Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Napoli, Barbara (2019) Endoplasmic reticulum homeostasis, lipid droplets biogenesis and autophagy in Drosophila models of Hereditary Spastic Paraplegia. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 29 September 2022 for intellectual property related reasons.
Visibile to: nobody


Abstract (italian or english)

Mutations in the SPG4 gene (Spastin), SPG31 gene (REEP1) and SPG3A gene (Atlastin) are the most common causes of autosomal dominant Hereditary Spastic Paraplegia (HSP), a complex genetic disorder characterized by the axonal degeneration of corticospinal tracts. Interactions between REEP1, Atlastin and Spastin, have a crucial role in modifying ER architecture and lipid metabolism, two important emerging cellular aspects potentially underlying HSP pathological mechanism. The role of lipid droplets (LDs) in HSP has been highlighted by recent evidence that proteins such as Seipin/SPG17, Erlin2/SPG18, Atlastin/SPG3A, Spartin/SPG20, REEP1/SPG31 and Spastin/SPG4 affect cellular LD turnover. Moreover, the authophagy/lysosomes degradative pathway is another important process that crosses LD and ER homeostasis. Different studies have shown that Spastin modulates the endosomal tubule fission and has a crucial role in the tethering of cellular organelles such as LDs, endosomes and peroxisomes. The depletion of spastin alters the ER-endosome contacts, impairs endosomal tubule fission and induces lysosome abnormalities. Furthermore, spastin reduces the LD-peroxisome contacts and affects the fatty acid (FA) trafficking from LDs to peroxisomes. In spite of these findings, the relationship between ER homeostasis and the lipid pathway, with the related implications for neuronal dysfunction in HSP, still remains unknown.
In this work we used the common fruit fly, Drosophila melanogaster, as model organism to perform in vivo studies aimed at describing ReepA function in endoplasmic reticulum homeostasis and morphology and, establishing the role of ReepA and Dspastin in LD biogenesis and autophagy. In order to investigate these pathways, we manipulated the expression of Drosophila REEPA and Spastin by using loss of function alleles and RNA interference approaches. Since immunostaining experiments have shown that loss of ReepA function modifies ER morphology. We investigated the role of ReepA in ER homeostasis, quantifying the mRNA levels of the main genes involved in unfolded protein response (UPR). The results indicate that absence of ReepA triggers a selective activation of the Ire1 and Atf6 branches of UPR. Drosophila lacking ReepA exhibit locomotor dysfunction and shortened lifespan and display a decrease in LD number and size in nerves and muscles phenotypes reminiscent of those caused by Dspastin-RNAi. In order to understand the link between ER homeostasis and LD turnover, we quantified the relative mRNA expression of genes (Mino and Mdy) involved in lipid metabolism. Both HSP models displayed a reduction of Mino and Mdy mRNA levels suggesting a role for Spastin and ReepA in LD biogenesis. Moreover, we investigated the formation of early and late autophagosomes, lysosomes and autolysosomes using fluorescent monomeric tandem constructs that allow the visualization of autophagosomes and lysosomes in vivo. Loss of ReepA and Spastin function impaired the autophagic flux, increasing the number of early/immature and late autophagosomes. Moreover, we showed that loss of DSpastin and ReepA function produces larger lysosomes, consistent with the studies in mammalian models. We also found that naringenin, a flavonoid that possesses strong antioxidant activity and is considered a neuroprotective phytochemical, is able to rescue the cellular phenotypes, the lifespan and locomotor disability associated with loss of ReepA and Dspastin-RNAi. Our data highlight the importance of ER homeostasis in nervous system functionality and in HSP neurodegenerative mechanisms opening new avenues for HSP treatment.

EPrint type:Ph.D. thesis
Tutor:Orso, Genny
Data di deposito della tesi:02 December 2019
Anno di Pubblicazione:02 December 2019
Key Words:Drosophila melanogaster, Endoplasmic Reticulum, Hereditary Spastic Paraplegia, Naringenin, REEP1, ReepA, Spastin, UPR, LDs, Autophagy
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/14 Farmacologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze del Farmaco
Codice ID:12286
Depositato il:25 Jan 2021 15:16
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abounit, K., Scarabelli, T. M., and McCauley, R. B. (2012). Autophagy in mammalian cells. World J. Biol. Chem. 3, 1–6. doi:10.4331/wjbc.v3.i1.1. Cerca con Google

Alberts, P., and Rotin, D. (2010). Regulation of lipid droplet turnover by ubiquitin ligases. BMC Biol. 8, 94. doi:10.1186/1741-7007-8-94. Cerca con Google

Allison, R., Edgar, J. R., Pearson, G., Rizo, T., Newton, T., Günther, S., et al. (2017). Defects in ER–endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol 216, 1337–1355. doi:10.1083/JCB.201609033. Cerca con Google

Allocca, M., Zola, S., and Bellosta, P. (2018). “The Fruit Fly, Drosophila melanogaster: Modeling of Human Diseases (Part II),” in Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics doi:10.5772/intechopen.73199. Cerca con Google

Appocher, C., Klima, R., and Feiguin, F. (2014). Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates. Hum. Mol. Genet. 23, 6762–6772. Available at: http://dx.doi.org/10.1093/hmg/ddu393. Vai! Cerca con Google

Assini, J. M., Mulvihill, E. E., and Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Curr. Opin. Lipidol. 24. Available at: https://journals.lww.com/co-lipidology/Fulltext/2013/02000/Citrus_flavonoids_and_lipid_metabolism.7.aspx. Vai! Cerca con Google

Barone, M. C., Sykiotis, G. P., and Bohmann, D. (2011). Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis. Model. {&} Mech. 4, 701–707. doi:10.1242/dmm.007575. Cerca con Google

Beetz, C., Koch, N., Khundadze, M., Zimmer, G., Nietzsche, S., Hertel, N., et al. (2013). A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. J. Clin. Invest. 123, 4273–4282. doi:10.1172/JCI65665. Cerca con Google

Beetz, C., Schüle, R., Deconinck, T., Tran-Viet, K.-N., Zhu, H., Kremer, B. P. H., et al. (2008). REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131, 1078–1086. doi:10.1093/brain/awn026. Cerca con Google

Bellofatto, M., De Michele, G., Iovino, A., Filla, A., and Santorelli, F. M. (2019). Management of Hereditary Spastic Paraplegia: A Systematic Review of the Literature. Front. Neurol. 10, 3. doi:10.3389/fneur.2019.00003. Cerca con Google

Belzil, V. V, and Rouleau, G. A. (2012). Endoplasmic reticulum lipid rafts and upper motor neuron degeneration. Ann. Neurol. 72, 479–80. doi:10.1002/ana.23678. Cerca con Google

Boutry, M., Morais, S., and Stevanin, G. (2019). Update on the Genetics of Spastic Paraplegias. Curr. Neurol. Neurosci. Rep. 19, 18. doi:10.1007/s11910-019-0930-2. Cerca con Google

Bravo, R., Parra, V., Gatica, D., Rodriguez, A. E., Torrealba, N., Paredes, F., et al. (2013). “Chapter Five - Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration,” in International Review of Cell and Molecular Biology, ed. K. W. B. T.-I. R. of C. and M. B. Jeon (Academic Press), 215–290. doi:https://doi.org/10.1016/B978-0-12-407704-1.00005-1. Vai! Cerca con Google

Bürger, J., Fonknechten, N., Hoeltzenbein, M., Neumann, L., Bratanoff, E., Hazan, J., et al. (2000). Hereditary spastic paraplegia caused by mutations in the SPG4 gene. Eur. J. Hum. Genet. 8, 771–776. doi:10.1038/sj.ejhg.5200528. Cerca con Google

Byrne, J. J., Soh, M. S., Chandhok, G., Vijayaraghavan, T., Teoh, J.-S., Crawford, S., et al. (2019). Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell. Mol. Life Sci. 76, 1967–1985. doi:10.1007/s00018-019-03024-5. Cerca con Google

Cabirol-Pol, M.-J., Khalil, B., Rival, T., Faivre-Sarrailh, C., and Besson, M. T. (2018). Glial lipid droplets and neurodegeneration in a Drosophila model of complex I deficiency. Glia 66, 874–888. doi:doi:10.1002/glia.23290. Cerca con Google

Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96. doi:10.1038/415092a. Cerca con Google

Chang, C.-L., Weigel, A. V, Ioannou, M. S., Pasolli, H. A., Xu, C. S., Peale, D. R., et al. (2019). Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583 LP – 2599. doi:10.1083/jcb.201902061. Cerca con Google

Chattopadhyay, D., Sen, S., Chatterjee, R., Roy, D., James, J., and Thirumurugan, K. (2016). Context- and dose-dependent modulatory effects of naringenin on survival and development of Drosophila melanogaster. Biogerontology 17, 383–393. doi:10.1007/s10522-015-9624-6. Cerca con Google

Chen, C.-N., Chu, C.-C., Zentella, R., Pan, S.-M., and David Ho, T.-H. (2002). AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol. Biol. 49, 631–642. doi:10.1023/A:1015593715144. Cerca con Google

Chen, R., Jin, R., Wu, L., Ye, X., Yang, Y., Luo, K., et al. (2011). Reticulon 3 attenuates the clearance of cytosolic prion aggregates via inhibiting autophagy. Autophagy 7, 205–216. doi:10.4161/auto.7.2.14197. Cerca con Google

Chen, S., Novick, P., and Ferro-Novick, S. (2013). ER structure and function. Curr. Opin. Cell Biol. 25, 428–33. doi:10.1016/j.ceb.2013.02.006. Cerca con Google

Chiang, W.-C., Hiramatsu, N., Messah, C., Kroeger, H., and Lin, J. H. (2012). Selective Activation of ATF6 and PERK Endoplasmic Reticulum Stress Signaling Pathways Prevent Mutant Rhodopsin Accumulation. Investig. Opthalmology {&} Vis. Sci. 53, 7159. doi:10.1167/iovs.12-10222. Cerca con Google

Chitraju, C., Mejhert, N., Haas, J. T., Diaz-Ramirez, L. G., Grueter, C. A., Imbriglio, J. E., et al. (2017). Triglyceride Synthesis by DGAT1 Protects Adipocytes from Lipid-Induced ER Stress during Lipolysis. Cell Metab. 26, 407-418.e3. doi:10.1016/j.cmet.2017.07.012. Cerca con Google

Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M., and Walter, P. (2005). On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 102, 18773 LP-- 18784. doi:10.1073/pnas.0509487102. Cerca con Google

Curti, V., Di Lorenzo, A., Rossi, D., Martino, E., Capelli, E., Collina, S., et al. (2017). Enantioselective Modulatory Effects of Naringenin Enantiomers on the Expression Levels of miR-17-3p Involved in Endogenous Antioxidant Defenses. Nutrients 9. doi:10.3390/nu9030215. Cerca con Google

D’Amore, C., Orso, G., Fusi, F., Pagano, M. A., Miotto, G., Forgiarini, A., et al. (2016). An NBD Derivative of the Selective Rat Toxicant Norbormide as a New Probe for Living Cell Imaging. Front. Pharmacol. 7. doi:10.3389/fphar.2016.00315. Cerca con Google

English, A. R., and Voeltz, G. K. (2013). Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 5, a013227–a013227. doi:10.1101/cshperspect.a013227. Cerca con Google

English, A. R., Zurek, N., and Voeltz, G. K. (2009). Peripheral ER structure and function. Curr. Opin. Cell Biol. 21, 596–602. doi:10.1016/j.ceb.2009.04.004. Cerca con Google

Errico, A., Claudiani, P., D’Addio, M., and Rugarli, E. I. (2004). Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum. Mol. Genet. 13, 2121–2132. doi:10.1093/hmg/ddh223. Cerca con Google

Evans, K., Keller, C., Pavur, K., Glasgow, K., Conn, B., and Lauring, B. (2006). Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc. Natl. Acad. Sci. U. S. A. 103, 10666–10671. doi:10.1073/pnas.0510863103. Cerca con Google

Falcone Ferreyra, M. L., Rius, S. P., and Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3, 222. doi:10.3389/fpls.2012.00222. Cerca con Google

Falk, J., Rohde, M., Bekhite, M. M., Neugebauer, S., Hemmerich, P., Kiehntopf, M., et al. (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum. Mutat. 35, 497–504. doi:10.1002/humu.22521. Cerca con Google

Fantin, M., Garelli, F., Napoli, B., Forgiarini, A., Gumeni, S., De Martin, S., et al. (2019). Flavonoids Regulate Lipid Droplets Biogenesis in Drosophila melanogaster. Nat. Prod. Commun. 14, 1934578X1985243. doi:10.1177/1934578X19852430. Cerca con Google

Fernández-Hernández, I., Scheenaard, E., Pollarolo, G., and Gonzalez, C. (2016). The translational relevance of Drosophila in drug discovery. EMBO Rep. 17, 471–472. doi:10.15252/embr.201642080. Cerca con Google

Fink, J. K. (2013). Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 126, 307–328. doi:10.1007/s00401-013-1115-8. Cerca con Google

Forgiarini, A., Wang, Z., D’Amore, C., Jay-Smith, M., Li, F. F., Hopkins, B., et al. (2019). Live applications of norbormide-based fluorescent probes in Drosophila melanogaster. PLoS One 14, e0211169. doi:10.1371/journal.pone.0211169. Cerca con Google

Frescas, D., Mavrakis, M., Lorenz, H., DeLotto, R., and Lippincott-Schwartz, J. (2006). The secretory membrane system in the <em>Drosophila</em> syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J. Cell Biol. 173, 219 LP – 230. Available at: http://jcb.rupress.org/content/173/2/219.abstract. Vai! Cerca con Google

Fujikake, N., Shin, M., and Shimizu, S. (2018). Association Between Autophagy and Neurodegenerative Diseases. Front. Neurosci. 12, 255. doi:10.3389/fnins.2018.00255. Cerca con Google

Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinohara, Y. (2008). Lipid droplets: a classic organelle with new outfits. Histochem. Cell Biol. 130, 263–279. doi:10.1007/s00418-008-0449-0. Cerca con Google

Gao, G., Chen, L., and Huang, C. (2014). Anti-cancer drug discovery: update and comparisons in yeast, Drosophila, and zebrafish. Curr. Mol. Pharmacol. 7, 44–51. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24993385. Vai! Cerca con Google

Glick, D., Barth, S., and Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3–12. doi:10.1002/path.2697. Cerca con Google

Goizet, C., Depienne, C., Benard, G., Boukhris, A., Mundwiller, E., Solé, G., et al. (2011). REEP1 mutations in SPG31: Frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum. Mutat. 32, 1118–1127. doi:10.1002/humu.21542. Cerca con Google

Goldwasser, J., Cohen, P. Y., Lin, W., Kitsberg, D., Balaguer, P., Polyak, S. J., et al. (2011). Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J. Hepatol. 55, 963–971. doi:10.1016/J.JHEP.2011.02.011. Cerca con Google

Goyal, U., and Blackstone, C. (2013). Untangling the web: Mechanisms underlying ER network formation. Biochim. Biophys. Acta 1833, 2492–2498. doi:10.1016/j.bbamcr.2013.04.009. Cerca con Google

Griffing, L. R. (2018). “Dancing with the Stars: Using Image Analysis to Study the Choreography of the Endoplasmic Reticulum and Its Partners and of Movement Within Its Tubules,” in (Humana Press, New York, NY), 75–102. doi:10.1007/978-1-4939-7389-7_7. Cerca con Google

Grumati, P., Morozzi, G., Hölper, S., Mari, M., Harwardt, M.-L. I. E., Yan, R., et al. (2017). Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife 6, e25555. doi:10.7554/eLife.25555. Cerca con Google

Gumeni, S., Evangelakou, Z., Gorgoulis, V. G., and Trougakos, I. P. (2017). Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 18. doi:10.3390/ijms18102036. Cerca con Google

Halbleib, K., Pesek, K., Covino, R., Hofbauer, H. F., Wunnicke, D., Hänelt, I., et al. (2017). Activation of the Unfolded Protein Response by Lipid Bilayer Stress. Mol. Cell 67, 673--684.e8. doi:10.1016/J.MOLCEL.2017.06.012. Cerca con Google

Hapala, I., Marza, E., and Ferreira, T. (2011). Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol. Cell 103, 271–285. doi:10.1042/BC20100144. Cerca con Google

Harmon, A. W., and Harp, J. B. (2001). Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am. J. Physiol. Physiol. 280, C807--C813. doi:10.1152/ajpcell.2001.280.4.C807. Cerca con Google

Hegazy, H. G., Ali, E. H. A., and Sabry, H. A. (2016). The neuroprotective action of naringenin on oseltamivir (Tamiflu) treated male rats. J. Basic Appl. Zool. 77, 83–90. doi:10.1016/j.jobaz.2016.12.006. Cerca con Google

Henne, W. M. (2019). Spastin joins LDs and peroxisomes in the interorganelle contact ballet. J. Cell Biol. 218, 2439 LP – 2441. doi:10.1083/jcb.201906025. Cerca con Google

Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89. Available at: https://doi.org/10.1038/nrm3270. Vai! Cerca con Google

Hirst, J., Itzhak, D. N., Antrobus, R., Borner, G. H. H., and Robinson, M. S. (2018). Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol. 16, e2004411–e2004411. doi:10.1371/journal.pbio.2004411. Cerca con Google

Hooper, C., Puttamadappa, S. S., Loring, Z., Shekhtman, A., and Bakowska, J. C. (2010). Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol. 8, 72. doi:10.1186/1741-7007-8-72. Cerca con Google

Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., et al. (2008). Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250. doi:10.1126/science.1153634. Cerca con Google

Huong, D. T. T., Takahashi, Y., and Ide, T. (2006). Activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation in mice fed citrus flavonoids. Nutrition 22, 546–552. doi:10.1016/J.NUT.2005.11.006. Cerca con Google

Inagi, R., Ishimoto, Y., and Nangaku, M. (2014). Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nat. Rev. Nephrol. 10, 369. Available at: https://doi.org/10.1038/nrneph.2014.67. Vai! Cerca con Google

Ito, J., Ishii, N., Akihara, R., Lee, J., Kurahashi, T., Homma, T., et al. (2017). A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. J. Nutr. Biochem. 40, 44–52. doi:https://doi.org/10.1016/j.jnutbio.2016.10.018. Vai! Cerca con Google

Jain, A., Rusten, T. E., Katheder, N., Elvenes, J., Bruun, J.-A., Sjøttem, E., et al. (2015). p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. J. Biol. Chem. 290, 14945–14962. doi:10.1074/jbc.M115.656116. Cerca con Google

Janda, E., Lascala, A., Martino, C., Ragusa, S., Nucera, S., Walker, R., et al. (2016). Molecular mechanisms of lipid- and glucose-lowering activities of bergamot flavonoids. PharmaNutrition 4, S8--S18. doi:10.1016/J.PHANU.2016.05.001. Cerca con Google

Jiang, T., Harder, B., Rojo de la Vega, M., Wong, P. K., Chapman, E., and Zhang, D. D. (2015). p62 links autophagy and Nrf2 signaling. Free Radic. Biol. Med. 88, 199–204. doi:10.1016/J.FREERADBIOMED.2015.06.014. Cerca con Google

JOSEPH, J. A., SHUKITT-HALE, B., and LAU, F. C. (2007). Fruit Polyphenols and Their Effects on Neuronal Signaling and Behavior in Senescence. Ann. N. Y. Acad. Sci. 1100, 470–485. doi:doi:10.1196/annals.1395.052. Cerca con Google

Joshi, R., Kulkarni, Y. A., and Wairkar, S. (2018). Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci. 215, 43–56. doi:10.1016/J.LFS.2018.10.066. Cerca con Google

Kassan, A., Herms, A., Fernández-Vidal, A., Bosch, M., Schieber, N. L., Reddy, B. J. N., et al. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001. doi:10.1083/jcb.201305142. Cerca con Google

Kaushik, S., Rodriguez-Navarro, J. A., Arias, E., Kiffin, R., Sahu, S., Schwartz, G. J., et al. (2011). Autophagy in Hypothalamic AgRP Neurons Regulates Food Intake and Energy Balance. Cell Metab. 14, 173–183. doi:https://doi.org/10.1016/j.cmet.2011.06.008. Vai! Cerca con Google

Kawser Hossain, M., Abdal Dayem, A., Han, J., Yin, Y., Kim, K., Kumar Saha, S., et al. (2016). Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 17, 569. doi:10.3390/ijms17040569. Cerca con Google

Khan, M. B., Khan, M. M., Khan, A., Ahmed, M. E., Ishrat, T., Tabassum, R., et al. (2012). Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem. Int. 61, 1081–1093. doi:10.1016/j.neuint.2012.07.025. Cerca con Google

Khundadze, M., Kollmann, K., Koch, N., Biskup, C., Nietzsche, S., Zimmer, G., et al. (2013). A hereditary spastic paraplegia mouse model supports a role of ZFYVE26/SPASTIZIN for the endolysosomal system. PLoS Genet. 9, e1003988–e1003988. doi:10.1371/journal.pgen.1003988. Cerca con Google

Klemm, R. W., Norton, J. P., Cole, R. A., Li, C. S., Park, S. H., Crane, M. M., et al. (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep. 3, 1465–75. doi:10.1016/j.celrep.2013.04.015. Cerca con Google

Koh, J. H., Wang, L., Beaudoin-Chabot, C., and Thibault, G. (2018). Lipid bilayer stress-activated IRE-1 modulates autophagy during endoplasmic reticulum stress. J. Cell Sci. 131, jcs217992. doi:10.1242/JCS.217992. Cerca con Google

Lai, Y.-S., Stefano, G., and Brandizzi, F. (2014). ER stress signaling requires RHD3, a functionally conserved ER-shaping GTPase. J. Cell Sci. 127, 3227–32. doi:10.1242/jcs.147447. Cerca con Google

Lashmanova, E., Zemskaya, N., Proshkina, E., Kudryavtseva, A., Volosnikova, M., Marusich, E., et al. (2017). The Evaluation of Geroprotective Effects of Selected Flavonoids inDrosophila melanogasterandCaenorhabditis elegans. Front. Pharmacol. 8, 884. doi:10.3389/fphar.2017.00884. Cerca con Google

Lavie, J., Serrat, R., Bellance, N., Courtand, G., Dupuy, J.-W., Tesson, C., et al. (2017). Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum. Mol. Genet. 26, 674–685. Available at: http://dx.doi.org/10.1093/hmg/ddw425. Vai! Cerca con Google

Lee, J. E., Oney, M., Frizzell, K., Phadnis, N., and Hollien, J. (2015). Drosophila melanogaster Activating Transcription Factor 4 Regulates Glycolysis During Endoplasmic Reticulum Stress. G3 Genes|Genomes|Genetics 5, 667–675. doi:10.1534/g3.115.017269. Cerca con Google

Lee, J., Homma, T., and Fujii, J. (2017). Mice in the early stage of liver steatosis caused by a high fat diet are resistant to thioacetamide-induced hepatotoxicity and oxidative stress. Toxicol. Lett. 277, 92–103. doi:https://doi.org/10.1016/j.toxlet.2017.06.005. Vai! Cerca con Google

Li, D., Zhao, Y. G., Li, D., Zhao, H., Huang, J., Miao, G., et al. (2019). The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation. Cell Rep. 27, 343-358.e5. doi:https://doi.org/10.1016/j.celrep.2019.03.025. Vai! Cerca con Google

Lim, Y., Cho, I.-T., Schoel, L. J., Cho, G., and Golden, J. A. (2015). Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 78, 679–696. doi:10.1002/ana.24488. Cerca con Google

Lindström, R., Lindholm, P., Kallijärvi, J., Palgi, M., Saarma, M., and Heino, T. I. (2016). Exploring the conserved role of MANF in the unfolded protein response in Drosophila melanogaster. PLoS One. doi:10.1371/journal.pone.0151550. Cerca con Google

Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M., and Bellen, H. J. (2017). The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab. 26, 719-737.e6. doi:10.1016/j.cmet.2017.08.024. Cerca con Google

Liu, T. Y., Bian, X., Sun, S., Hu, X., Klemm, R. W., Prinz, W. A., et al. (2012). Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc. Natl. Acad. Sci. 109, E2146 LP-E2154. doi:10.1073/pnas.1208385109. Cerca con Google

Liu, X., Wang, N., Fan, S., Zheng, X., Yang, Y., Zhu, Y., et al. (2016). The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci. Rep. 6, 39735. doi:10.1038/srep39735. Cerca con Google

Lo, Y. C., Tseng, Y. T., Hsu, H. T., Liu, C. M., and Wu, S. N. (2017). Naringenin protects motor neuron against methylglyoxal-induced neurotoxicity through activatinG IGF-1R-related neuroprotection. J. Neurol. Sci. 381, 616–617. doi:10.1016/j.jns.2017.08.1737. Cerca con Google

Lőrincz, P., Mauvezin, C., and Juhász, G. (2017). Exploring Autophagy in Drosophila. Cells 6, 22. doi:10.3390/cells6030022. Cerca con Google

Maher, P. (2019). The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci. 20, 3056. doi:10.3390/ijms20123056. Cerca con Google

Mandl, J., Mészáros, T., Bánhegyi, G., and Csala, M. (2013). Minireview: Endoplasmic Reticulum Stress: Control in Protein, Lipid, and Signal Homeostasis. Mol. Endocrinol. 27, 384–393. doi:10.1210/me.2012-1317. Cerca con Google

Mauvezin, C., Ayala, C., Braden, C. R., Kim, J., and Neufeld, T. P. (2014). Assays to monitor autophagy in Drosophila. Methods 68, 134–139. doi:10.1016/j.ymeth.2014.03.014. Cerca con Google

McDermott, C. J., and Shaw, P. J. (2002). Hereditary spastic paraplegia. Int. Rev. Neurobiol. 53, 191–204. doi:10.1016/S0074-7742(02)53008-7. Cerca con Google

McQuiston, A., and Diehl, J. A. (2017). Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Research 6, 1897. doi:10.12688/f1000research.12138.1. Cerca con Google

Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., and Bellosta, P. (2019). Drosophila melanogaster: A Model Organism to Study Cancer. Front. Genet. 10, 51. doi:10.3389/fgene.2019.00051. Cerca con Google

Misra, J. R., Horner, M. A., Lam, G., and Thummel, C. S. (2011). Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 25, 1796–806. doi:10.1101/gad.17280911. Cerca con Google

Morales, P. E., Bucarey, J. L., and Espinosa, A. (2017). Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J. Diabetes Res. 2017, 1–10. doi:10.1155/2017/1789395. Cerca con Google

Moreno, J. A., and Tiffany-Castiglioni, E. (2015). The Chaperone Grp78 in Protein Folding Disorders of the Nervous System. Neurochem. Res. 40, 329–335. doi:10.1007/s11064-014-1405-0. Cerca con Google

Mozaffarian, D., and Wu, J. H. Y. (2018). Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ. Res. 122, 369–384. doi:10.1161/CIRCRESAHA.117.309008. Cerca con Google

Murphy, K., and Park, J. (2017). Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer’s Disease? Int. J. Mol. Sci. 18, 1168. doi:10.3390/ijms18061168. Cerca con Google

Mushtaq, Z., Choudhury, S. D., Gangwar, S. K., Orso, G., and Kumar, V. (2016). Human senataxin modulates structural plasticity of the neuromuscular junction in drosophila through a neuronally conserved TGF$β$ signalling pathway. Neurodegener. Dis. 16. doi:10.1159/000445435. Cerca con Google

Nah, J., Yuan, J., and Jung, Y.-K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38, 381–389. doi:10.14348/molcells.2015.0034. Cerca con Google

Napoli, B., Gumeni, S., Forgiarini, A., Fantin, M., De Filippis, C., Panzeri, E., et al. (2019). Naringenin Ameliorates Drosophila ReepA Hereditary Spastic Paraplegia-Linked Phenotypes. Front. Neurosci. 13, 1202. doi:10.3389/fnins.2019.01202. Cerca con Google

Nguyen, T. B., Louie, S. M., Daniele, J. R., Tran, Q., Dillin, A., Zoncu, R., et al. (2017). DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Dev. Cell 42, 9-21.e5. doi:10.1016/j.devcel.2017.06.003. Cerca con Google

O’Sullivan, N. C., Jahn, T. R., Reid, E., and O’Kane, C. J. (2012). Reticulon-like-1, the Drosophila orthologue of the Hereditary Spastic Paraplegia gene reticulon 2, is required for organization of endoplasmic reticulum and of distal motor axons. Hum. Mol. Genet. 21, 3356–3365. doi:10.1093/hmg/dds167. Cerca con Google

Ohsaki, Y., Suzuki, M., and Fujimoto, T. (2014). Review Open Questions in Lipid Droplet Biology. Chem. Biol. 21, 86–96. doi:10.1016/j.chembiol.2013.08.009. Cerca con Google

Olzmann, J. A., and Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155. doi:10.1038/s41580-018-0085-z. Cerca con Google

Onal, G., Kutlu, O., Gozuacik, D., and Dokmeci Emre, S. (2017). Lipid Droplets in Health and Disease. Lipids Health Dis. 16, 128. doi:10.1186/s12944-017-0521-7. Cerca con Google

Orso, G., Martinuzzi, A., Rossetto, M. G., Sartori, E., Feany, M., and Daga, A. (2005). Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. J. Clin. Invest. 115, 3026–34. doi:10.1172/JCI24694. Cerca con Google

Orso, G., Pendin, D., Liu, S., Tosetto, J., Moss, T. J., Faust, J. E., et al. (2009). Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983. doi:10.1038/nature08280. Cerca con Google

Panche, A. N., Diwan, A. D., and Chandra, S. R. (2016). Flavonoids: an overview. J. Nutr. Sci. 5, e47. doi:10.1017/jns.2016.41. Cerca con Google

Pandey, U. B., and Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436. Available at: http://dx.doi.org/10.1124/pr.110.003293. Vai! Cerca con Google

Papadopoulos, C., Orso, G., Mancuso, G., Herholz, M., Gumeni, S., Tadepalle, N., et al. (2015). Spastin Binds to Lipid Droplets and Affects Lipid Metabolism. PLOS Genet. 11, e1005149. doi:10.1371/journal.pgen.1005149. Cerca con Google

Park, S. H., Zhu, P.-P., Parker, R. L., and Blackstone, C. (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120, 1097–1110. doi:10.1172/JCI40979. Cerca con Google

Parodi, L., Fenu, S., Stevanin, G., and Durr, A. (2017). Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev. Neurol. (Paris). 5204, 243 YP – 360. doi:http://dx.doi.org/10.1016/j.neurol.2017.03.034. Vai! Cerca con Google

Pellegrini, M., Bulzomi, P., Galluzzo, P., Lecis, M., Leone, S., Pallottini, V., et al. (2014). Naringenin modulates skeletal muscle differentiation via estrogen receptor $α$ and $β$ signal pathway regulation. Genes {&} Nutr. 9, 425. doi:10.1007/s12263-014-0425-3. Cerca con Google

Pendin, D., Tosetto, J., Moss, T. J., Andreazza, C., Moro, S., McNew, J. A., et al. (2011). GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion. Proc. Natl. Acad. Sci. 108, 16283 LP – 16288. doi:10.1073/pnas.1106421108. Cerca con Google

Prieto-Domínguez, N., Garcia-Mediavilla, M. V, Sanchez-Campos, S., and Gonzalez-Gallego*, J. L. M. and J. (2018). Autophagy as a Molecular Target of Flavonoids Underlying their Protective Effects in Human Disease. Curr. Med. Chem. 25, 814–838. doi:http://dx.doi.org/10.2174/0929867324666170918125155. Vai! Cerca con Google

Puhka, M., Joensuu, M., Vihinen, H., Belevich, I., and Jokitalo, E. (2012). Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol. Biol. Cell 23, 2424–2432. doi:10.1091/mbc.E10-12-0950. Cerca con Google

Puhka, M., Vihinen, H., Joensuu, M., and Jokitalo, E. (2007). Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 179, 895 LP – 909. doi:10.1083/jcb.200705112. Cerca con Google

Pulipparacharuvil, S., Akbar, M. A., Ray, S., Sevrioukov, E. A., Haberman, A. S., Rohrer, J., et al. (2005). <em>Drosophila</em> Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J. Cell Sci. 118, 3663 LP – 3673. doi:10.1242/jcs.02502. Cerca con Google

Rehbach, K., Kesavan, J., Hauser, S., Ritzenhofen, S., Jungverdorben, J., Schüle, R., et al. (2019). Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons. Sci. Rep. 9, 9615. doi:10.1038/s41598-019-45246-4. Cerca con Google

Reid, E., Dearlove, A. M., Rhodes, M., and Rubinsztein, D. C. (1999). A New Locus for Autosomal Dominant “Pure” Hereditary Spastic Paraplegia Mapping to Chromosome 12q13, and Evidence for Further Genetic Heterogeneity. Am. J. Hum. Genet. 65, 757–763. doi:https://doi.org/10.1086/302555. Vai! Cerca con Google

Renvoisé, B., Chang, J., Singh, R., Yonekawa, S., FitzGibbon, E. J., Mankodi, A., et al. (2014). Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11. Ann. Clin. Transl. Neurol. 1, 379–389. doi:10.1002/acn3.64. Cerca con Google

Renvoisé, B., Malone, B., Falgairolle, M., Munasinghe, J., Stadler, J., Sibilla, C., et al. (2016). Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum. Mol. Genet. 25, 5111–5125. Available at: http://dx.doi.org/10.1093/hmg/ddw315. Vai! Cerca con Google

Richard, S., Lavie, J., Banneau, G., Voirand, N., Lavandier, K., and Debouverie, M. (2017a). Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene: Case report and literature review. Medicine (Baltimore). 96, e5911. doi:10.1097/MD.0000000000005911. Cerca con Google

Richard, S., Lavie, J., Banneau, G., Voirand, N., Lavandier, K., and Debouverie, M. (2017b). Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene: Case report and literature review. Medicine (Baltimore). 96, e5911. doi:10.1097/MD.0000000000005911. Cerca con Google

Rong, X., Liang-liang, F., Hao, H., Ya-qin, C., Wanxia, H., Shuai, G., et al. (2018). Increased Reticulon 3 (RTN3) Leads to Obesity and Hypertriglyceridemia by Interacting With Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5). Circulation 138, 1828–1838. doi:10.1161/CIRCULATIONAHA.117.030718. Cerca con Google

Rutkowski, D. T., and Kaufman, R. J. (2007). That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 32, 469–476. doi:10.1016/J.TIBS.2007.09.003. Cerca con Google

Salehi, B., Fokou, P., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., et al. (2019). The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 12, 11. doi:10.3390/ph12010011. Cerca con Google

Salinas, S., Carazo-Salas, R. E., Proukakis, C., Schiavo, G., and Warner, T. T. (2007). Spastin and microtubules: Functions in health and disease. J. Neurosci. Res. 85, 2778–2782. doi:10.1002/jnr.21238. Cerca con Google

Salinas, S., Proukakis, C., Crosby, A., and Warner, T. T. (2008). Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 7, 1127–1138. doi:https://doi.org/10.1016/S1474-4422(08)70258-8. Vai! Cerca con Google

Sanderson, C. M., Connell, J. W., Edwards, T. L., Bright, N. A., Duley, S., Thompson, A., et al. (2006). Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. Hum. Mol. Genet. 15, 307–318. doi:10.1093/hmg/ddi447. Cerca con Google

Sangpheak, W., Kicuntod, J., Schuster, R., Rungrotmongkol, T., Wolschann, P., Kungwan, N., et al. (2015). Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin. Beilstein J. Org. Chem. 11, 2763–2773. doi:10.3762/bjoc.11.297. Cerca con Google

Scheper, W., and Hoozemans, J. J. M. (2015). The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. 130, 315–331. doi:10.1007/s00401-015-1462-8. Cerca con Google

Schlang, K. J., Arning, L., Epplen, J. T., and Stemmler, S. (2008). Autosomal dominant hereditary spastic paraplegia: Novel mutations in the REEP1 gene (SPG31). BMC Med. Genet. 9, 71. doi:10.1186/1471-2350-9-71. Cerca con Google

Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C., and Walter, P. (2009). Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536. doi:10.1083/jcb.200907074. Cerca con Google

Schwarz, D. S., and Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94. doi:10.1007/s00018-015-2052-6. Cerca con Google

Shibata, Y., Shemesh, T., Prinz, W. A., Palazzo, A. F., Kozlov, M. M., and Rapoport, T. A. (2010). Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788. doi:10.1016/j.cell.2010.11.007. Cerca con Google

Shpilka, T., Welter, E., Borovsky, N., Amar, N., Mari, M., Reggiori, F., et al. (2015). Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34, 2117–2131. doi:doi:10.15252/embj.201490315. Cerca con Google

Shulman, M., Cohen, M., Soto-Gutierrez, A., Yagi, H., Wang, H., Goldwasser, J., et al. (2011). Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-$β$-Cyclodextrin. PLoS One 6, e18033. doi:10.1371/journal.pone.0018033. Cerca con Google

Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., et al. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135. doi:10.1038/nature07976. Cerca con Google

Solowska, J. M., and Baas, P. W. (2015). Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain 138, 2471–2484. doi:10.1093/brain/awv178. Cerca con Google

Solowska, J. M., D’Rozario, M., Jean, D. C., Davidson, M. W., Marenda, D. R., and Baas, P. W. (2014a). Pathogenic Mutation of Spastin Has Gain-of-Function Effects on Microtubule Dynamics. J. Neurosci. 34, 1856–1867. doi:10.1523/JNEUROSCI.3309-13.2014. Cerca con Google

Solowska, J. M., D'Rozario, M., Jean, D. C., Davidson, M. W., Marenda, D. R., and Baas, P. W. (2014b). Pathogenic Mutation of Spastin Has Gain-of-Function Effects on Microtubule Dynamics. J. Neurosci. 34, 1856 LP – 1867. doi:10.1523/JNEUROSCI.3309-13.2014. Cerca con Google

Song, H. M., Park, G. H., Eo, H. J., and Jeong, J. B. (2016). Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer. Biomol. {&} Ther. 24, 140–146. doi:10.4062/biomolther.2015.109. Cerca con Google

Speciale, A., Chirafisi, J., Saija, A., and Cimino, F. (2011). Nutritional antioxidants and adaptive cell responses: an update. Curr. Mol. Med. 11, 770–789. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21999148. Vai! Cerca con Google

Staats, S., Lüersen, K., Wagner, A. E., and Rimbach, G. (2018). Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. J. Agric. Food Chem. doi:10.1021/acs.jafc.7b05900. Cerca con Google

Summerville, J. B., Faust, J. F., Fan, E., Pendin, D., Daga, A., Formella, J., et al. (2016). The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J. Cell Sci. 129, 1635–48. doi:10.1242/jcs.184929. Cerca con Google

Suzuki, M., Shinohara, Y., Ohsaki, Y., and Fujimoto, T. (2011). Lipid droplets: size matters. J. Electron Microsc. (Tokyo). 60 Suppl 1, S101-16. doi:10.1093/jmicro/dfr016. Cerca con Google

Tan, J. S. Y., Seow, C. J. P., Goh, V. J., and Silver, D. L. (2014). Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion. J. Genet. Genomics 41, 251–259. doi:10.1016/j.jgg.2014.03.003. Cerca con Google

Tang, J.-Y., Jin, P., He, Q., Lu, L.-H., Ma, J.-P., Gao, W.-L., et al. (2017). Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1$α$ and PERK signaling activation. Mol. Cell. Biochem. 424, 111–122. doi:10.1007/s11010-016-2848-1. Cerca con Google

Terasaki, M., Shemesh, T., Kasthuri, N., Klemm, R. W., Schalek, R., Hayworth, K. J., et al. (2013). Stacked Endoplasmic Reticulum Sheets Are Connected by Helicoidal Membrane Motifs. Cell 154, 285–296. doi:https://doi.org/10.1016/j.cell.2013.06.031. Vai! Cerca con Google

Tolley, N., Sparkes, I., Craddock, C. P., Eastmond, P. J., Runions, J., Hawes, C., et al. (2010). Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant J. 64, 411–418. doi:doi:10.1111/j.1365-313X.2010.04337.x. Cerca con Google

Trotta, N., Orso, G., Rossetto, M. G., Daga, A., and Broadie, K. (2004). The Hereditary Spastic Paraplegia Gene, spastin, Regulates Microtubule Stability to Modulate Synaptic Structure and Function. Curr. Biol. 14, 1135–1147. doi:https://doi.org/10.1016/j.cub.2004.06.058. Vai! Cerca con Google

Tsakiri, E. N., Gumeni, S., Iliaki, K. K., Benaki, D., Vougas, K., Sykiotis, G. P., et al. (2018). Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell 18, e12845. doi:10.1111/acel.12845. Cerca con Google

Ugur, B., Chen, K., and Bellen, H. J. (2016). Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9, 235–244. doi:10.1242/DMM.023762. Cerca con Google

Varga, R.-E., Khundadze, M., Damme, M., Nietzsche, S., Hoffmann, B., Stauber, T., et al. (2015). In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genet. 11, e1005454–e1005454. doi:10.1371/journal.pgen.1005454. Cerca con Google

Velázquez, A. P., Tatsuta, T., Ghillebert, R., Drescher, I., and Graef, M. (2016a). Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J. Cell Biol. 212, 621–31. doi:10.1083/jcb.201508102. Cerca con Google

Velázquez, A. P., Tatsuta, T., Ghillebert, R., Drescher, I., and Graef, M. (2016b). Lipid droplet–mediated ER homeostasis regulates autophagy and cell survival during starvation. J. Cell Biol. 212, 621–631. doi:10.1083/jcb.201508102. Cerca con Google

Vevea, J. D., Garcia, E. J., Chan, R. B., Zhou, B., Schultz, M., Di Paolo, G., et al. (2015). Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast. Dev. Cell 35, 584–599. doi:10.1016/j.devcel.2015.11.010. Cerca con Google

Voeltz, G. K., Rolls, M. M., and Rapoport, T. A. (2002). Structural organization of the endoplasmic reticulum. EMBO Rep. 3, 944–950. doi:10.1093/embo-reports/kvf202. Cerca con Google

Volmer, R., van der Ploeg, K., and Ron, D. (2013). Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. U. S. A. 110, 4628–4633. doi:10.1073/pnas.1217611110. Cerca con Google

Walther, T. C., and Farese Jr, R. V (2012). Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714. doi:10.1146/annurev-biochem-061009-102430. Cerca con Google

Wang, C.-W. (2016). Lipid droplets, lipophagy, and beyond. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1861, 793–805. doi:10.1016/J.BBALIP.2015.12.010. Cerca con Google

Wang, G.-Q., Zhang, B., He, X.-M., Li, D.-D., Shi, J.-S., and Zhang, F. (2019). Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol. Res. 139, 452–459. doi:10.1016/j.phrs.2018.11.043. Cerca con Google

Ward, C., Martinez-Lopez, N., Otten, E. G., Carroll, B., Maetzel, D., Singh, R., et al. (2016). Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1861, 269–284. doi:https://doi.org/10.1016/j.bbalip.2016.01.006. Vai! Cerca con Google

Wilfling, F., Thiam, A. R., Olarte, M.-J., Wang, J., Beck, R., Gould, T. J., et al. (2014). Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3, e01607–e01607. doi:10.7554/eLife.01607. Cerca con Google

Xu, D., Li, Y., Wu, L., Li, Y., Zhao, D., Yu, J., et al. (2018). Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell Biol. 217, 975 LP – 995. doi:10.1083/jcb.201704184. Cerca con Google

Yalçın, B., Zhao, L., Stofanko, M., O’Sullivan, N. C., Kang, Z. H., Roost, A., et al. (2017). Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife 6, e23882. doi:10.7554/eLife.23882. Cerca con Google

Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., et al. (2017). Transcriptional Induction of Mammalian ER Quality Control Proteins Is Mediated by Single or Combined Action of ATF6α and XBP1. Dev. Cell 13, 365–376. doi:10.1016/j.devcel.2007.07.018. Cerca con Google

Yamanaka, T., and Nukina, N. (2018). ER Dynamics and Derangement in Neurological Diseases. Front. Neurosci. 12, 91. doi:10.3389/fnins.2018.00091. Cerca con Google

Yang, L.-J., Ma, S.-X., Zhou, S.-Y., Chen, W., Yuan, M.-W., Yin, Y.-Q., et al. (2013). Preparation and characterization of inclusion complexes of naringenin with β-cyclodextrin or its derivative. Carbohydr. Polym. 98, 861–869. doi:10.1016/J.CARBPOL.2013.07.010. Cerca con Google

Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. Cell 107, 881–891. doi:10.1016/S0092-8674(01)00611-0. Cerca con Google

Zheng, P., Chen, Q., Tian, X., Qian, N., Chai, P., Liu, B., et al. (2018). DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Res. 28, 833–854. doi:10.1038/s41422-018-0065-z. Cerca con Google

Zheng, P., Xie, Z., Yuan, Y., Sui, W., Wang, C., Gao, X., et al. (2017). Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci. Rep. 7, 42574. doi:10.1038/srep42574. Cerca con Google

Zirin, J., and Perrimon, N. (2010). Drosophila as a model system to study autophagy. Semin. Immunopathol. 32, 363–372. doi:10.1007/s00281-010-0223-y. Cerca con Google

Züchner, S., Wang, G., Tran-Viet, K.-N., Nance, M. A., Gaskell, P. C., Vance, J. M., et al. (2006). Mutations in the Novel Mitochondrial Protein REEP1 Cause Hereditary Spastic Paraplegia Type 31. Am. J. Hum. Genet. 79, 365–369. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559498/. Vai! Cerca con Google

Zurek, N., Sparks, L., and Voeltz, G. (2011). Reticulon short hairpin transmembrane domains are used to shape ER tubules. Traffic 12, 28–41. doi:10.1111/j.1600-0854.2010.01134.x. Cerca con Google

Zygmunt, K., Faubert, B., MacNeil, J., and Tsiani, E. (2010). Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem. Biophys. Res. Commun. 398, 178–183. doi:10.1016/j.bbrc.2010.06.048. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record