Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Giannella, Alessandra (2019) Circulating small non coding RNAs and microparticles as potential markers of atherosclerotic plaque composition in type 1 diabetes. [Ph.D. thesis]

Full text disponibile come:

PDF Document

Abstract (italian or english)

Background: Small non coding RNAs (sncRNAs) are endogenous short non coding molecules that regulate gene expression at post-translational level and are involved in several physiopathological processes. Circulating sncRNAs could be found free in biological fluids or loaded into extracellular vesicles, such as microparticles (MPs) in order to reach other tissues and amplify their signal. Next-generation sequencing (NGS) has become the main platform for biological research and biomarker discovery in the profiling of sncRNAs.
Aim: The aim of this study was: 1) to set up a protocol using NGS technology for the identification and quantification of circulating sncRNAs involved in atherosclerotic plaque composition in type 1 diabetic patients (T1DM); 2) to characterize the phenotypes of circulating MPs derived from T1DM, associated with the plaque composition to evaluate the impact of these extracellular vesicles as carrier of specific small non coding RNAs, involved in these pathways.
Material and Methods: Total RNA of 61 T1DM patients with fibrous (CFP; n 30) or calcified (CCP; n 31) carotid plaques was extracted from plasma samples, using a kit for biological fluids. For NGS sequencing, 25 CFP and 26 CCP were evaluated. The preparation of libraries was assessed using the Qiagen system. The sncRNA libraries pool was sequenced through the NGS sequencer MiSeq (Illumina), and the analysis performed by two bioinformatics tools (Partek Flow and CLC Genomics Workbench software). MPs derived from plasma of 40 T1DM patients with fibrous (CFP; n 20) or calcified (CCP; n 20) carotid plaques was assessed by centrifugation (40min x 14,000 rpm a 4°C) and characterized using flow cytometry (CytoFLEX, Beckman Coulter).
Results: An unbiased and accurate sncRNome-wide quantification was obtained, detecting already known circulating sncRNAs (miRNAs, n 2632; piRNAs, n 3286; and tsRNAs, n 640). The bioinformatic analysis using two software on the already known 2632 miRNAs showed a different profile in T1DM with CCP compared to T1DM with CFP. Circulating level of several miRNA implicated in vascular remodeling and glucose metabolism were upregulated in patients with CCP, compared to CFP (miR-503-5p, miR-93-5p, miR-106b-5p and let-7d-5p) and downregulated (miR-451a, miR-10a-5p and miR-29b-3p) in patients with CCP, compared to CFP.
We found that MPs released from endothelial cells and Platelets are enhanced in T1DM with vascular calcification (CCP) compare with T1DM with fibrous plaque (CFP); interestingly, a population of MPs derived from a niche of cells positive for CD34 and α-smooth muscle actin (αSMA) is also increased in CCP. Furthermore, the subgroup of MPs positive for calcification marker was significantly enhanced in patients with CCP in comparison to CFP patients with the main contribution given by CD34+ cells, suggesting a key role of these cells in the development of this vascular complication.
Conclusions: In conclusion, our results demonstrate the power of NGS technology to identify a huge amount of circulating sncRNAs and to discover RNA molecules present in human plasma. The identification of new molecular biomarkers with this ultra-high throughput and sensitive technique (NGS) will help to go further insight specific pathophysiological processes, such as atherosclerotic plaque composition in diabetes, allowing a potentially more targeted therapeutic approach. Furthermore, we demonstrate that microparticles exhibit differential markers in the presence of vascular calcification suggesting a potential role as carrier of small molecules to amplify their signal.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Avogaro, Angelo
Data di deposito della tesi:01 December 2019
Anno di Pubblicazione:01 December 2019
Key Words:NGS, miRNA, microRNA, piRNA,tsRNA, small non coding RNA, non coding RNA, microparticles, extracellular vesicles type 1 diabetes, CAD, atherosclerotic plaque, ,diabetes, next generation sequencing,marker
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 05 - Scienze biologiche > BIO/12 Biochimica clinica e biologia molecolare clinica
Area 06 - Scienze mediche > MED/13 Endocrinologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Dipartimenti > Dipartimento di Medicina
Codice ID:12244
Depositato il:26 Jan 2021 16:11
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Todd JA. Etiology of Type 1 Diabetes. Immunity. 2010;32:457–67. Cerca con Google

2. Leslie RD. Predicting adult-onset autoimmune diabetes clarity from complexity. Diabetes. 2010;59:330–1. Cerca con Google

3. Tuomi T. Type 1 and type 2 diabetes: What do they have in common? Diabetes. 2005;54(40–45). Cerca con Google

4. 2. Classification and diagnosis of diabetes. Diabetes Care. 2015;38:s8–16. Cerca con Google

5. Lind M, Svensson AM, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82. Cerca con Google

6. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial-revisited. Diabetes. 2008;57:995–1001. Cerca con Google

7. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9–16. Cerca con Google

8. Gerstein HC. Diabetes: Dysglycaemia as a cause of cardiovascular outcomes. Nat Rev Endocrinol. 2015 Sep;11(9):508–10. Cerca con Google

9. Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Prim. 2017 Mar;3:17016. Cerca con Google

10. Anderzen J, Samuelsson U, Gudbjornsdottir S, Hanberger L, Akesson K. Teenagers with poor metabolic control already have a higher risk of microvascular complications as young adults. J Diabetes Complications. 2016 Apr;30(3):533–6. Cerca con Google

11. Frank RN. Diabetic retinopathy. N Engl J Med. 2004 Jan;350(1):48–58. Cerca con Google

12. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014 Oct;37(10):2864–83. Cerca con Google

13. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003 Jun;348(23):2285–93. Cerca con Google

14. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017 Jan;40(1):136–54. Cerca con Google

15. Stephenson JM, Kempler P, Perin PC, Fuller JH. Is autonomic neuropathy a risk factor for severe hypoglycaemia? The EURODIAB IDDM Complications Study. Diabetologia. 1996 Nov;39(11):1372–6. Cerca con Google

16. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000 Oct;102(18):2180–4. Cerca con Google

17. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008 Jun;54(6):945–55. Cerca con Google

18. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010 Jan;10(1):36–46. Cerca con Google

19. Geng Y-J, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol. 2002 Sep;22(9):1370–80. Cerca con Google

20. Yahagi K, Kolodgie FD, Lutter C, Mori H, Romero ME, Finn A V, et al. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):191–204. Cerca con Google

21. Wright RJ, Newby DE, Stirling D, Ludlam CA, Macdonald IA, Frier BM. Effects of acute insulin-induced hypoglycemia on indices of inflammation: putative mechanism for aggravating vascular disease in diabetes. Diabetes Care. 2010 Jul;33(7):1591–7. Cerca con Google

22. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019 Jan;42(Suppl 1):S103–23. Cerca con Google

23. Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010 Nov;53(11):2312–9. Cerca con Google

24. Maahs DM, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson J, et al. Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care. 2005 Feb;28(2):301–6. Cerca con Google

25. Evrard S, Delanaye P, Kamel S, Cristol J-P, Cavalier E. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta. 2015 Jan;438:401–14. Cerca con Google

26. Jean G, Terrat J-C, Vanel T, Hurot J-M, Lorriaux C, Mayor B, et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009 Sep;24(9):2792–6. Cerca con Google

27. Bacchetta J, Cochat P, Salusky IB. [FGF23 and Klotho: the new cornerstones of phosphate/calcium metabolism]. Arch Pediatr. 2011 Jun;18(6):686–95. Cerca con Google

28. Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med. 2013 Apr;19(4):217–26. Cerca con Google

29. Collin-Osdoby P, Rothe L, Bekker S, Anderson F, Huang Y, Osdoby P. Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J Bone Miner Res. 2002 Oct;17(10):1859–71. Cerca con Google

30. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007 Nov;27(11):2302–9. Cerca con Google

31. Towler DA. Inorganic pyrophosphate: a paracrine regulator of vascular calcification and smooth muscle phenotype. Vol. 25, Arteriosclerosis, thrombosis, and vascular biology. United States; 2005. p. 651–4. Cerca con Google

32. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Vol. 8, Nature reviews. Molecular cell biology. England; 2007. p. 209–20. Cerca con Google

33. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. Cerca con Google

34. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004 Dec;10(12):1957–66. Cerca con Google

35. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003 Sep;425(6956):415–9. Cerca con Google

36. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol [Internet]. 2014 Jul 16;15:509. Available from: https://doi.org/10.1038/nrm3838 Vai! Cerca con Google

37. Tian Y, Simanshu DK, Ma J-B, Park J-E, Heo I, Kim VN, et al. A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell. 2014 Feb;53(4):606–16. Cerca con Google

38. Lee Y, Hur I, Park S-Y, Kim Y-K, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J. 2006 Feb;25(3):522–32. Cerca con Google

39. Elkayam E, Kuhn C-D, Tocilj A, Haase AD, Greene EM, Hannon GJ, et al. The structure of human argonaute-2 in complex with miR-20a. Cell. 2012 Jul;150(1):100–10. Cerca con Google

40. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan;116(2):281–97. Cerca con Google

41. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019 Jan;20(1):21–37. Cerca con Google

42. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015 Jul;16(7):421–33. Cerca con Google

43. Braun JE, Truffault V, Boland A, Huntzinger E, Chang C-T, Haas G, et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5’ exonucleolytic degradation. Nat Struct Mol Biol. 2012 Dec;19(12):1324–31. Cerca con Google

44. Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs R V, Robinson SW, et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science. 2013 Apr;340(6128):82–5. Cerca con Google

45. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 2014 Oct;56(1):104–15. Cerca con Google

46. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010 Aug;466(7308):835–40. Cerca con Google

47. Broderick JA, Salomon WE, Ryder SP, Aronin N, Zamore PD. Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA. 2011 Oct;17(10):1858–69. Cerca con Google

48. Desvignes T, Batzel P, Berezikov E, Eilbeck K, Eppig JT, McAndrews MS, et al. miRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants. Trends Genet. 2015 Nov;31(11):613–26. Cerca con Google

49. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids. 2015 Sep;4(9):e252. Cerca con Google

50. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003 Dec;67(4):657–85. Cerca con Google

51. Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014 Jan;505(7483):353–9. Cerca con Google

52. Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985 Mar;40(3):491–500. Cerca con Google

53. Cosby RL, Chang N-C, Feschotte C. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 2019 Sep;33(17–18):1098–116. Cerca con Google

54. Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet [Internet]. 2019 Feb 16;20(2):89–108. Available from: http://www.nature.com/articles/s41576-018-0073-3 Vai! Cerca con Google

55. Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 2013 Jul;32(13):1869–85. Cerca con Google

56. Yamanaka S, Siomi MC, Siomi H. piRNA clusters and open chromatin structure. Mob DNA. 2014;5:22. Cerca con Google

57. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science. 2007 Mar;315(5818):1587–90. Cerca con Google

58. Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun. 2017 Nov;8(1):1411. Cerca con Google

59. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011 Nov;12(12):861–74. Cerca con Google

60. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006 Jul;442(7099):199–202. Cerca con Google

61. Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, et al. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 2019 Jan;47(D1):D175–80. Cerca con Google

62. Li S, Xu Z, Sheng J. tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA. Genes (Basel). 2018 May;9(5). Cerca con Google

63. Oberbauer V, Schaefer M. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) [Internet]. 2018 Dec 5;9(12):607. Available from: http://www.mdpi.com/2073-4425/9/12/607 Vai! Cerca con Google

64. Watson CN, Belli A, Di Pietro V. Small Non-coding RNAs: New Class of Biomarkers and Potential Therapeutic Targets in Neurodegenerative Disease. Front Genet. 2019;10:364. Cerca con Google

65. Yamasaki S, Ivanov P, Hu G-F, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol. 2009 Apr;185(1):35–42. Cerca con Google

66. Semenov D V, Kuligina E V, Shevyrina ON, Richter VA, Vlassov V V. Extracellular ribonucleic acids of human milk. Ann N Y Acad Sci. 2004 Jun;1022:190–4. Cerca con Google

67. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, Mote P, et al. 5’ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics. 2013 May;14:298. Cerca con Google

68. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016 Jan;351(6271):391–6. Cerca con Google

69. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao X-H, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol. 2014 Jul;34(13):2450–63. Cerca con Google

70. Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018 May;20(5):535–40. Cerca con Google

71. Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016 Dec;17(12):733–43. Cerca con Google

72. Lyons SM, Fay MM, Ivanov P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett. 2018 Sep;592(17):2828–44. Cerca con Google

73. Buratti E, Baralle D. Novel roles of U1 snRNP in alternative splicing regulation. RNA Biol. 2010;7(4):412–9. Cerca con Google

74. Yanaizu M, Sakai K, Tosaki Y, Kino Y, Satoh J-I. Small nuclear RNA-mediated modulation of splicing reveals a therapeutic strategy for a TREM2 mutation and its post-transcriptional regulation. Sci Rep. 2018 May;8(1):6937. Cerca con Google

75. Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ Res. 2017 Jan;120(2):381–99. Cerca con Google

76. Garcia-Contreras M, Shah SH, Tamayo A, Robbins PD, Golberg RB, Mendez AJ, et al. Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration Type 1 diabetes. Sci Rep. 2017 Jul;7(1):5998. Cerca con Google

77. Giannella A, Radu CM, Franco L, Campello E, Simioni P, Avogaro A, et al. Circulating levels and characterization of microparticles in patients with different degrees of glucose tolerance. Cardiovasc Diabetol. 2017;33:121. Cerca con Google

78. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via spred1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013; Cerca con Google

79. Olivieri F, Spazzafumo L, Bonafe M, Recchioni R, Prattichizzo F, Marcheselli F, et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget. 2015 Nov;6(34):35372–82. Cerca con Google

80. Peng H, Zhong M, Zhao W, Wang C, Zhang J, Liu X, et al. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS One. 2013;8(12):e82607. Cerca con Google

81. Alkagiet S, Tziomalos K. Vascular calcification: the role of microRNAs. Biomol Concepts. 2017 May;8(2):119–23. Cerca con Google

82. Sudo R, Sato F, Azechi T, Wachi H. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells. 2015 Dec;20(12):1077–87. Cerca con Google

83. Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V, Henaut L, Djelouat MS el I, Benchitrit J, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012;7(10):e47807. Cerca con Google

84. Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P, et al. MiR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res. 2017; Cerca con Google

85. Kim Y-K, Kook H. Diverse roles of noncoding RNAs in vascular calcification. Arch Pharm Res. 2019 Mar;42(3):244–51. Cerca con Google

86. Henaoui IS, Jacovetti C, Guerra Mollet I, Guay C, Sobel J, Eliasson L, et al. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia. 2017 Oct;60(10):1977–86. Cerca con Google

87. Zhou Z, Sun B, Huang S, Jia W, Yu D. The tRNA-associated dysregulation in diabetes mellitus. Metabolism. 2019 May;94:9–17. Cerca con Google

88. La Marca V, Fierabracci A. Insights into the Diagnostic Potential of Extracellular Vesicles and Their miRNA Signature from Liquid Biopsy as Early Biomarkers of Diabetic Micro/Macrovascular Complications. Int J Mol Sci. 2017 Sep;18(9). Cerca con Google

89. Krohn JB, Hutcheson JD, Martínez-Martínez E, Aikawa E. Extracellular vesicles in cardiovascular calcification: expanding current paradigms. J Physiol. 2016 Jun;594(11):2895–903. Cerca con Google

90. Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc Med [Internet]. 2018 Apr 6;5:36. Available from: http://journal.frontiersin.org/article/10.3389/fcvm.2018.00036/full Vai! Cerca con Google

91. Randriamboavonjy V, Fleming I. Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin Sci (Lond). 2018 Sep;132(17):1875–88. Cerca con Google

92. Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front Cardiovasc Med. 2017;4:78. Cerca con Google

93. Yang W, Zou B, Hou Y, Yan W, Chen T, Qu S. Extracellular vesicles in vascular calcification. Clin Chim Acta. 2019 Sep;499:118–22. Cerca con Google

94. Passman JN, Dong XR, Wu S-P, Maguire CT, Hogan KA, Bautch VL, et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A. 2008 Jul;105(27):9349–54. Cerca con Google

95. Castelblanco E, Betriu À, Hernández M, Granado-Casas M, Ortega E, Soldevila B, et al. Ultrasound Tissue Characterization of Carotid Plaques Differs Between Patients with Type 1 Diabetes and Subjects without Diabetes. J Clin Med. 2019 Mar;8(4). Cerca con Google

96. Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, B. Cerebrovasc Dis. 2012;34(4):290–6. Cerca con Google

97. Ludwig M, Zielinski T, Schremmer D, Stumpe KO. Reproducibility of 3-dimensional ultrasound readings of volume of carotid atherosclerotic plaque. Cardiovasc Ultrasound. 2008 Aug;6:42. Cerca con Google

98. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998 Mar;8(3):186–94. Cerca con Google

99. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. Cerca con Google

100. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. Cerca con Google

101. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. Cerca con Google

102. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019 Jan;47(D1):D155–62. Cerca con Google

103. Pliatsika V, Loher P, Telonis AG, Rigoutsos I. MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics. 2016 Aug;32(16):2481–9. Cerca con Google

104. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013 Nov;14(6):671–83. Cerca con Google

105. Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 2016 Apr;17:74. Cerca con Google

106. Kok MGM, de Ronde MWJ, Moerland PD, Ruijter JM, Creemers EE, Pinto-Sietsma SJ. Small sample sizes in high-throughput miRNA screens: A common pitfall for the identification of miRNA biomarkers. Biomol Detect Quantif. 2018 May;15:1–5. Cerca con Google

107. Aggarwal PK, Veron D, Thomas DB, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015 May;64(5):1743–59. Cerca con Google

108. Albanese I, Khan K, Barratt B, Al-Kindi H, Schwertani A. Atherosclerotic Calcification: Wnt Is the Hint. J Am Heart Assoc. 2018 Feb;7(4). Cerca con Google

109. Cai Z, He Y, Chen Y. Role of Mammalian Target of Rapamycin in Atherosclerosis. Curr Mol Med. 2018;18(4):216–32. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record