j.ccr.2004.02.013 Cerca con Google

[SCL] S. NĕŠpurek, P. Smejtek, Space-charge limited currents in insulators with the Gaussian distribution of traps, Czech. J. Phys. 22 (1972) 160–175. Cerca con Google

[Steiger] J. Steiger, R. Schmechel, H. von Seggern, Energetic trap distributions in organic semiconductors, Synth. Met. 129 (2002) 1–7, https://doi.org/10.1016/S0379-6779(02)00012-. Vai! Cerca con Google

[Fischer] J. Fischer et Al., “Exploiting diffusion currents at Ohmic contacts for trap characterization in organic semiconductors”, 2014, Organic Electronic (15), pp. 2428-2432 DOI: http://dx.doi.org/10.1016/j.orgel.2014.06.029 Vai! Cerca con Google

[Arkhipov] V.I. Arkhipov et Al., “Charge injection versus space-charge-limited current in organic light-emitting diodes”, 2003, Appl. Phys. Lett. 83 DOI: 10.1063/1.1633967 Cerca con Google

[Arkhipov_2] V. I. Arkhipov, et Al. “Charge injection into light-emitting diodes: Theory and experiment”, 1998, Journal of Applied Physics 84, 848, DOI: 10.1063/1.368146 Cerca con Google

[Rokhlenko] A. Rokhlenko, J.L. Lebowitz, “Space charge limited two-dimensional electron flow in a rectangular geometry”, 2007, Journal of Applied Physics, DOI: 10.1063/1.2757718 Cerca con Google

[Torricelli_OLED] F. Torricelli, D. Zappa, and L. Colalongo “Space-charge-limited current in organic light emitting diodes”, 2010, Appl. Phys. Lett. DOI: 10.1063/1.3358147 Cerca con Google

[ESD] M. Buonomo et Al., “Analysis of the effects of voltage pulses on P3HT:PCBM polymeric solar cells by means of TLP technique”, 2018, Microelectronics Reliability, pp. 878-881 DOI: https://doi.org/10.1016/j.microrel.2018.06.059 Vai! Cerca con Google

[Anthony] J. E. Anthony, “Functionalized Acenes and Heteroacenes for Organic Electronics,” Chem. Rev., vol. 106, no. 12, pp. 5028-5048, Nov. 2006, doi: 10.1021/cr050966z. Cerca con Google

[Usta] H. Usta, W. C. Sheets, M. Denti, G. Generali, R. Capelli, S. Lu, X. Yu, M. Muccini, and A. Facchetti, “Perfluoroalkyl-functionalized thiazole–thiophene oligomers as n-channel semiconductors in organic field-effect and light-emitting transistors,” Chem. Mater., vol. 26, no. 22, Cerca con Google

pp. 6542-6556, Nov. 2014, doi: 10.1021/cm503203w. Cerca con Google

[Benicori] T. Benicori, M. Capaccio, F. De Angelis, L. Falciola, M. Muccini, P. Mussini, A. Ponti, S. Toffanin, P. Traldi, and F. Sannicolò, “Spider-Like Oligothiophenes,” Chem. Eur. J., vol. 14, no. 12, pp. 459-471, Cerca con Google

Jan. 2008, doi: 10.1002/chem.200701117. Cerca con Google

[Berggren] M. Berggren, and A. R.-Dahlfors, “Organic Bioelectronics,” Adv. Mater., vol. 19, no. 20, pp. 3201-3213, Oct. 2007, Cerca con Google

doi: 10.1002/adma.200700419. Cerca con Google

[Fang] Y. Fang, X. Li, Y. Fang, “Organic bioelectronics for neural interfaces,” J. Mater. Chem. C, vol 3, no. 25, pp. 6424-6430, Jun. 2015, Cerca con Google

doi: 10.1039/C5TC00569H. Cerca con Google

[Benfenati] V. Benfenati, S. Toffanin, S. Bonetti, G. Turatti, A. Pistone, M. Chiappalone, A. Sagnella, A. Stefani, G. Generali, G. Ruani, D. Saguatti, R. Zamboni, and M. Muccini, “A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons”, Nat. Mater, vol. 12, pp. 672-680, May 2013, Cerca con Google

doi: 10.1038/nmat3630. Cerca con Google

[Lago] N. Lago, and A. Cester, “Flexible and Organic Neural Interfaces: A Review,” Appl. Sci., vol. 7, no. 12, Dec. 2017, Cerca con Google

doi: 10.3390/app7121292. Cerca con Google

[Lin] P. Lin, and F. Yan, “Organic Thin-Film Transistor for Chemical and Biological Sensing,” Adv. Mater., vol. 24, no. 1, pp. 34-51, Jan. 2012, doi: 10.1002/adma.201103334. Cerca con Google

[Benfenati2] V. Benfenati, K. Stahl, C. G.-Perez, S. Toffanin, A. Sagnella, R. Torp, D. L. Kaplan, G. Ruani, F. G. Omenetto, R. Zamboni, and M. Muccini, “Biofunctional Silk/Neuron Interfaces,” Adv. Funct. Mater., vol. 22, no. 9, pp. 1871-1884, May 2012, doi: 10.1002/adfm.201102310. Cerca con Google

[Kergoat] L. Kergoat, N. Battaglini, L. Miozzo, B. Piro, M.-C. Pham, A. Yassar, and G. Horowitz, “Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors”, Org. Electron., vol. 12, no. 7, pp. 1253-1257, Jul. 2011, doi: 10.1016/j.orgel.2011.04.006. Cerca con Google

[Porrazzo] R. Porrazzo, S. Bellani, A. Luzio, E. Lanzarini, M. Caironi, and M. R. Antognazza, “Improving mobility and electrochemical stability of a water-gate polymer field-effect transistor,” Org. Electron., vol. 15, no. 8, pp. 2126-2134, Sep. 2014, doi: 10.1016/j.orgel.2014.06.002. Cerca con Google

[Rost] C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, and M. Muccini, “Ambipolar light-emitting organic field-effect transistor,” Appl. Phys. Lett., vol. 85, no. 9, 1613-1615, Aug. 2004, doi: 10.1063/1.1785290. Cerca con Google

[Cosseddu] P. Cosseddu, S. Lai, M. Barbaro, and A. Bonfiglio, “Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process,” Appl. Phys. Lett., vol. 100, no. 9, Mar. 2012, doi: 10.1063/1.3691181. Cerca con Google

[Bonora] P. L. Bonora, F. Deflorian, and L. Fedrizzi, “Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion,” Electrochim. Acta, vol. 41, no. 7-8, pp. 1073-1082, May-Jun. 1996, Cerca con Google

doi: 10.1016/0013-4686(95)00440-8. Cerca con Google

[Barcia] O. E. Barcia, E. D’Elia, I. Frateur, O. R. Mattos, N. Pébère, and B. Tribollet, “Application of the impedance model of de Levie for the characterization of porous electrodes,” Electrochim. Acta, vol. 47, Cerca con Google

no. 13-14, pp. 2109-2116, May 2002, Cerca con Google

doi: 10.1016/S0013-4686(02)00081-6. Cerca con Google

[Franceschetti] D. R. Franceschetti, and J. R. Macdonald, “Electrode kinetics, equivalent circuits, and system characterization: Small-signal conditions,” J. Electroanal. Chem., vol. 82, no. 1-2, pp. 271-301, Cerca con Google

Sep. 1977, doi: 10.1016/S0022-0728(77)80262-3. Cerca con Google

[Wang] Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells,” J. Phys. Chem. B, vol. 109, no. 31, pp. 14945-14953, Jul. 2005, doi: 10.1021/jp052768h. Cerca con Google

[Halme] J. Halme, P. Vahermaa, K. Miettunen, and P. Lund, “Device Physics of Dye Solar Cells” Adv. Mat., vol. 22, no. 35, pp. E201-E234, Sep. 2010, doi: 10.1002/adma.201000726. Cerca con Google

[Bisquert] J. Bisquert, and F. F.-Santiago, “Impedance spectroscopy: A general Introduction and application to dye-sensitized solar cells,” in Dye-sensitized Solar Cells, CRC Press, 2010. Cerca con Google

[Belhachemi] F. Belhachemi, S. Raël, and B. Davat, “A physical based model of power electric double-layer supercapacitors,” IEEE Industry Applications Society Annual Meeting, Rome, 2000, pp. 3069-3076 vol.5, doi: 10.1109/IAS.2000.882604. Cerca con Google

[Fouquet] N. Fouquet, C. Doulet, C. Nouillant, G. D.-Tanguy, and B. O.-Bouamama, “Model based PEM fuel cell state-of-health monitoring via ac impedance measurements,” J. Power Sources, vol. 159, no. 2, Cerca con Google

pp. 905-913, Sep. 2006, doi: 10.1016/j.jpowsour.2005.11.035. Cerca con Google

[Sharma] P. Sharma, and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Convers. Manage., vol. 51, no. 12, pp. 2901-2912, Dec. 2010, doi: 10.1016/j.enconman.2010.06.031. Cerca con Google

[Lago2] N. Lago, A. Cester, N. Wrachien, M. Natali, S. D. Quiroga, S. Bonetti, M. Barbato, A. Rizzo, E. Benvenuti, V. Benfenati, M. Muccini, S. Toffanin, and G. Meneghesso, “A Physical-Based Equivalent Circuit Model for an Organic/Electrolyte Interface,” Org. Electron., vol. 35, Cerca con Google

pp. 176- 185, Aug. 2016, doi: 10.1016/j.orgel.2016.05.018. Cerca con Google

[Toffanin] S. Toffanin, V. Benfenati, A. Pistone, S. Bonetti, W. Koopman, T. Posati, A. Sagnella, M. Natali, R. Zamboni, G. Ruani, and M. Muccini, “N-type perylene-based organic semiconductors for functional neural interfacing,” J. Mater. Chem. B, vol. 1, pp. 3850-3859, Jun. 2013, Cerca con Google

doi: 10.1039/C3TB20555J. Cerca con Google

[Oh] J. H. Oh, P. Wei, and Z. Bao, “Molecular n-type doping for air-stable electron transport in vacuum-processed n-channel organic transistors,” Appl. Phys. Lett., vol. 97, no. 24, Dec. 2010, doi: 10.1063/1.3527972. Cerca con Google

[Park] S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, “High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors,” Appl. Phys. Lett., vol. 91, no. 6, Cerca con Google

Aug. 2007, doi: 10.1063/1.2768934. Cerca con Google

[Zhang] Q. Zhang, F. Leonardi, S. Casalini, I. Temiño, and M. M-Torrent, “High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation,” Sci. Rep., vol. 6, no. 39623, Dec. 2016, doi: 10.1038/srep39623. Cerca con Google

[Barsoukov] E. Barsoukov, and J. R. Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applications”, Wiley J. and Sons, 2005. Cerca con Google

[Bard] A. J. Bard, and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Application”, Wiley J. and Sons, 2001. Cerca con Google

[Diard] J.-P. Diard, B. Le Gorrec, and C. Montella, Diffhandusion “Handbook of Electrochemical Impedance Spectroscopy”, Bio-Logic Science Instrumentation, 2012. Cerca con Google

[Randles] E. B. Randles, “Kinetics of Rapid Electrode Reactions”, Disc. Faraday Soc., vol. 1, pp. 11-19, Mar. 1947, doi: 10.1039/DF9470100011. Cerca con Google

[Levie] R. de Levie, “On porous electrodes in electrolyte solutions”, Electrochim. Acta, vol. 8, no. 10, pp. 751-780, Oct. 1963, Cerca con Google

doi: 10.1016/0013-4686(63)80042-0. Cerca con Google

[Kim] S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, “Electrolyte-Gated Transistors for Organic and Printed Electronics”, Adv. Mater., vol. 25, no. 13, pp. 1822, 1846, Apr. 2013, doi: 10.1002/adma.201202790. Cerca con Google

[Laiho] A. Laiho, L. Herlogsson, R. Forchheimer, X. Crispin, and M. Berggren, “Controlling the dimensionality of charge transport in organic thin-film transistors”, PNAS, vol. 108, no. 37, pp. 15069-15073, Sep. 2011, doi: 10.1073/pnas.1107063108. Cerca con Google

[Larsson] O. Larsson, A. Laiho, W. Schmickler, M. Berggren, X. Crispin, “Controlling the Dimensionality of Charge Transport in an Organic Electrochemical Transistor by Capacitive Coupling”, Adv. Mater., vol. 23, no. 41, pp. 4764-4769, Nov. 2011, doi: 10.1002/adma.201103131. Cerca con Google

[Hauch] A. Hauch, and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at platinum electrode in dye-sensitized solar cells”, Electrochim. Acta, vol. 46, no. 22, pp. 3457-3466, Aug. 2001, Cerca con Google

doi: 10.1016/S0013-4686(01)00540-0. Cerca con Google

[Cester] A. Cester, N. Wrachien, M. Bon, G. Meneghesso, R. Bertani, R. Tagliaferro, S. Casolucci, T. M. Brown, A. Reale, and A. D. Carlo, “Degradation mechanisms of dye-sensitized solar cells: Light, bias and temperature effects”, IEEE International Reliability Physics Symposium, Monterey, CA, 2015, pp. 3E.2.1-3E.2.8, Cerca con Google

doi: 10.1109/IRPS.2015.7112716. Cerca con Google

[Buth] F. Buth, D. Kumar, M. Stutzmann, and J. A. Garrido, “Electrolyte-gated organic field-effect transistors for sensing applications”, Appl. Phys. Lett., vol. 98, no. 15, Apr. 2011, doi: 10.1063/1.3581882. Cerca con Google

[Massobrio] P. Massobrio, G. Massobrio, and S. Martinoia, “Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models”, Front. Neurosci., vol. 10, Jun. 2016, doi: 10.3389/fnins.2016.00282. Cerca con Google

[Nörtemann] K. Nörtemann, J. Hilland, and U. Kaatze, “Dielectric Properties of Aqueous NaCl Solutions at Microwave Frequencies”, J. Phys. Chem. A, vol. 101, no. 37, pp. 6864-6869, Sep. 1997, doi: 10.1021/jp971623a. Cerca con Google

[Cramer] T. Cramer, A. Kyndiah, M. Murgia, F. Leonardi, S. Casalini, and F. Biscarini, “Double layer capacitance measured by organic field effect transistor operated in water”, Appl. Phys. Lett., vol. 100, no. 14, Cerca con Google

Apr. 2012, doi: 10.1063/1.3699218. Cerca con Google

[Kergoat] L. Kergoat, L. Herlogsson, D. Braga, B. Piro, M.-C. Pham, X. Crispin, M. Berggren, and G. Horowitz, “A Water-Gate Organic Field-Effect Transistor”, Adv. Mater., vol. 22, no. 23, pp. 2565-2569, Jun. 2010, Cerca con Google

doi: 10.1002/adma.200904163. Cerca con Google

[Melzer] K. Melzer, M. Brändlein, B. Podescu, D. Podescu, P. Lugli, and G. Scarpa, “Characterization and simulation of electrolyte-gated organic field-effect transistors”, Faraday Discuss., vol. 174, pp. 399-411, Cerca con Google

Jun. 2014, doi: 10.1039/C4FD00095A. Cerca con Google

[An] B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho, S. Jo, and J.-U. Park, “Smart Sensor Systems for Wearable Electronic Devices”, Polymers, vol. 9, no. 8, Jul. 2017, Cerca con Google

doi: 10.3390/polym9080303. Cerca con Google

[Lochner] C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry”, Nat. Commun., vol. 5, Dec. 2014, doi: 10.1038/ncomms6745. Cerca con Google

[Pappa] A.-M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, and R. M. Owens, “Organic Electronics for Point-of-Care Metabolite Monitoring”, Trends Biotechnol., vol. 36, no. 1, pp. 45-49, Jan. 2018, Cerca con Google

doi: 10.1016/j.tibtech.2017.10.022 Cerca con Google

[Khan] R. S. Khan, Z. Khurshid, and F. Y. I. Asiri, “Advancing Point-of-Care (PoC) Testing Using Human Saliva as Liquid Biopsy Diagnostics”, vol. 7, no. 3, Jul. 2017, doi: 10.3390/diagnostics7030039. Cerca con Google

[Lin2] Z. Lin, X. Guo, L. Zhou, C. Zhang, J. Chang, J. Wu, and J. Zhang, “Solution-processed high performance organic thin film transistors enabled by roll-to-roll slot die coating technique”, Org. Electron., vol. 54, pp. 80-88, Mar. 2018, doi: 10.1016/j.orgel.2017.12.030. Cerca con Google

[Zhao] X. Zhao, B. Zhang, Q. Tang, X. Ding, S. Wang, Y. Zhou, Y. Tong, and Y. Liu, “Conformal transistor arrays based on solution-processed organic crystals”, Sci. Rep., vol. 7, no 1, Nov. 2017, doi: 10.1038/s41598-017-15518-y. Cerca con Google

[Wang2] Z. Wang, L. Huang, X. Zhu, X. Zhou, and L. Chi “An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films”, Adv. Mater., vol. 29, no. 11, Oct. 2017, Cerca con Google

doi: 10.1002/adma.201703192 Cerca con Google

[Mattana] G. Mattana, A. Loi, M. Woytasik, M. Barbaro, V. Noël, and B. Piro, “Inkjet-Printing: A New Fabrication Technology for Organic Transistors”, Adv. Mater. Technol., vol. 2, no. 10, Oct. 2017, doi: 10.1002/admt.201700063. Cerca con Google

[Zhang2] Q. Zhang, F. Leonardi, S. Casalini, M. Mas-Torrent, “Mercury-Mediated Organic Semiconductor Surface Doping Monitored by Electrolyte-Gated Field-Effect Transistors”, Adv. Funct. Mater., vol. 27, no. 46, Dec. 2017, doi: 10.1002/adfm.201703899. Cerca con Google

[Wang3] D. Wang, V. Noël, and B. Piro, “Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review”, Electronics, vol. 5, no. 1, Feb. 2015, doi: 10.3390/electronics5010009. Cerca con Google

[Pirazzini] M. Pirazzini, O. Rossetto, C. Bertasio, F. Bordin, C. C. Shone, T. Binz, and C. Montecucco, “Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons”, Biochem. Biophys. Res. Commun., vol. 430, no. 1, pp. 38-42, Jan. 2013, doi: 10.1016/j.bbrc.2012.11.048. Cerca con Google

[Cramer2] T. Cramer, B. Chelli, M. Murgia, M. Barbalinardo, E. Bystrenova, D. M. de Leeuw, and F. Biscarini, “Organic ultra-thin film transistor with a liquid gate for extracellular recording”, Phys. Chem. Chem. Phys., vol. 15, pp. 3897-3905, Jan. 2013, doi: 10.1039/C3CP44251A. Cerca con Google

[Chiang] C. K. Chiang et al., “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett., vol. 39, no. 17, pp. 1098–1101, Oct. 1977. Cerca con Google

[Wang4] Y. Wang et al., “Organic crystalline materials in flexible electronics”, Chem. Soc. Rev., vol. 48, no. 6, pp. 1492–1530, Mar. 2019. Cerca con Google

[Root] S. E. Root, S. Savagatrup, A. D. Printz, D. Rodriquez, and D. J. Lipomi, “Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics”, Chem. Rev., vol. 117, no. 9, pp. 6467–6499, May 2017. Cerca con Google

[Vidor] F. F. Vidor, T. Meyers, and U. Hilleringmann, “Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors”, Electronics, vol. 4, no. 3, pp. 480–506, Sep. 2015. Cerca con Google

[Li] H. Li et al., “Chemical and Biomolecule Sensing with Organic Field-Effect Transistors”. Chem. Rev., vol. 119, no. 1, pp. 3–35, Jan. 2019. Cerca con Google

[Surya] S. G. Surya, H. N. Raval, R. Ahmad, P. Sonar, K. N. Salama, and V. R. Rao, “Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review”, TrAC Trends in Analytical Chemistry, vol. 111, pp. 27–36, Feb. 2019. Cerca con Google

[Lou] Z. Lou, L. Wang, and G. Shen, “Recent Advances in Smart Wearable Sensing Systems”, Advanced Materials Technologies, vol. 3, no. 12, p. 1800444, 2018. Cerca con Google

[Inal] S. Inal, J. Rivnay, A.-O. Suiu, G. G. Malliaras, and I. McCulloch, “Conjugated Polymers in Bioelectronics,” Acc. Chem. Res., vol. 51, no. 6, pp. 1368–1376, Jun. 2018. Cerca con Google

[Lago3] N. Lago, N. Wrachien, M. G. Pedersen, and A. Cester, “Simultaneous stimulation and recording of cell activity with reference-less sensors: Is it feasible?,” Organic Electronics, vol. 62, pp. 676–684, Nov. 2018. Cerca con Google

[Khodagholy] D. Khodagholy et al., “In vivo recordings of brain activity using organic transistors,” Nature Communications, vol. 4, p. 1575, Mar. 2013. Cerca con Google

[Cramer3] T. Cramer et al., “Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks,” Phys. Chem. Chem. Phys., vol. 15, no. 11, pp. 3897–3905, 2013. Cerca con Google

[Deen] M.J. Deen, O. Marinov, U. Zschieschang, H. Klauk, "Organic thin-film transistors: Part II-parameter extraction", IEEE Trans. Electron. Dev. 56 (2009) 2962–2968, http://dx.doi.org/10.1109/TED.2009.2033309. Vai! Cerca con Google

[SCL] S. NĕŠpurek, P. Smejtek, "Space-charge limited currents in insulators with the Gaussian distribution of traps", Czech. J. Phys. 22 (1972) 160–175. Cerca con Google

[Natali] D. Natali, L. Fumagalli, M. Sampietro, "Modeling of organic thin film transistors: effect of contact resistances", J. Appl. Phys. 101 (2007), https://doi.org/10.1063/1.2402349. Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record