Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Malik, Nadeem Ahmed (2019) Optical characterization of graphene in vacuum ultraviolet spectral region & spectroscopic studies of colliding laser plasmas (Al, Si). [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Thesis) - Submitted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

6Mb

Abstract (italian or english)

Il presente lavoro di tesi ha come obiettivo principale lo studio di materiali innovativi per lo sviluppo di componenti ottici nella regione spettrale dell’estremo ultravioletto (EUV) e dell’ultravioletto da vuoto (VUV). I campi di applicazione sono molteplici e spaziano dalla litografia EUV all’esplorazione spaziale. Questo tipo di ricerca richiede contemporaneamente l’utilizzo e la messa a punto di adeguati metodi di caratterizzazione, che permettano una completa analisi delle proprietà nella regione spettrale di interesse.
Il risultato più interessante presentato è sicuramente l’analisi ottica e strutturale di strati di grafene (singolo e triplo) depositati su silicon oxide, nella regione spettrale dell’ultravioletto da vuoto. Lo studio è stato affrontato combinando diverse tecniche sperimentali e partendo dalle proprietà ottiche dell’ossido di silicio depositato su silicio (SiO2/Si), che costituisce il substrato.
Il SiO2/Si è stato caratterizzato alla hydrogen Lyman-alpha (121.6 nm) utilizzando un riflettometro dedicato alla riflettometria nell’ultravioletto e recentemente implementato per misure polarimetriche (CNR-IFN Padova).
Sono stati determinati i parametri ellissometrici, ratio (ρ) and phase shift (), le costanti ottiche e le proprietà polarimetriche del silicon oxide. Il SiO2 si comporta effettivamente come una lamina di ritardo introducendo una differenza di fase tra le componenti s- e p- della radiazione incidente. La differenza di fase introdotta varia dai 18° ai 160° e dipende dall’angolo di incidenza.
Successivamente, lo stesso tipo di analisi sperimentale è stata completata per i campioni con uno strato di grafene depositato sull’ossido di silicio (1LG/SiO2/Si). E’ stato osservato che, nonostante il sottile spessore, il singolo strato di grafene migliora la riflettività del substrato. Dall’analisi polarimetrica, non si può invece affermare che il grafene introduca un ritardo di fase osservabile.
Le costanti ottiche del singolo e triplo strato di graphene cresciuto su SiO2/Si sono state studiate alla hydrogen Lyman-alpha utilizzando misure in riflettometria in polarizzazione s- e p- acquisite utilizzando luce di sincrotrone (ELETTRA Trieste, BEAR beamline).
Si notano differenze misurabile nella riflettività dei campioni. Le differenze dipendono dal numero di strati di graphene. Queste misure sono state utilizzate per ricavare le costanti ottiche. E’ stata inoltre sperimentalmente osservato una anisotropia ottica con asse di simmetria quasi perpendicolare alla superficie e coerentemente correlata all’orientamento degli orbitali π. Le costanti ottiche efficaci sono state ricavate simulando l’interazione della radiazione elettromagnetica con la struttura del campione. Inoltre, l’attendibilità delle costanti ottiche trovate è stata qualitativamente testata ricavando la “surface differential reflectance (SDR)” dalle misure di riflettività.
Un altro effetto molto interessante indotto dal grafene è lo spostamento dell’angolo di pseudo-Brewster rispetto a quanto osservato per il substrato. Lo spostamento, che cresce in valore assoluto con il numero di strati, induce un downshift contrariamente a quanto osservato in altre regioni spettrali. La qualità della superficie, la morfologia e il numero di layer sono stati caratterizzati con misure di microscopia a forza atomica e spettroscopia Raman. Per quanto ne sappiamo, questi risultati relativi allo studio delle proprietà ottiche del grafene nel VUV sono assolutamente nuovi.
L’ultima parte della tesi riguarda lo studio dello strato di stagnazione che si forma sul fronte di collisione di due plasmi collidenti. La tecnica utilizzata è una spettroscopia risolta in tempo. Il tempo di evoluzione e le dinamiche dei plasmi collidenti di Al-Al e Al-Si sono stati studiati con tecniche spettroscopiche risolte in tempo. È stato osservato che nel caso di un "wedge target" lo strato di ristagno produce uno spettro più luminoso e in precedenza sono comparsi stati di ionizzazione più elevati con un'intensità relativamente più elevata di un "flat target". Il tempo di evoluzione della densità elettronica è stato studiato e confrontato nel caso delle due configurazioni con i target diversi e una densità elettronica relativamente più alta è stata osservata nel caso di “wedge target”.

Abstract (a different language)

The aim of this research is to investigate and explore new innovative material(s) and techniques regarding development and improvement of vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) optics and sources; for the advancement of EUV and VUV technological areas like space exploration (e.g. observation and spectroscopic diagnostics of the solar corona) and EUV lithography (e.g. advancement and minimization of integrated electronic circuits (ICs)).
The research work was primarily focused on the investigations of the optical and structural properties of graphene (mono and few-layer) deposited on SiO2/Si substrate in VUV spectral region by exploiting different diagnostic techniques, based on reflection and polarimetric measurements.
The study was addressed starting from silicon dioxide deposited on silicon (SiO2 / Si), which works as the substrate for graphene samples. The optical properties of SiO2/Si were thoroughly investigated at the hydrogen Lyman–alpha line (121.6 nm) by employing the tabletop EUV-VUV polarimetry facility located at CNR-INF Padova. An approach based on the combined use of reflectometry with polarimetry technique was used to find out the reliable values of the optical constants. The results show the potential of the approach and it was demonstrated in this study that the optical constants retrieved by using ellipsometric parameters; ratio (ρ), and phase shift (), are more reliable than the retrieved one using least square fitting of the reflectivity. Moreover, it was found that SiO2 behaves as a phase retarder by introducing a phase difference between the s- and p- polarization components of the incoming light. The phase differences observed was 18° to 160° depending on the incidence angle.
Using the similar experimental technique, the ellipsometric parameters (phase shift (ϕ), ratio (ρ)) of graphene (1LG/SiO2/Si) sample were also investigated and compared with that of SiO2/Si to see the effect of the graphene as capping layer. It was found that 1LG on top of SiO2 improves optical throughput and despite having atomic thickness it affects the polarimetric properties of the underlying substrate.
Further, detailed optical properties of mono (1L) and tri-layer (3L) of commercial graphene grown on (SiO2/Si) substrate were studied at hydrogen Lyman alpha by using laboratory based (at CNR-IFN, Padova) and synchrotron light-based (at BEAR beamline, Elettra synchrotron) EUV-VUV reflectometer setups. Angular reflectance measurements of graphene samples along with bare substrate were performed by taking into account the light polarization. Distinguishable optical performance was observed for both samples (1LG and 3LG) in spite of the ultra-thin thickness of the films. Optical anisotropy with the axis of symmetry nearly perpendicular to the surface and coherently related to the p-orbitals structural orientation has been experimentally demonstrated. Anisotropic “effective optical constants” corresponding to “effective thickness” were retrieved by simulating the interaction of the electromagnetic wave with the structure of the sample. Furthermore, the reliability of the derived optical constants was tested qualitatively by deducing surface differential reflectance (SDR) from the reflectance measurements. Another very interesting effect induced by graphene is the shift of the pseudo-Brewster angle with respect to what was observed for the substrate. The downshift of the pseudo-Brewster angle was observed for both samples 1LG (-1.5°), and 3LG (-5°), with larger shift for an increasing number of layers. However, in literature an upshift in the Brewster angle is reported but for different spectral region. AFM, XPS and Raman spectroscopies were used to study surface morphology, quality of graphene coatings, and to estimate the thickness/ number of layers.
To the best of our knowledge, these remarkable optical properties of graphene at VUV spectral region was determined for the first time and results are of considerable interest for VUV optics advancement.
The last part of the thesis is about the study of the stagnation layer formed at the collision front of two colliding plasmas by employing time resolved spectroscopic technique. Time evolution and dynamics of the Al-Al, Al-Si colliding plasmas studied and compared in the case of flat and wedge targets. It was observed that in case of wedge target the overall emission from stagnation layer was more intense and higher ionization states of (Al and Si) appeared earlier in time having higher intensity compared to the flat target. The time evolution of the electron number density was also studied and it was observed that wedge target results in a relatively higher electron number density

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Nicolosi , Piergiorgio
Supervisor:Nicolosi , Piergiorgio and McCormack , Thomas and Zuppella, Paola
Ph.D. course:Ciclo 32 > Corsi 32 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:02 December 2019
Anno di Pubblicazione:02 December 2019
Key Words:Graphene, Brewster angle, optical anisotropy, hydrogen Lyman alpha, optical constants, angular reflectance, polarization, SiO2, stagnation layer, colliding laser plasma spectroscopy, time evolution of plasma, VUV optical constants of graphene, Raman, XPS, EUV-VUV polarimetry
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/23 Chimica fisica applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:12277
Depositato il:25 Jan 2021 12:48
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation. Cambridge: Cambridge University Press, 1999. Cerca con Google

[2] L. V. R. De Marcos et al., “Optimization of MgF 2 -deposition temperature for far UV Al mirrors,” Opt. Express, vol. 26, no. 7, p. 9363, Apr. 2018. Cerca con Google

[3] W. R. Hunter, J. F. Osantowski, and G. Hass, “Reflectance of Aluminum Overcoated with MgF_2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt., vol. 10, no. 3, p. 540, 1971. Cerca con Google

[4] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. Cerca con Google

[5] W. A. de Heer et al., “Epitaxial graphene,” Solid State Commun., vol. 143, no. 1–2, pp. 92–100, Jul. 2007. Cerca con Google

[6] S. Chen et al., “Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy,” ACS Nano, vol. 5, no. 2, pp. 1321–1327, Feb. 2011. Cerca con Google

[7] N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci., vol. 56, pp. 1–4, Mar. 2012. Cerca con Google

[8] J. S. Bunch et al., “Impermeable atomic membranes from graphene sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008. Cerca con Google

[9] V. Mišković-Stanković, I. Jevremović, I. Jung, and K. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution,” Carbon N. Y., vol. 75, pp. 335–344, 2014. Cerca con Google

[10] P. Zuppella, F. Gerlin, and M. G. Pelizzo, “Angular reflectance of graphene/SiO2/Si in UV spectral range : A study for potential applications,” Opt. Mater. (Amst)., vol. 67, pp. 132–138, 2017. Cerca con Google

[11] J. W. Weber, V. E. Calado, and M. C. M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett., vol. 97, no. 9, p. 091904, Aug. 2010. Cerca con Google

[12] A. Gao et al., “Extreme ultraviolet induced defects on few-layer graphene,” J. Appl. Phys., vol. 114, no. 4, pp. 1–6, 2013. Cerca con Google

[13] F. Gerlin et al., “Stability and extreme ultraviolet photo-reduction of graphene during C-K edge NEXAFS characterization,” Surf. Coat. Technol., vol. 296, pp. 211–215, 2016. Cerca con Google

[14] V. Yevgenyevich and E. Roelof, “(19) United States (12),” vol. 1, no. 19, 2014. Cerca con Google

[15] Y. C. 299-0265 (JP) ONO, K. K. Y. 740-0061 (JP) KOHMURA, and (74), “PELLICLE AND EUV EXPOSURE DEVICE COMPRISING SAME (57),” 2016. Cerca con Google

[16] R. B. Hoover et al., “Solar observations with the multispectral solar telescope array,” in Multilayer and Grazing Incidence X-Ray/EUV Optics, 1992, vol. 1546, p. 175. Cerca con Google

[17] B. N. Handy et al., “UV observations with the transition region and coronal explorer,” Sol. Phys., vol. 183, no. 1, pp. 29–43, 1998. Cerca con Google

[18] W. Curdt, H. Tian, L. Teriaca, U. Schühle, and P. Lemaire, “The Ly-α profile and center-to-limb variation of the quiet Sun,” Astron. Astrophys., vol. 492, no. 1, pp. 1–5, 2008. Cerca con Google

[19] J. A. S. and D. L. Ederer, Vacuum Ultraviolet Spectroscopy I. Academic Press, 1998. Cerca con Google

[20] M. A. Barstow, S. L. Casewell, J. B. Holberg, and M. P. Kowalski, “The status and future of EUV astronomy,” Adv. Sp. Res., vol. 53, no. 6, pp. 1003–1013, 2014. Cerca con Google

[21] J. Fujimoto, T. Hori, T. Yanagida, and H. Mizoguchi, “Development of laser-produced tin plasma-based EUV light source technology for HVM EUV lithography,” Phys. Res. Int., vol. 2012, no. 1, pp. 1–11, 2012. Cerca con Google

[22] H. Komori et al., “Ion damage analysis on EUV collector mirrors,” in Emerging Lithographic Technologies VIII, 2004, vol. 5374, p. 839. Cerca con Google

[23] A. I. Lvovsky, “Fresnel Equations,” in Encyclopedia of Optical Engineering, no. August, 2013, pp. 37–41. Cerca con Google

[24] Jean M . Bennett, “CHAPTER 5 Polarization,” in Handbook of Optics, Volume 1: Fundamentals, Techniques, and Design, 1994, pp. 5.1-5.30. Cerca con Google

[25] M. Bass and O. S. of America, Handbook of Optics: Fundamentals, techniques, and design, no. v. 1. McGraw-Hill, 1994. Cerca con Google

[26] E. PALIK, “Handbook of Optical Constants of Solids,” in Handbook of Optical Constants of Solids, San Diego: Academic Press, Inc., 1997. Cerca con Google

[27] W. R. Hunter, “Measurement of optical properties of materials in the vacuum ultraviolet spectral region,” Appl. Opt., vol. 21, no. 12, p. 2103, 1982. Cerca con Google

[28] J. I. Larruquert, J. A. Me, and J. A. Azna, “Far-ultraviolet reflectance measurements and optical constants of unoxidized aluminum films,” Appl. Opt., vol. 34, no. 22, pp. 4892–4899, 1995. Cerca con Google

[29] R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet–soft-x-ray region,” Appl. Opt., vol. 36, no. 22, p. 5499, 1997. Cerca con Google

[30] G. Monaco et al., “Optical constants in the EUV soft x-ray (5÷152 nm) spectral range of B 4 C thin films deposited by different deposition techniques,” in Advances in X-Ray/EUV Optics, Components, and Applications, 2006, vol. 6317, no. August, p. 631712. Cerca con Google

[31] W. R. Hunter, The Preparation and Use of Unbacked Metal Films as Filters in the Extreme Ultraviolet, vol. 7. ACADEMIC PRESS, INC., 1973. Cerca con Google

[32] Y. Uspenskii et al., “Extreme UV optical constants of rare-earth metals free from effects of air contamination,” in Soft X-Ray Lasers and Applications VI, 2005, vol. 5919, p. 59190S. Cerca con Google

[33] H. J. Hagemann, W. Gudat, and C. Kunz, “OPTICAL CONSTANTS FROM THE FAR INFRARED TO THE X-RAY REGION: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3.,” J Opt Soc Am, vol. 65, no. 6, pp. 742–744, 1975. Cerca con Google

[34] H. G. Tompkins, E. A. Irene, C. Hill, and N. Carolina, Handbook of Ellipsometry. Eaton Avenue, Norwich, NY: Springer Berlin Heidelberg, 2005. Cerca con Google

[35] T. Tsuru and M. Yamamoto, “Precise determination of layer structure with EUV ellipsometry data obtained by multilayer polarizing elements,” in Physica Status Solidi (C) Current Topics in Solid State Physics, 2008, vol. 5, no. 5, pp. 1129–1132. Cerca con Google

[36] A. E. H. Gaballah et al., “A table top polarimetric facility for the EUV spectral range: implementations and characterization,” in Proceedings of SPIE - The International Society for Optical Engineering, 2017, vol. 10235, p. 102350X. Cerca con Google

[37] A. E. H. Gaballah et al., “EUV polarimetry for thin film and surface characterization and EUV phase retarder reflector development,” Rev. Sci. Instrum., vol. 89, no. 1, p. 015108, 2018. Cerca con Google

[38] Fujiwara, Spectroscopic Ellipsometry: Principles and Applications. 2007. Cerca con Google

[39] A. Weidlich and A. Wilkie, “Realistic rendering of birefringency in uniaxial crystals,” ACM Trans. Graph., vol. 27, no. 1, pp. 111–129, 2008. Cerca con Google

[40] C. C. Davis, “The optics of anisotropic media,” in Lasers and Electro-optics, Cambridge: Cambridge University Press, 2014, pp. 539–579. Cerca con Google

[41] F. V. Ignaovich and V. K. Ignatovich, “Optics of anisotropic media,” in Uspekhi Fizicheskih Nauk, vol. 182, no. 7, 2012, p. 759. Cerca con Google

[42] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, no. 9, pp. 622–634, 1947. Cerca con Google

[43] Eduardo Fradkin, “Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory,” Phys. Rev. B, vol. 33, no. 5, pp. 3263–3268, 1986. Cerca con Google

[44] N. D. Mermin, “Crystalline Order in Two Dimensions,” Phys. Rev., vol. 176, no. 1, pp. 250–254, Dec. 1968. Cerca con Google

[45] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surf. Sci., vol. 264, no. 3, pp. 261–270, 1992. Cerca con Google

[46] Y. Ohashi, T. Koizumi, T. Yoshikawa, T. Hironaka, and K. Shiiki, “Size Effect inthe In-plane Electrical Resistivity of Very Thin Graphite Crystals,” TANSO, vol. 1997, no. 180, pp. 235–238, 1997. Cerca con Google

[47] I. V. G. and A. A. F. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, Oct. 2004. Cerca con Google

[48] B. Garg, T. Bisht, and Y.-C. Ling, “Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective,” Molecules, vol. 19, no. 9, pp. 14582–14614, Sep. 2014. Cerca con Google

[49] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, Mar. 2007. Cerca con Google

[50] Y. H. Wu, T. Yu, and Z. X. Shen, “Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications,” J. Appl. Phys., vol. 108, no. 7, pp. 1–38, 2010. Cerca con Google

[51] A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Reports Prog. Phys., vol. 74, no. 8, p. 082501, Aug. 2011. Cerca con Google

[52] W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of Graphene and Its Applications: A Review,” Crit. Rev. Solid State Mater. Sci., vol. 35, no. 1, pp. 52–71, Feb. 2010. Cerca con Google

[53] P. Avouris and C. Dimitrakopoulos, “Graphene: Synthesis and applications,” Mater. Today, vol. 15, no. 3, pp. 86–97, 2012. Cerca con Google

[54] K. E. Whitener and P. E. Sheehan, “Graphene synthesis,” Diam. Relat. Mater., vol. 46, pp. 25–34, Jun. 2014. Cerca con Google

[55] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog. Mater. Sci., vol. 56, no. 8, pp. 1178–1271, Oct. 2011. Cerca con Google

[56] J. S. Bunch et al., “Impermeable Atomic Membranes from Graphene Sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, Aug. 2008. Cerca con Google

[57] Y. Q. Liang, L. L. Yu, Z. D. Cui, S. L. Zhu, Z. Y. Li, and X. J. Yang, “Large-Scale Synthetic Graphene on Cu as Anti-Corrosion Coating by Chemical Vapor Deposition Approach,” Sci. Adv. Mater., vol. 6, no. 3, pp. 545–549, Mar. 2014. Cerca con Google

[58] A. S. Sai Pavan and S. R. Ramanan, “A study on corrosion resistant graphene films on low alloy steel,” Appl. Nanosci., vol. 6, no. 8, pp. 1175–1181, 2016. Cerca con Google

[59] M. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl, “Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing,” ACS Nano, vol. 7, no. 7, pp. 5763–5768, Jul. 2013. Cerca con Google

[60] J. Hu, Y. Ji, and Y. Shi, “A Review on the use of Graphene as a Protective Coating against Corrosion,” Ann. Mater. Sci. Eng., vol. 1, no. 3, pp. 1–16, 2014. Cerca con Google

[61] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, vol. 321, no. July, pp. 385–388, 2008. Cerca con Google

[62] K. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes.,” Nature, vol. 457, no. 7230, pp. 706–10, 2009. Cerca con Google

[63] W. Zhang et al., “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures,” Sci. Rep., vol. 4, no. 1, p. 3826, May 2015. Cerca con Google

[64] R. R. Nair et al., “Fine Structure Constant Defines Visual Transparency of Graphene,” Science (80-. )., vol. 320, no. 5881, pp. 1308–1308, 2008. Cerca con Google

[65] C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett., vol. 105, no. 12, p. 127404, Sep. 2010. Cerca con Google

[66] C. Casiraghi et al., “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett., vol. 7, no. 9, pp. 2711–2717, Sep. 2007. Cerca con Google

[67] P. Blake et al., “Making graphene visible,” Appl. Phys. Lett., vol. 91, no. 6, p. 063124, Aug. 2007. Cerca con Google

[68] X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express, vol. 16, no. 26, p. 22105, 2008. Cerca con Google

[69] M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett., vol. 94, no. 3, pp. 2007–2010, 2009. Cerca con Google

[70] Z. H. Ni et al., “Graphene Thickness Determination Using Reflection and Contrast Spectroscopy,” Nano Lett., vol. 7, no. 9, pp. 2758–2763, Sep. 2007. Cerca con Google

[71] A. Gray, M. Balooch, S. Allegret, S. De Gendt, and W. E. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys., vol. 104, no. 5, 2008. Cerca con Google

[72] J. W. Weber, V. E. Calado, and M. C. M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett., vol. 97, no. 9, pp. 1–4, 2010. Cerca con Google

[73] M. Z. and K. F. Wei-E Wang, M. Balooch, C. Claypool, “Combined reflectometry-ellipsometry technique to measure graphite down to monolayer thickness,” Solid State Technol., vol. Vol. 52, no. Issue 6, 2009. Cerca con Google

[74] V. G. Kravets et al., “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 15, pp. 1–6, 2010. Cerca con Google

[75] A. Matković et al., “Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene,” J. Appl. Phys., vol. 112, no. 12, p. 123523, Dec. 2012. Cerca con Google

[76] M. Klintenberg, S. Lebègue, C. Ortiz, B. Sanyal, J. Fransson, and O. Eriksson, “Evolving properties of two-dimensional materials: from graphene to graphite,” J. Phys. Condens. Matter, vol. 21, no. 33, p. 335502, Aug. 2009. Cerca con Google

[77] W. T. Welford, “VI Aberration Theory of Gratings and Grating Mountings,” in Progress in Optics, vol. 4, no. C, 1965, pp. 241–280. Cerca con Google

[78] “CEM detectors.” [Online]. Available: http://www.sjuts.com. Vai! Cerca con Google

[79] “hamamatsu.” [Online]. Available: http://www.hamamatsu.com. Vai! Cerca con Google

[80] “PI motion and positioning.” [Online]. Available: http://www.physikinstrumente.com. Vai! Cerca con Google

[81] “BEAR beamline description.” [Online]. Available: https://www.elettra.trieste.it/it/lightsources/elettra/elettra-beamlines/bear/beamline-description.html. Vai! Cerca con Google

[82] S. Nannarone et al., “The BEAR beamline at elettra,” in AIP Conference Proceedings, 2004, vol. 705, no. June 2014, pp. 450–453. Cerca con Google

[83] “Elettra sincrotrone Trieste.” [Online]. Available: http://www.elettra.trieste.it/lightsources/elettra/elettra-beamlines/bear/beamline-description.html?showall=. Vai! Cerca con Google

[84] “Atomic Force Microscopy.” [Online]. Available: http://www.nanoscience.com. Vai! Cerca con Google

[85] N. Ahlawat, “Raman Spetroscopy: A Review,” Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 11, pp. 680–685, 2014. Cerca con Google

[86] T. Itoh, A. Sujith, and Y. Ozaki, “Surface-Enhanced Raman Scattering Spectroscopy: Electromagnetic Mechanism and Biomedical Applications,” in Frontiers of Molecular Spectroscopy, 2009, pp. 289–319. Cerca con Google

[87] D. E. Bugay and H. G. Brittain, “Raman spectroscopy,” in Spectroscopy of Pharmaceutical Solids, no. 1, 2006, pp. 271–312. Cerca con Google

[88] “https://chromosomeface.wordpress.com/2017/03/08/raman-effect-biology/.” [Online]. Available: https://chromosomeface.wordpress.com/2017/03/08/raman-effect-biology/. Vai! Cerca con Google

[89] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, no. 1–2, pp. 47–57, Jul. 2007. Cerca con Google

[90] Y. A. Kim et al., “Raman spectroscopy of boron-doped single-layer graphene,” ACS Nano, vol. 6, no. 7, pp. 6293–6300, 2012. Cerca con Google

[91] H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, “Doped graphene electrodes for organic solar cells,” Nanotechnology, vol. 21, no. 50, p. 505204, Dec. 2010. Cerca con Google

[92] M. S. Dresselhaus, A. Jorio, and R. Saito, “Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy,” Annu. Rev. Condens. Matter Phys., vol. 1, no. 1, pp. 89–108, 2010. Cerca con Google

[93] P. R. Kidambi et al., “The parameter space of graphene chemical vapor deposition on polycrystalline Cu,” J. Phys. Chem. C, vol. 116, no. 42, pp. 22492–22501, 2012. Cerca con Google

[94] P. E. . B. Moulder, J.F.; Stickle, W.F.; Sobol, Handbook of X-ray Photoelectron Spectroscopy, no. 1. Minnesota; Perkin-Elmer Corporation, 1992. Cerca con Google

[95] M. Tryus, “Extreme Ultraviolet Reflectometry for Structural and Optical Characterization of Thin Films and Layer Systems,” 2018. Cerca con Google

[96] A. Comisso, M. Nardello, A. Giglia, and P. Nicolosi, “Optical constants of e-beam evaporated titanium dioxide thin films in the 25.5- to 612-eV energy region,” Opt. Eng., vol. 55, no. 9, p. 095102, Sep. 2016. Cerca con Google

[97] R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region.,” Appl. Opt., vol. 36, no. 22, pp. 5499–507, 1997. Cerca con Google

[98] L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of MgF_2, LaF_3, and CeF_3 films,” Opt. Mater. Express, vol. 7, no. 3, p. 989, Mar. 2017. Cerca con Google

[99] L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO_2 and Ta_2O_5 films,” Opt. Mater. Express, vol. 6, no. 11, p. 3622, Nov. 2016. Cerca con Google

[100] A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express, vol. 19, no. 11, p. 10834, 2011. Cerca con Google

[101] S. T. Pantelides, The Physics of SiO2 and its Interfaces, 1st Editio. Elsevier, 1978. Cerca con Google

[102] D. Goldstein, Handbook of Polarized light, 2nd ed. New york, 2003. Cerca con Google

[103] H. G. Tompkins, E. A. Irene, C. Hill, and N. Carolina, Handbook of Ellipsometry. 2005. Cerca con Google

[104] D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys., vol. 12, no. 4, pp. 360–370, 1998. Cerca con Google

[105] L. C. M. Lavras, A. J. Damião, and N. A. S. Rodrigues, “OPTICAL PROPERTIES OF ZrO 2 AND Ta 2 O 5,” vol. 21, no. 11, pp. 3622–3637, 2002. Cerca con Google

[106] H. R. Philipp, “Optical properties of non-crystalline Si, SiO, SiOx and SiO2,” J. Phys. Chem. Solids, vol. 32, no. 8, pp. 1935–1945, Jan. 1971. Cerca con Google

[107] C. Tarrio and S. E. Schnatterly, “Optical properties of silicon and its oxides,” J. Opt. Soc. Am. B, vol. 10, no. 5, p. 952, 1993. Cerca con Google

[108] E. Filatova, V. Lukyanov, C. Blessing, and J. Friedrich, “Reflection spectra and optical constants of noncrystalline SiO2 in the soft x-ray region,” J. Electron Spectros. Relat. Phenomena, vol. 79, no. Supplement C, pp. 63–66, 1996. Cerca con Google

[109] E. Palik, Handbook of Optical Constants of Solids, 1st Editio. Academic Press, 1998. Cerca con Google

[110] A. Gray, M. Balooch, S. Allegret, S. De Gendt, and W.-E. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys., vol. 104, no. 5, p. 053109, Sep. 2008. Cerca con Google

[111] F. J. Nelson, V. K. Kamineni, T. Zhang, E. S. Comfort, J. U. Lee, and A. C. Diebold, “Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry,” Appl. Phys. Lett., vol. 97, no. 25, pp. 1–4, 2010. Cerca con Google

[112] R. R. Nair et al., “Fine structure constant defines visual transparency of graphene,” Science (80-. )., vol. 320, no. 5881, p. 1308, 2008. Cerca con Google

[113] B. Majérus et al., “Modified Brewster angle on conducting 2D materials,” 2D Mater., vol. 5, no. 2, p. 025007, Jan. 2018. Cerca con Google

[114] Y. L. Liu et al., “Using optical anisotropy as a quality factor to rapidly characterize structural qualities of large-area graphene films,” Anal. Chem., vol. 85, no. 3, pp. 1605–1614, 2013. Cerca con Google

[115] I. K. Kim and D. E. Aspnes, “Analytic determination of n, κ, and d of an absorbing film from polarimetric data in the thin-film limit,” J. Appl. Phys., vol. 101, no. 3, p. 33109, Feb. 2007. Cerca con Google

[116] R. Lazzari, G. Renaud, C. Revenant, J. Jupille, and Y. Borensztein, “Adhesion of growing nanoparticles at a glance: Surface differential reflectivity spectroscopy and grazing incidence small angle x-ray scattering,” Phys. Rev. B, vol. 79, no. 12, p. 125428, Mar. 2009. Cerca con Google

[117] P. Adamson, “Inverse relationships for ellipsometry of uniaxially anisotropic nanoscale dielectric films on isotropic materials,” Opt. Commun., vol. 285, no. 13–14, pp. 3210–3216, 2012. Cerca con Google

[118] I. N. Kholmanov et al., “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett., vol. 12, no. 11, pp. 5679–5683, 2012. Cerca con Google

[119] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, and Z. Liu, “The origin of wrinkles on transferred graphene,” Nano Res., vol. 4, no. 10, pp. 996–1004, Oct. 2011. Cerca con Google

[120] S. J. Chae et al., “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation,” Adv. Mater., vol. 21, no. 22, pp. 2328–2333, 2009. Cerca con Google

[121] N. C. M. 2. 3. 1. Fairley, “Casaxpx Processing Software for Xps Spectra.” Casa Software Ltd, 2009, Englang. Cerca con Google

[122] N. A. Malik, P. Nicolosi, A. E. H. Gaballah, K. Jimenez, and P. Zuppella, “EUV reflective ellipsometry in laboratory: determination of the optical constants and phase retarder properties of SiO2 at hydrogen Lyman–alpha,” in EUV and X-ray Optics: Synergy between Laboratory and Space VI, 2019, vol. 110320V, no. April, p. 32. Cerca con Google

[123] H. Proehl, R. Nitsche, T. Dienel, K. Leo, and T. Fritz, “In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 16, p. 165207, Apr. 2005. Cerca con Google

[124] J. D. E. McIntyre and D. E. Aspnes, “Differential reflection spectroscopy of very thin surface films,” Surf. Sci., vol. 24, no. 2, pp. 417–434, 1971. Cerca con Google

[125] T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 8, pp. 1–8, 2008. Cerca con Google

[126] Y. V Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence,” J. Opt., vol. 15, no. 11, p. 114004, Nov. 2013. Cerca con Google

[127] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics, vol. 4, no. 9, pp. 611–622, Sep. 2010. Cerca con Google

[128] P. E. Gaskell, H. S. Skulason, C. Rodenchuk, and T. Szkopek, “Counting graphene layers on glass via optical reflection microscopy,” Appl. Phys. Lett., vol. 94, no. 14, pp. 10–13, 2009. Cerca con Google

[129] R. J. E. Jaspers, “Plasma spectroscopy,” in Fusion Science and Technology, 2012, vol. 61, no. 2 T, pp. 384–393. Cerca con Google

[130] D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasmaparticle interactions: Still-challenging issues within the analytical plasma community,” in Applied Spectroscopy, 2010, vol. 64, no. 12, pp. 335–366. Cerca con Google

[131] S. Braun, H. Mai, M. Moss, and R. Scholz, “Mo/Si multilayers with different barrier layers for applications as EUV mirrors,” in 2001 International Microprocesses and Nanotechnology Conference, MNC 2001, 2001, pp. 90–91. Cerca con Google

[132] F. (US) Martin Richardson, Geneva, “EUV, XUV, AND X-RAY WAVELENGTH SOURCES CREATED FROM LASER PLASMA PRODUCED FROM LIQUID METAL SOLUTIONS, AND NANO-SIZE PARTICLES IN SOLUTIONS,” 2002. Cerca con Google

[133] J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett., vol. 68, no. 24, pp. 3535–3538, 1992. Cerca con Google

[134] M. E. Koepke, “Interrelationship between lab, space, astrophysical, magnetic fusion, and inertial fusion plasma experiments,” Atoms, vol. 7, no. 1. pp. 1–10, 2019. Cerca con Google

[135] R. W. Eason et al., “Multi-beam pulsed laser deposition for advanced thin-film optical waveguides,” J. Phys. D. Appl. Phys., vol. 47, no. 3, 2014. Cerca con Google

[136] J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Analytical Chemistry, vol. 78, no. 1. pp. 24–32, 2006. Cerca con Google

[137] D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma—Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community,” Appl. Spectrosc., vol. 64, no. 12, pp. 335A-336A, Dec. 2010. Cerca con Google

[138] S. S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Opt. Lett., vol. 31, no. 10, p. 1549, 2006. Cerca con Google

[139] J. R. Freeman, S. S. Harilal, T. Sizyuk, A. Hassanein, and B. Rice, “Wavelength dependence of prepulse laser beams on EUV emission from CO 2 reheated Sn plasma,” in Extreme Ultraviolet (EUV) Lithography III, 2012, vol. 8322, p. 83220H. Cerca con Google

[140] T. Cummins, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and P. Hayden, “Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources,” Appl. Phys. Lett., vol. 105, no. 4, pp. 1–5, 2014. Cerca con Google

[141] M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, and S. J. Henley, “Pulsed laser ablation and deposition of thin films,” Chem. Soc. Rev., vol. 33, no. 1, p. 23, 2004. Cerca con Google

[142] A. Tselev, A. Gorbunov, and W. Pompe, “Cross-beam pulsed laser deposition: General characteristic,” Rev. Sci. Instrum., vol. 72, no. 6, pp. 2665–2672, Jun. 2001. Cerca con Google

[143] J. Dardis and J. T. Costello, “Stagnation layers at the collision front between two laser-induced plasmas: A study using time-resolved imaging and spectroscopy,” Spectrochim. Acta Part B At. Spectrosc., vol. 65, no. 8, pp. 627–635, Aug. 2010. Cerca con Google

[144] S. L. Gupta, P. K. Pandey, and R. K. Thareja, “Dynamics of laser ablated colliding plumes,” Phys. Plasmas, vol. 20, no. 1, p. 013511, Jan. 2013. Cerca con Google

[145] P. W. Rambo and J. Denavit, “Time-implicit fluid simulation of collisional plasmas,” J. Comput. Phys., vol. 98, no. 2, pp. 317–331, 1992. Cerca con Google

[146] C. Chenais-Popovics et al., “Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas,” Phys. Plasmas, vol. 4, no. 1, pp. 190–208, 1997. Cerca con Google

[147] E. C. Merritt, A. L. Moser, S. C. Hsu, J. Loverich, and M. Gilmore, “Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets,” Phys. Rev. Lett., vol. 111, no. 8, p. 085003, Aug. 2013. Cerca con Google

[148] K. F. Al-Shboul et al., “Interpenetration and stagnation in colliding laser plasmas,” Phys. Plasmas, vol. 21, no. 1, p. 013502, Jan. 2014. Cerca con Google

[149] H. Photonics, Digital CCD Camera C8484-05G02 Instruction Manual, vol. ver 1 ed. Hamamatsu Photonics, 2009. Cerca con Google

[150] and N. A. T. (2018) Kramida, A., Ralchenko, Yu., Reader, J., “NIST atomic spectra database (ver. 5.6.1),” 2018. [Online]. Available: https://www.nist.gov/pml/atomic-spectra-database. Vai! Cerca con Google

[151] N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (A critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data, vol. 31, no. 3, pp. 819–927, 2002. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record