Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Buson, Lisa (2019) Identification of specific non-coding RNAs involved in skeletal muscle metabolism: a single cell approach. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (PhD Thesis) - Accepted Version
Thesis not accessible until 01 December 2022 for intellectual property related reasons.
Visibile to: nobody

20Mb

Abstract (italian or english)

Skeletal muscle is a heterogeneous tissue composed of different cell types with myofibers that are the smallest complete contractile system that influence muscle contraction velocity and metabolism. Myofibers, can be classified in three main categories: slow oxidative (also known as type I), fast-oxidative (or type IIA) and fast-glycolytic (or type IIB).
Recently, the non-coding RNAs have emerged as a new RNA class with regulatory functions in several biological processes. Non-coding RNAs (ncRNAs) are transcripts with little or no coding capacity, divisible in two classes: microRNAs (miRNAs; shorter than 200nt) and long non-coding RNAs (lncRNAs; longer than 200nt).
To uncover the functions of ncRNAs in muscle physiopathology, we profiled both miRNAs and lncRNAs in single myofibers, evidencing the importance of single cell approaches.
miRNAs. We discovered two circuits that connect myofiber metabolic traits with mir-27a-3p and mir-142-3p. We evidenced that miR-27a-3p was highly expressed in oxidative myofibers while miR-142-3p was low expressed, suggesting a complementary mechanism in the regulation of myofiber metabolism. In fact, we demonstrated a) the involvement of miR-27a-3p in the inhibition of the synthesis of Phosphoglucomutase 2 (Pgm2) and acid α-glucosidase (Gaa) enzymes, both involved in glycogenolysis and b) the control of the Fndc5-Irisin pathway by miR-142-3p that instead modulate lipids content within myofibers.
lncRNAs. Since there are no data available on lncRNAs expressed by myofibers, we defined them according to their expression in skeletal muscle fibers. We showed that lncRNAs are fiber type specific, with a peculiar subcellular localization and are sensible to muscle atrophy. We showed that the lncRNA Plasmacytoma variant translocation 1 (Pvt1) is activated early during muscle atrophy and it is more expressed in fast myofibers. These observations were the starting points for the pathway dissection throughout which Pvt1 acts in skeletal muscle. In fact, atrophy causes metabolic changes and myofiber switching, both inter-related myofiber characteristics. We demonstrated the impact of Pvt1 on mitochondrial respiration and morphology, its regulatory activity on autophagy and apoptosis, and its consequent ability to influence myofiber size. Pvt1 regulates mitochondria physiology though its capacity in modulating c-Myc, which in turn, regulates Bcl2, Bax/Bak, Mfn1, and Becn1, impinging mitochondrial dynamics and finally muscle fiber dimension.
The story is then made difficult by the fact that Pvt1 locus codify also for miRNAs. We showed that three miRNAs encoded by Pvt1 locus (miR-1207-3p, miR-1207-5p and miR-1208) seems influence mitochondrial dynamics. We speculate that these miRNAs could target the lncRNA Pvt1 revealing a new regulatory loop of miRNAs and lncRNAs that may govern skeletal muscle homeostasis.
In skeletal muscle research, the evolution of new single cell approaches allows the identification of signatures that specify functional and metabolic behavior of myofibers, otherwise impossible to detect analyzing the whole muscle.
Our works contribute to better explain not only the importance of single cell studies, but also how ncRNAs participate in the regulation of skeletal muscle functions.


EPrint type:Ph.D. thesis
Tutor:Lanfranchi, Gerolamo and Cagnin, Stefano
Supervisor:Bubacco, Luigi and DePitta', Cristiano
Ph.D. course:Ciclo 32 > Corsi 32 > BIOSCIENZE > GENETICA, GENOMICA E BIOINFORMATICA
Data di deposito della tesi:01 December 2019
Anno di Pubblicazione:01 December 2019
Key Words:Non-coding RNAs Skeletal muscle Single cell approach
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Centri > Centro Interdipartimentale di servizi A. Vallisneri
Dipartimenti > Dipartimento di Biologia
Codice ID:12240
Depositato il:02 Feb 2021 11:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96, 183–95. Cerca con Google

2. Mukund K, Subramaniam S (2019) Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med, e1462. Cerca con Google

3. Murphy M, Kardon G (2011) Origin of Vertebrate Limb Muscle: The Role of Progenitor and Myoblast Populations. Curr Top Dev Biol 96, 1–32. Cerca con Google

4. Tidball JG, Dorshkind K, Wehling-Henricks M (2014) Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 141, 1184–96. Cerca con Google

5. Structure of Skeletal Muscle | SEER Training Available at: https://training.seer.cancer.gov/anatomy/muscular/structure.html [Accessed August 19, 2019]. Vai! Cerca con Google

6. Neuromuscular Junctions and Muscle Contractions | Anatomy and Physiology I Available at: https://courses.lumenlearning.com/cuny-csi-ap-1/chapter/neuromuscular-junctions-and-muscle-contractions/ [Accessed August 19, 2019]. Vai! Cerca con Google

7. 173 Control of muscle contraction | Introduction to Life Science | University of Tokyo Available at: http://csls-text3.c.u-tokyo.ac.jp/inactive/17_03.html [Accessed August 20, 2019]. Vai! Cerca con Google

8. Scott W, Stevens J, Binder–Macleod SA (2001) Human Skeletal Muscle Fiber Type Classifications. Phys Ther 81, 1810–6. Cerca con Google

9. Augusto V, Padovani CR, Eduardo G, Campos R Skeletal Muscle Fiber Types in C57bl6j Mice. Cerca con Google

10. Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410, 1–13. Cerca con Google

11. Skeletal muscle atrogenes: From rodent models to human pathologies (2019) Biochimie. doi:10.1016/j.biochi.2019.07.014. Cerca con Google

12. Cao RY, Li J, Dai Q, Li Q, Yang J (2018) Muscle Atrophy: Present and Future. In: Xiao J (ed) Muscle Atrophy, Advances in Experimental Medicine and Biology, Springer Singapore, Singapore, pp 605–24. Cerca con Google

13. Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SM-R (2019) A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 10, 400. Cerca con Google

14. Heydemann A (2018) Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy—Implications for Therapies. Nutrients 10, 796. Cerca con Google

15. Yiu EM, Kornberg AJ (2015) Duchenne muscular dystrophy. J Paediatr Child Health 51, 759–64. Cerca con Google

16. Lin AY, Wang LH (2018) Molecular Therapies for Muscular Dystrophies. Curr Treat Options Neurol 20, 27. Cerca con Google

17. Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen G-JB, Kunkel LM (2015) The Pathogenesis and Therapy of Muscular Dystrophies. Annual Review of Genomics and Human Genetics 16, 281–308. Cerca con Google

18. Li J, Liu C (2019) Coding or Noncoding, the Converging Concepts of RNAs. Front Genet 10. doi:10.3389/fgene.2019.00496. Cerca con Google

19. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. Cerca con Google

20. Vandevenne M, Delmarcelle M, Galleni M (2019) RNA Regulatory Networks as a Control of Stochasticity in Biological Systems. Front Genet 10. doi:10.3389/fgene.2019.00403. Cerca con Google

21. Gilbert W (1986) Origin of life: The RNA world. Nature 319, 618. Cerca con Google

22. Ekland EH, Bartel DP (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–6. Cerca con Google

23. Robertson MP, Joyce GF (2014) Highly efficient self-replicating RNA enzymes. Chem Biol 21, 238–45. Cerca con Google

24. Ahnert SE, Fink TMA, Zinovyev A (2008) How much non-coding DNA do eukaryotes require? Journal of Theoretical Biology 252, 587–92. Cerca con Google

25. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29, 288–99. Cerca con Google

26. Long non-coding RNA_ Classification, biogenesis and functions in blood cells | Elsevier Enhanced Reader doi:10.1016/j.molimm.2019.04.011. Cerca con Google

27. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234, 5451–65. Cerca con Google

28. Simion V, Nadim WD, Benedetti H, Pichon C, Morisset-Lopez S, Baril P (2017) Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities. Curr Neuropharmacol 15, 276–90. Cerca con Google

29. Ballarino M, Morlando M, Fatica A, Bozzoni I (2016) Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 126, 2021–30. Cerca con Google

30. Regulation of skeletal myogenesis by microRNAs - Xu - - Journal of Cellular Physiology - Wiley Online Library Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/jcp.28986 [Accessed August 22, 2019]. Vai! Cerca con Google

31. Dasgupta R, Fuchs J, Rodeberg D (2016) Rhabdomyosarcoma. Seminars in Pediatric Surgery 25, 276–83. Cerca con Google

32. Wang J, Yang LZ, Zhang JS, Gong JX, Wang YH, Zhang CL, Chen H, Fang XT (2018) Effects of microRNAs on skeletal muscle development. Gene 668, 107–13. Cerca con Google

33. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43, 904–14. Cerca con Google

34. Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA, Núñez-Enríquez JC, Ramírez-Bello J, Mejía-Aranguré JM, Jiménez-Morales S (2019) Long Non-Coding RNA and Acute Leukemia. International Journal of Molecular Sciences 20, 735. Cerca con Google

35. Rao MRS ed (2017) Long Non Coding RNA Biology, Springer Singapore Available at: https://www.springer.com/gp/book/9789811052026 [Accessed July 11, 2019]. Vai! Cerca con Google

36. Unique features of long non-coding RNA biogenesis and function | Nature Reviews Genetics Available at: https://www.nature.com/articles/nrg.2015.10 [Accessed July 5, 2019]. Vai! Cerca con Google

37. Romito A, Rougeulle C (2011) Origin and evolution of the long non-coding genes in the X-inactivation center. Biochimie 93, 1935–42. Cerca con Google

38. Akhade VS, Pal D, Kanduri C (2017) Long Noncoding RNA: Genome Organization and Mechanism of Action. Adv Exp Med Biol 1008, 47–74. Cerca con Google

39. Autuoro JM, Pirnie SP, Carmichael GG (2014) Long Noncoding RNAs in Imprinting and X Chromosome Inactivation. Biomolecules 4, 76–100. Cerca con Google

40. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18. doi:10.1186/s13059-017-1348-2. Cerca con Google

41. Chen L-L (2016) Linking Long Noncoding RNA Localization and Function. Trends in Biochemical Sciences 41, 761–72. Cerca con Google

42. Prinz F, Kapeller A, Pichler M, Klec C (2019) The Implications of the Long Non-Coding RNA NEAT1 in Non-Cancerous Diseases. Int J Mol Sci 20. doi:10.3390/ijms20030627. Cerca con Google

43. Chen R, Lei S, Jiang T, Zeng J, Zhou S, She Y Roles of lncRNAs and circRNAs in regulating skeletal muscle development. Acta Physiologica 0, e13356. Cerca con Google

44. Li Y, Chen X, Sun H, Wang H (2018) Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Letters 417, 58–64. Cerca con Google

45. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68, 394–424. Cerca con Google

46. Schmitt AM, Chang HY (2016) Long Noncoding RNAs in Cancer Pathways. Cancer Cell 29, 452–63. Cerca con Google

47. Cui M, You L, Ren X, Zhao W, Liao Q, Zhao Y (2016) Long non-coding RNA PVT1 and cancer. Biochem Biophys Res Commun 471, 10–4. Cerca con Google

48. Lu D, Luo P, Wang Q, Ye Y, Wang B (2017) lncRNA PVT1 in cancer: A review and meta-analysis. Clinica Chimica Acta 474, 1–7. Cerca con Google

49. Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annu Rev Biochem 61, 809–60. Cerca con Google

50. Colombo T, Farina L, Macino G, Paci P (2015) PVT1: A Rising Star among Oncogenic Long Noncoding RNAs. Biomed Res Int 2015. doi:10.1155/2015/304208. Cerca con Google

51. Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO (2019) PVT1 Signaling Is a Mediator of Cancer Progression. Front Oncol 9, 502. Cerca con Google

52. Cory S, Graham M, Webb E, Corcoran L, Adams JM (1985) Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J 4, 675–81. Cerca con Google

53. Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, Sun Q, Ren Q, Zhang L (2019) LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1. J Cell Physiol 234, 4799–811. Cerca con Google

54. Tang J, Li Y, Sang Y, Yu B, Lv D, Zhang W, Feng H (2018) LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene 37, 4723–34. Cerca con Google

55. Zhang R, Li J, Yan X, Jin K, Li W, Liu X, Zhao J, Shang W, Liu Y (2018) Long Noncoding RNA Plasmacytoma Variant Translocation 1 (PVT1) Promotes Colon Cancer Progression via Endogenous Sponging miR-26b. Med Sci Monit 24, 8685–92. Cerca con Google

56. Li P-D, Hu J-L, Ma C, Ma H, Yao J, Chen L-L, Chen J, Cheng T-T, et al (2017) Upregulation of the long non-coding RNA PVT1 promotes esophageal squamous cell carcinoma progression by acting as a molecular sponge of miR-203 and LASP1. Oncotarget 8, 34164–76. Cerca con Google

57. Gao S, Zhao Z-Y, Wu R, Zhang Y, Zhang Z-Y (2018) Prognostic value of long noncoding RNAs in gastric cancer: a meta-analysis. Onco Targets Ther 11, 4877–91. Cerca con Google

58. Fang J, Huang J (2019) Clinical significance of the expression of long non-coding RNA PVT1 in glioma. Cancer Biomark 24, 509–13. Cerca con Google

59. Guo J, Hao C, Wang C, Li L (2018) Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2. Cancer Cell Int 18, 98. Cerca con Google

60. Esfandi F, Taheri M, Omrani MD, Shadmehr MB, Arsang-Jang S, Shams R, Ghafouri-Fard S (2019) Expression of long non-coding RNAs (lncRNAs) has been dysregulated in non-small cell lung cancer tissues. BMC Cancer 19, 222. Cerca con Google

61. Chen L, Ma D, Li Y, Li X, Zhao L, Zhang J, Song Y (2018) Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int J Mol Med 41, 1275–82. Cerca con Google

62. Zhang X, Feng W, Zhang J, Ge L, Zhang Y, Jiang X, Peng W, Wang D, et al (2018) Long non‑coding RNA PVT1 promotes epithelial‑mesenchymal transition via the TGF‑β/Smad pathway in pancreatic cancer cells. Oncol Rep 40, 1093–102. Cerca con Google

63. Wan B, Wu H-Y, Lv D-J, Zhou X-M, Zhong L-R, Lei B, Zhang S-B, Mao X-M (2018) Downregulation of lncRNA PVT1 expression inhibits proliferation and migration by regulating p38 expression in prostate cancer. Oncol Lett 16, 5160–6. Cerca con Google

64. Feng K, Liu Y, Xu L-J, Zhao L-F, Jia C-W, Xu M-Y (2018) Long noncoding RNA PVT1 enhances the viability and invasion of papillary thyroid carcinoma cells by functioning as ceRNA of microRNA-30a through mediating expression of insulin like growth factor 1 receptor. Biomed Pharmacother 104, 686–98. Cerca con Google

65. Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE, Mushinski JF, Stephens R, Caplen NJ (2008) The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res 6, 212–21. Cerca con Google

66. Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M (2008) Pvt1-encoded microRNAs in oncogenesis. Retrovirology 5, 4. Cerca con Google

67. Anauate AC, Leal MF, Wisnieski F, Santos LC, Gigek CO, Chen ES, Calcagno DQ, Assumpção PP, et al (2019) Analysis of 8q24.21 miRNA cluster expression and copy number variation in gastric cancer. Future Med Chem 11, 947–58. Cerca con Google

68. Wang L, Sun L, Wang Y, Yao B, Liu R, Chen T, Tu K, Liu Q, Liu Z (2019) miR-1204 promotes hepatocellular carcinoma progression through activating MAPK and c-Jun/AP1 signaling by targeting ZNF418. Int J Biol Sci 15, 1514–22. Cerca con Google

69. Xu J, Gu X, Yang X, Meng Y (2018) MiR-1204 promotes ovarian squamous cell carcinoma growth by increasing glucose uptake. Biosci Biotechnol Biochem, 1–6. Cerca con Google

70. Wang Y, Li X, Liu W, Li B, Chen D, Hu F, Wang L, Liu XM, et al (2019) MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene 38, 4820–34. Cerca con Google

71. Das DK, Osborne JR, Lin H-Y, Park JY, Ogunwobi OO (2016) miR-1207-3p Is a Novel Prognostic Biomarker of Prostate Cancer. Transl Oncol 9, 236–41. Cerca con Google

72. Das DK, Naidoo M, Ilboudo A, Park JY, Ali T, Krampis K, Robinson BD, Osborne JR, Ogunwobi OO (2016) miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp Cell Res 348, 190–200. Cerca con Google

73. Yan C, Chen Y, Kong W, Fu L, Liu Y, Yao Q, Yuan Y (2017) PVT1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT6. Cancer Sci 108, 868–76. Cerca con Google

74. Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X, Zhang X (2019) miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett 17, 990–8. Cerca con Google

75. Kim E-A, Jang J-H, Sung E-G, Song I-H, Kim J-Y, Lee T-J (2019) MiR-1208 Increases the Sensitivity to Cisplatin by Targeting TBCK in Renal Cancer Cells. Int J Mol Sci 20. doi:10.3390/ijms20143540. Cerca con Google

76. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–5. Cerca con Google

77. Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G (2011) Microgenomic Analysis in Skeletal Muscle: Expression Signatures of Individual Fast and Slow Myofibers. PLoS ONE 6, e16807. Cerca con Google

78. Burattini S, Ferri P, Battistelli M, Curci R, Luchetti F, Falcieri E C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. 11. Cerca con Google

79. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, et al (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34, 374–8. Cerca con Google

80. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98, 5116–21. Cerca con Google

81. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res 45, W130–7. Cerca con Google

82. Blanco CE, Sieck GC, Edgerton VR (1988) Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres. Histochem J 20, 230–43. Cerca con Google

83. Vowinckel J, Hartl J, Butler R, Ralser M (2015) MitoLoc: A method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells. Mitochondrion 24, 77–86. Cerca con Google

84. Welinder C, Ekblad L (2011) Coomassie staining as loading control in Western blot analysis. J Proteome Res 10, 1416–9. Cerca con Google

85. Gilda JE, Gomes AV (2013) Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem 440, 186–8. Cerca con Google

86. Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, Massimino ML, Pacchioni B, et al (2019) Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res 47, 1653–70. Cerca con Google

87. Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, Bean C, Alessio E, et al (2019) Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports 26, 3784-3797.e8. Cerca con Google

88. Biscontin A, Casara S, Cagnin S, Tombolan L, Rosolen A, Lanfranchi G, De Pittà C (2010) New miRNA labeling method for bead-based quantification. BMC Mol Biol 11, 44. Cerca con Google

89. Ennion S, Sant’ Ana Pereira J, Sargeant AJ, Young A, Goldspink G (1995) Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Muscle Res Cell Motil 16, 35–43. Cerca con Google

90. Silver J, Wadley G, Lamon S (2018) Mitochondrial regulation in skeletal muscle: A role for non-coding RNAs? Experimental Physiology 103, 1132–44. Cerca con Google

91. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M (2015) Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO reports 16, 387–95. Cerca con Google

92. Baker N, Patel J, Khacho M (2019) Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion. doi:10.1016/j.mito.2019.06.003. Cerca con Google

93. Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D (2018) Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 10. doi:10.15252/emmm.201708166. Cerca con Google

94. Hanson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, Lee AM, Knowler WC, et al (2007) Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56, 975–83. Cerca con Google

95. Chen L, Gong H-Y, Xu L (2018) PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 22, 6905–11. Cerca con Google

96. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. Journal of Cachexia, Sarcopenia and Muscle 8, 349–69. Cerca con Google

97. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology 8, 870–9. Cerca con Google

98. Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340, 180–6. Cerca con Google

99. Lundsgaard A-M, Fritzen AM, Kiens B (2018) Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology & Metabolism 29, 18–30. Cerca con Google

100. Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G, Kovacs K, Deres L, et al (2018) Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochemical Pharmacology 150, 86–96. Cerca con Google

101. Su Z, Klein JD, Du J, Franch HA, Zhang L, Hassounah F, Hudson MB, Wang XH (2017) Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Am J Physiol Renal Physiol 312, F1128–40. Cerca con Google

102. Tseng Y-Y, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, et al (2014) PVT1 dependence in cancer with MYC copy-number increase. nature 512, 82–6. Cerca con Google

103. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19, 555–66. Cerca con Google

104. Zhang Y, Iqbal S, O’Leary MFN, Menzies KJ, Saleem A, Ding S, Hood DA (2013) Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. American Journal of Physiology-Cell Physiology 305, C502–11. Cerca con Google

105. BiBiServ2 - RNAhybrid Available at: https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/ [Accessed September 16, 2019]. Vai! Cerca con Google

106. miRmap web Available at: https://mirmap.ezlab.org/app/ [Accessed September 16, 2019]. Vai! Cerca con Google

107. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell 126, 1203–17. Cerca con Google

108. TargetScanHuman 72 Available at: http://www.targetscan.org/vert_72/ [Accessed September 16, 2019]. Vai! Cerca con Google

109. Schrepfer E, Scorrano L (2016) Mitofusins, from Mitochondria to Metabolism. Mol Cell 61, 683–94. Cerca con Google

110. Musa CV, Mancini A, Alfieri A, Labruna G, Valerio G, Franzese A, Pasanisi F, Licenziati MR, et al (2012) Four novel UCP3 gene variants associated with childhood obesity: effect on fatty acid oxidation and on prevention of triglyceride storage. Int J Obes (Lond) 36, 207–17. Cerca con Google

111. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, Conn CA, Trujillo KA (2014) Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 16, 711–8. Cerca con Google

112. Castaño C, Kalko S, Novials A, Párrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci USA 115, 12158–63. Cerca con Google

113. Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58, 900–11. Cerca con Google

114. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53, 1099–109. Cerca con Google

115. Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gómez-Ambrosi J, Anglada R, et al (2013) Targeting the circulating microRNA signature of obesity. Clin Chem 59, 781–92. Cerca con Google

116. Xia C, Liang S, He Z, Zhu X, Chen R, Chen J (2018) Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p sponge to decrease invasion and migration in cervical cancer cells. Eur J Pharmacol 830, 59–67. Cerca con Google

117. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70, 4785–94. Cerca con Google

118. Ruan X (2016) Long Non-Coding RNA Central of Glucose Homeostasis. Journal of Cellular Biochemistry 117, 1061–5. Cerca con Google

119. Raz V, Riaz M, Tatum Z, Kielbasa SM, ’t Hoen PAC (2018) The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB J 32, 1579–90. Cerca con Google

120. Roman W, Gomes ER (2018) Nuclear positioning in skeletal muscle. Semin Cell Dev Biol 82, 51–6. Cerca con Google

121. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45, 2191–9. Cerca con Google

122. Smith EF, Shaw PJ, De Vos KJ (2017) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. doi:10.1016/j.neulet.2017.06.052. Cerca con Google

123. Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19, 143–57. Cerca con Google

124. Li Z, Hao S, Yin H, Gao J, Yang Z (2016) Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav Brain Res 305, 265–77. Cerca con Google

125. Sun X, Wong D (2016) Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am J Cardiovasc Dis 6, 17–25. Cerca con Google

126. Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, Lawal RA, Nie Q, et al (2019) c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ 26, 426–42. Cerca con Google

127. McPherron AC, Guo T, Bond ND, Gavrilova O (2013) Increasing muscle mass to improve metabolism. Adipocyte 2, 92–8. Cerca con Google

128. Tews DS (2002) Apoptosis and muscle fibre loss in neuromuscular disorders. Neuromuscul Disord 12, 613–22. Cerca con Google

129. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45, 2121–9. Cerca con Google

130. Mishra P, Varuzhanyan G, Pham AH, Chan DC (2015) Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization. Cell Metab 22, 1033–44. Cerca con Google

131. Pernas L, Scorrano L (2016) Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol 78, 505–31. Cerca con Google

132. Emmrich S, Streltsov A, Schmidt F, Thangapandi VR, Reinhardt D, Klusmann J-H (2014) LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Molecular Cancer 13, 171. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record