Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Catoni, Cristina (2019) Mitochondrial localization of proteins and organelle membrane interactions: two key elements in neurodegeneration explored by new splitGFP tools. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di Dottorato)
Thesis not accessible until 02 December 2022 for intellectual property related reasons.
Visibile to: nobody

16Mb

Abstract (italian or english)

Mutations in the mitochondrial serine–threonine kinase PINK1 are associated with familial forms of Parkinson’s disease and mitochondrial Ca2+ overload. The targeting of PKA to mitochondria and its activation rescue functional defects observed in PINK1 deficient neurons and mitochondrial Ca2+ overload due to the loss of PINK1 function. PINK1 and PKA have been proposed to cooperate at the mitochondria level to prevent neurodegeneration, and we have found that PINK1 was able to reduce mitochondrial Ca2+ accumulation. Sustained Ca2+ accumulation into the mitochondrial matrix has been shown to correlate with increases of cAMP levels in the same compartment. If the localization and the action of PKA at the OMM (OMM) are well recognized, its presence and, consequently, its role in the mitochondrial matrix and in the intramembrane space (IMS) is still amply debated.
In order to investigate that, we developed a probe based on the splitGFP system and Bimolecular Fluorescence Complementation (BiFC) to monitor PKA distribution at sub-mitochondrial level in living cells. The non-fluorescent GFP1-10 fragment was targeted to the OMM, the IMS and the mitochondrial matrix by the addition of targeting sequences. The β11 fragment, necessary to reconstitute GFP fluorescence, was fused to two PKA regulatory subunits (RIα and RIIβ) and to PKA catalytic subunit (CATα).
The co-transfection of the plasmids encoding the targeted GFP1-10 fragments and the β11-CATα or the β11-RIα or the β11-RIIβ in Hela cells revealed the presence of all these subunits at the OMM. Interestingly, strong GFP fluorescence emission in the presence of GFP1-10 fragment targeted to the IMS and mitochondrial matrix was observed in the case of β11-CATα co-expression, but not of β11-RIα and β11-RIIβ, suggesting the presence of PKA CAT-α in these compartments. Then, we evaluated the interference of regulatory subunits with mitochondrial CATα localization, co-transfecting the GFP1-10 fragment targeted to OMM, IMS and mitochondrial matrix with CATα and RIα or RIIβ. In these conditions we still observed fluorescence reconstitution at the OMM and IMS, but not in the mitochondrial matrix when CATα was co-expressed together with RIIβ. In the presence of co-expressed RIα subunit the green fluorescent signal was also detect in the mitochondrial matrix. Then, we analyzed the effect of CATα overexpression on mitochondrial Ca2+ transients, which are strongly decreased compared to the control. This reduction is almost abolished when CATα is co-expressed with RIIβ subunit, but not with RIα suggesting that the modulation of the effects of CATα on Ca2+ transients is dependent on the regulatory subunit in an isoform specific manner. Targeting CATα to the mitochondrial matrix (mtCATα), we have found that the selective expression of mtCATα specifically reduced mitochondrial Ca2+ transients, suggesting the existence of mitochondrial targets for PKA action inside the mitochondria. All together these results reveal that CATα may translocate to this compartment only upon activation and release from RIIβ subunit.
In addition to the work on PKA, during my PhD program, I carried out another project based on a different application of the splitGFP tool. The communication between organelles is important to favour different pathways and its dysregulation are present in a number of different diseases, including neurodegenerative disease. In particular, this methodology was used to characterize the ER-plasma membrane (PM) contact sites.
The close contacts between the ER and the PM are required for the mechanism of store-operated Ca2+ entry (SOCE), a process induced as a consequence of the Ca2+ depletion of the ER store and dependent on the dynamic interaction between the ER resident protein stromal interaction molecule 1 that acts as Ca2+ sensor (STIM1) and Orai1, the protein forming the channel in the PM that permits Ca2+ entry from the extracellular ambient. To visualize the ER-PM junctions, we generated a YFP1-10 fragment targeted to the PM and β11 strand was targeted to the ER. We generated a construct where the PM-YFP1-10 and the ERS-β11 or ERL-β11 are cloned in the same bicistronic expression vector (SPLICSS/L ER-PM probes).
In a first set of experiments these SPLICS probes detected two types of interactions: long and short ER-PM interactions. Then, we investigated whether and how genetic and pharmacological manipulations could impact on ER-PM interface. We analysed the response of SPLICSS/L ER-PM probes to STIM1/Orai1 downregulation and ER Ca2+ depletion. To this purpose, STIM1/Orai1 proteins were silenced by ShRNA or ER Ca2+ depletion was induced by the incubation with 2,5-tert-butylhydroquinone (THBQ) or thapsigargin inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase and with histamine. We have found that SPLICSS signal (monitoring ER-PM short interactions below 10 nm) decreased when we downregulated STIM1 or Orai1 proteins and strongly increased upon ER Ca2+ depletion. We have also detected the ER-PM long interactions under the same conditions and found that upon STIM1 or Orai1 downregulation the number of the long contacts decreased in respect with the control cells. All together, these data reveal that the SPLICS methodology is able to monitor short and long ranges ER-PM interactions and their changes upon pharmacological/genetic manipulations.


EPrint type:Ph.D. thesis
Tutor:Brini, Marisa
Ph.D. course:Ciclo 32 > Corsi 32 > BIOSCIENZE > BIOCHIMICA E BIOTECNOLOGIE
Data di deposito della tesi:02 December 2019
Anno di Pubblicazione:02 December 2019
Key Words:Mitochondria, PKA, Neurodegeneration, cAMP
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Centri > Centro Interdipartimentale di servizi A. Vallisneri
Dipartimenti > Dipartimento di Biologia
Codice ID:12288
Depositato il:25 Jan 2021 08:55
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abramov, A.Y., Berezhnov, A. V., Fedotova, E.I., Zinchenko, V.P., and Dolgacheva, L.P. (2017). Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem. Soc. Trans. Cerca con Google

Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L.R., and Manfredi, G. (2009). Cyclic AMP Produced inside Mitochondria Regulates Oxidative Phosphorylation. Cell Metab. 9, 265–276. Cerca con Google

Acin-Perez, R., Russwurm, M., Günnewig, K., Gertz, M., Zoidl, G., Ramos, L., Buck, J., Levin, L.R., Rassow, J., Manfredi, G., et al. (2011a). A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. Cerca con Google

Acin-Perez, R., Gatti, D.L., Bai, Y., and Manfredi, G. (2011b). Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell Metab. Cerca con Google

Aerts, L., Craessaerts, K., De Strooper, B., and Morais, V.A. (2015). PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem. Cerca con Google

Affaitati, A., Cardone, L., De Cristofaro, T., Carlucci, A., Ginsberg, M.D., Varrone, S., Gottesman, M.E., Avvedimento, E. V., and Feliciello, A. (2003). Essential role of A-Kinase anchor protein 121 for cAMP signaling to mitochondria. J. Biol. Chem. Cerca con Google

Akabane, S., Uno, M., Tani, N., Shimazaki, S., Ebara, N., Kato, H., Kosako, H., and Oka, T. (2016). PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Mol. Cell 62, 371–384. Cerca con Google

Amadoro, G., Corsetti, V., Florenzano, F., Atlante, A., Ciotti, M.T., Mongiardi, M.P., Bussani, R., Nicolin, V., Nori, S.L., Campanella, M., et al. (2014). AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neurobiol. Dis. Cerca con Google

Andreazza, A.C., Shoo, L., Wang, J.F., and Trevor Young, L. (2010). Mitochondrial Complex i Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients with Bipolar Disorder. Arch. Gen. Psychiatry. Cerca con Google

Arena, G., Gelmetti, V., Torosantucci, L., Vignone, D., Lamorte, G., De Rosa, P., Cilia, E., Jonas, E.A., and Valente, E.M. (2013). PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. Cerca con Google

Arokium, H., Ouerfelli, H., Velours, G., Camougrand, N., Vallette, F.M., and Manon, S. (2007). Substitutions of potentially phosphorylatable serine residues of bax reveal how they may regulate its interaction with mitochondria. J. Biol. Chem. Cerca con Google

Das Banerjee, T., Dagda, R.Y., Dagda, M., Chu, C.T., Rice, M., Vazquez-Mayorga, E., and Dagda, R.K. (2017). PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J. Neurochem. 142, 545–559. Cerca con Google

Barsukova, A.G., Bourdette, D., and Forte, M. (2011). Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur. J. Neurosci. Cerca con Google

Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme, C.A., Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., et al. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345. Cerca con Google

Bayne, A.N., and Trempe, J.F. (2019). Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell. Mol. Life Sci. Cerca con Google

Beal, M.F. (2005). Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. Cerca con Google

Di Benedetto, G., Scalzotto, E., Mongillo, M., and Pozzan, T. (2013). Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17, 965–975. Cerca con Google

Di Benedetto, G., Pendin, D., Greotti, E., Pizzo, P., and Pozzan, T. (2014). Ca2+ and cAMP cross-talk in mitochondria. J. Physiol. 592, 305–312. Cerca con Google

Bernardi, P. (2017). Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiol. Rev. 79, 1127–1155. Cerca con Google

Berridge, M.J. (2009). Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta - Mol. Cell Res. Cerca con Google

Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., and Greenamyre, J.T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. Cerca con Google

Birsa, N., Norkett, R., Higgs, N., Lopez-Domenech, G., and Kittler, J.T. (2013). Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. In Biochemical Society Transactions, p. Cerca con Google

van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. Cerca con Google

Bogaerts, V., Theuns, J., and Van Broeckhoven, C. (2008). Genetic findings in Parkinson’s disease and translation into treatment: A leading role for mitochondria? Genes, Brain Behav. Cerca con Google

Bonifati, V. (2014). Genetics of Parkinson’s disease - state of the art, 2013. Park. Relat. Disord. Cerca con Google

Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodríguez, A.E., Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B.A., et al. (2018). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death Differ. 1. Cerca con Google

Brini, M. (2008). Calcium-sensitive photoproteins. Methods. Cerca con Google

Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Südhof, T.C. (2010). α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science (80-. ). Cerca con Google

Calì, T., Ottolini, D., Negro, A., and Brini, M. (2012a). α-synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. Cerca con Google

Calì, T., Ottolini, D., and Brini, M. (2012b). Mitochondrial Ca2+ and neurodegeneration. Cell Calcium 52, 73–85. Cerca con Google

Calì, T., Ottolini, D., Negro, A., and Brini, M. (2013). Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim. Biophys. Acta - Mol. Basis Dis. 1832, 495–508. Cerca con Google

Calì, T., Ottolini, D., and Brini, M. (2014). Calcium signaling in Parkinson’s disease. Cell Tissue Res. 357, 439–454. Cerca con Google

Calì, T., Ottolini, D., Soriano, M.E., and Brini, M. (2015). A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum. Mol. Genet. 24, 1045–1060. Cerca con Google

Calì, T., Ottolini, D., Vicario, M., Catoni, C., Vallese, F., Cieri, D., Barazzuol, L., and Brini, M. (2019). splitGFP Technology Reveals Dose-Dependent ER-Mitochondria Interface Modulation by α-Synuclein A53T and A30P Mutants. Cells. Cerca con Google

Chan, C.S., Guzman, J.N., Ilijic, E., Mercer, J.N., Rick, C., Tkatch, T., Meredith, G.E., and Surmeier, D.J. (2007). “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature. Cerca con Google

Chang, C.L., Hsieh, T.S., Yang, T.T., Rothberg, K.G., Azizoglu, D.B., Volk, E., Liao, J.C., and Liou, J. (2013a). Feedback regulation of receptor-induced ca2+ signaling mediated by e-syt1 and nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825. Cerca con Google

Chang, C.L., Hsieh, T.S., Yang, T.T., Rothberg, K.G., Azizoglu, D.B., Volk, E., Liao, J.C., and Liou, J. (2013b). Feedback regulation of receptor-induced ca2+ signaling mediated by e-syt1 and nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. Cerca con Google

Chen, Q., Lin, R.Y., and Rubin, C.S. (1997). Organelle-specific targeting of protein kinase AII (PKAII): Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J. Biol. Chem. Cerca con Google

Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., and Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science (80-. ). Cerca con Google

Cieri, D., Vicario, M., Giacomello, M., Vallese, F., Filadi, R., Wagner, T., Pozzan, T., Pizzo, P., Scorrano, L., Brini, M., et al. (2018). SPLICS: A split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ. 25, 1131–1145. Cerca con Google

Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., and Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166. Cerca con Google

Csordás, G., Thomas, A.P., and Hajnóczky, G. (2001). Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle. Trends Cardiovasc. Med. Cerca con Google

Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921. Cerca con Google

Csordás, G., Golenár, T., Seifert, E.L., Kamer, K.J., Sancak, Y., Perocchi, F., Moffat, C., Weaver, D., De la Fuente, S., Bogorad, R., et al. (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. Cerca con Google

d’Amora, M., Angelini, C., Marcoli, M., Cervetto, C., Kitada, T., and Vallarino, M. (2011). Expression of PINK1 in the brain, eye and ear of mouse during embryonic development. J. Chem. Neuroanat. Cerca con Google

Dagda, R.K., Gusdon, A.M., Pien, I., Strack, S., Green, S., Li, C., Van Houten, B., Cherra, S.J., and Chu, C.T. (2011). Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ. 18, 1914–1923. Cerca con Google

Dagda, R.K., Pien, I., Wang, R., Zhu, J., Wang, K.Z.Q., Callio, J., Banerjee, T. Das, Dagda, R.Y., and Chu, C.T. (2014). Beyond the mitochondrion: Cytosolic PINK1 remodels dendrites through Protein Kinase A. J. Neurochem. Cerca con Google

Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M. (1999). The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain. Cerca con Google

Dash, R.K., and Beard, D.A. (2008). Analysis of cardiac mitochondrial Na2+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handing suggests a 3: 1 stoichiometry. J. Physiol. 586, 3267–3285. Cerca con Google

Deng, H., Dodson, M.W., Huang, H., and Guo, M. (2008). The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. U. S. A. Cerca con Google

Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G., and Anandatheerthavarada, H.K. (2008). Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. Cerca con Google

Dingsdale, H., Okeke, E., Awais, M., Haynes, L., Criddle, D.N., Sutton, R., and Tepikin, A. V. (2013). Saltatory formation, sliding and dissolution of ER-PM junctions in migrating cancer cells. Biochem. J. Cerca con Google

Domingo, A., and Klein, C. (2018). Genetics of Parkinson disease. In Handbook of Clinical Neurology, p. Cerca con Google

Donnelly, M.L.L., Luke, G., Mehrotra, A., Li, X., Hughes, L.E., Gani, D., and Ryan, M.D. (2001). Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal “skip.” J. Gen. Virol. 82, 1013–1025. Cerca con Google

Duda, J., Pötschke, C., and Liss, B. (2016). Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson’s disease. J. Neurochem. Cerca con Google

Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016). A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. Dev. Cell 39, 395–409. Cerca con Google

Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. Cerca con Google

Elrod, J.W., Wong, R., Mishra, S., Vagnozzi, R.J., Sakthievel, B., Goonasekera, S.A., Karch, J., Gabel, S., Farber, J., Force, T., et al. (2010). Cyclophilin D controls mitochondrial pore - Dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. Cerca con Google

Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S.D., Ntzouni, M., Margaritis, L.H., Stefanis, L., and Vekrellis, K. (2010). Cell-Produced -Synuclein Is Secreted in a Calcium-Dependent Manner by Exosomes and Impacts Neuronal Survival. J. Neurosci. Cerca con Google

Farrer, M.J. (2006). Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet. Cerca con Google

Fernández-Busnadiego, R., Saheki, Y., and De Camilli, P. (2015). Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl. Acad. Sci. 112, E2004–E2013. Cerca con Google

Fernandez-Marcos, P.J., and Auwerx, J. (2011). Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. In American Journal of Clinical Nutrition, p. Cerca con Google

Filadi, R., Greotti, E., and Pizzo, P. (2018). Highlighting the endoplasmic reticulum-mitochondria connection: Focus on Mitofusin 2. Pharmacol. Res. Cerca con Google

Filosto, M., Scarpelli, M., Cotelli, M.S., Vielmi, V., Todeschini, A., Gregorelli, V., Tonin, P., Tomelleri, G., and Padovani, A. (2011). The role of mitochondria in neurodegenerative diseases. J. Neurol. Cerca con Google

Frederick, R.L., and Shaw, J.M. (2007). Moving mitochondria: Establishing distribution of an essential organelle. Traffic. Cerca con Google

Friedman, J.R., and Voeltz, G.K. (2011). The ER in 3D: A multifunctional dynamic membrane network. Trends Cell Biol. Cerca con Google

Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J., and Voeltz, G.K. (2011). ER tubules mark sites of mitochondrial division. Science (80-. ). Cerca con Google

Furukawa, K., Matsuzaki-Kobayashi, M., Hasegawa, T., Kikuchi, A., Sugeno, N., Itoyama, Y., Wang, Y., Yao, P.J., Bushlin, I., and Takeda, A. (2006). Plasma membrane ion permeability induced by mutant α-synuclein contributes to the degeneration of neural cells. J. Neurochem. Cerca con Google

Gandhi, S., Muqit, M.M.K., Stanyer, L., Healy, D.G., Abou-Sleiman, P.M., Hargreaves, I., Heales, S., Ganguly, M., Parsons, L., Lees, A.J., et al. (2006). PINK1 protein in normal human brain and Parkinson’s disease. Brain 129, 1720–1731. Cerca con Google

Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., Downward, J., Latchman, D.S., Tabrizi, S.J., Wood, N.W., et al. (2009a). PINK1-Associated Parkinson’s Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Mol. Cell 33, 627–638. Cerca con Google

Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., Downward, J., Latchman, D.S., Tabrizi, S.J., Wood, N.W., et al. (2009b). PINK1-Associated Parkinson’s Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Mol. Cell. Cerca con Google

García-Bermúdez, J., Sánchez-Aragó, M., Soldevilla, B., del Arco, A., Nuevo-Tapioles, C., and Cuezva, J.M. (2015). PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H+-ATP Synthase. Cell Rep. Cerca con Google

Gehrke, S., Wu, Z., Klinkenberg, M., Sun, Y., Auburger, G., Guo, S., and Lu, B. (2015). PINK1 and parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. Cerca con Google

Gelmetti, V., De Rosa, P., Torosantucci, L., Marini, E.S., Romagnoli, A., Di Rienzo, M., Arena, G., Vignone, D., Fimia, G.M., and Valente, E.M. (2017). PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13, 654–669. Cerca con Google

Gerbeth, C., Schmidt, O., Rao, S., Harbauer, A.B., Mikropoulou, D., Opalinska, M., Guiard, B., Pfanner, N., and Meisinger, C. (2013). Glucose-induced regulation of protein import receptor tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. Cerca con Google

Giorgi, C., Baldassari, F., Bononi, A., Bonora, M., De Marchi, E., Marchi, S., Missiroli, S., Patergnani, S., Rimessi, A., Suski, J.M., et al. (2012). Mitochondrial Ca2+ and apoptosis. Cell Calcium. Cerca con Google

Giorgi, C., Missiroli, S., Patergnani, S., Duszynski, J., Wieckowski, M.R., and Pinton, P. (2015). Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications. Antioxidants Redox Signal. Cerca con Google

Glitsch, M.D., Bakowski, D., and Parekh, A.B. (2002). Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. Cerca con Google

Greene, A.W., Grenier, K., Aguileta, M.A., Muise, S., Farazifard, R., Haque, M.E., McBride, H.M., Park, D.S., and Fon, E.A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. Cerca con Google

Guardia-Laguarta, C., Area-Gomez, E., Rub, C., Liu, Y., Magrane, J., Becker, D., Voos, W., Schon, E.A., and Przedborski, S. (2014). -Synuclein Is Localized to Mitochondria-Associated ER Membranes. J. Neurosci. Cerca con Google

Gunter, K.K., Zuscik, M.J., and Gunter, T.E. (1991). The Na+-independent Ca2+efflux mechanism of liver mitochondria is not a passive Ca2+/2H+exchanger. J. Biol. Chem. 266, 21640–21648. Cerca con Google

Hao, X., Tang, J., Rietdorf, K., Teboul, L., Chuang, K., Parrington, J., Ma, J., Evans, A.M., Galione, A., and Zhu, M.X. (2009). NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596–600. Cerca con Google

Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E.H. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature. Cerca con Google

Heeman, B., Van den Haute, C., Aelvoet, S.-A., Valsecchi, F., Rodenburg, R.J., Reumers, V., Debyser, Z., Callewaert, G., Koopman, W.J.H., Willems, P.H.G.M., et al. (2011). Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J. Cell Sci. 124, 1115–1125. Cerca con Google

Hodge, T., and Colombini, M. (1997). Regulation of metabolite flux through voltage-gating of VDAC channels. J. Membr. Biol. Cerca con Google

Hoeflich, K.P., and Ikura, M. (2002). Calmodulin in action: Diversity in target recognition and activation mechanisms. Cell. Cerca con Google

Huang, E., Qu, D., Huang, T., Rizzi, N., Boonying, W., Krolak, D., Ciana, P., Woulfe, J., Klein, C., Slack, R.S., et al. (2017). PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat. Commun. Cerca con Google

Hurley, M.J., Brandon, B., Gentleman, S.M., and Dexter, D.T. (2013). Parkinson’s disease is associated with altered expression of Ca <inf>V</inf>1 channels and calcium-binding proteins. Brain. Cerca con Google

James Surmeier, D., Guzman, J.N., Sanchez, J., and Schumacker, P.T. (2012). Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb. Perspect. Med. Cerca con Google

Jiang, D., Zhao, L., and Clapham, D.E. (2009). Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca 2+ /H + antiporter. Science (80-. ). 326, 144–147. Cerca con Google

Jin, S.M., and Youle, R.J. (2013). The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy. Cerca con Google

Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942. Cerca con Google

Junn, E., Jang, W.H., Zhao, X., Jeong, B.S., and Mouradian, M.M. (2009). Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. Cerca con Google

Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M., and Mihara, K. (2000). Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol. Cerca con Google

Kaupp, U.B., and Seifert, R. (2002). Cyclic nucleotide-gated ion channels. Physiol. Rev. Cerca con Google

Kawasaki, H., Springett, G.M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., Housman, D.E., and Graybiel, A.M. (1998). A family of cAMP-binding proteins that directly activate Rap1. Science (80-. ). Cerca con Google

Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. Cerca con Google

Kostic, M., H.R., L.M., Hilmar, B., Michal, H., Erin, S., T, C.C., Y, A.A., and Sekler1, I. (2015). PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1- Deficient Dopaminergic Neurons. Cell Rep. 13, 376–386. Cerca con Google

Kozjak-Pavlovic, V. (2017). The MICOS complex of human mitochondria. Cell Tissue Res. Cerca con Google

Kumar, S., Kostin, S., Flacke, J.P., Reusch, H.P., and Ladilov, Y. (2009). Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J. Biol. Chem. Cerca con Google

Van Laar, V.S., Roy, N., Liu, A., Rajprohat, S., Arnold, B., Dukes, A.A., Holbein, C.D., and Berman, S.B. (2015). Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. Cerca con Google

Langston, J., Ballard, P., Tetrud, J., and Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (80-. ). Cerca con Google

Lashuel, H.A., Petre, B.M., Wall, J., Simon, M., Nowak, R.J., Walz, T., and Lansbury, P.T. (2002). α-synuclein, especially the parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. Cerca con Google

Lazarou, M., Jin, S.M., Kane, L.A., and Youle, R.J. (2012). Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin. Dev. Cell. Cerca con Google

Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. Cerca con Google

Lee, J., Kim, C.H., Simon, D.K., Aminova, L.R., Andreyev, A.Y., Kushnareva, Y.E., Murphy, A.N., Lonze, B.E., Kim, K.S., Ginty, D.D., et al. (2005). Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. Cerca con Google

Lefkimmiatis, K., and Zaccolo, M. (2014). CAMP signaling in subcellular compartments. Pharmacol. Ther. Cerca con Google

Lefkimmiatis, K., Leronni, D., and Hofer, A.M. (2013). The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 202, 453–462. Cerca con Google

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. Cerca con Google

Litvin, T.N., Kamenetsky, M., Zarifyan, A., Buck, J., and Levin, L.R. (2003). Kinetic properties of “soluble” adenylyl cyclase: Synergism between calcium and bicarbonate. J. Biol. Chem. Cerca con Google

Livigni, A., Scorziello, A., Agnese, S., Adornetto, A., Carlucci, A., Garbi, C., Castaldo, I., Annunziato, L., Avvedimento, E. V., and Feliciello, A. (2006). Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol. Biol. Cell. Cerca con Google

Lucero, M., Suarez, A.E., and Chambers, J.W. (2019). Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci. Ther. Cerca con Google

Luongo, T.S., Lambert, J.P., Gross, P., Nwokedi, M., Lombardi, A.A., Shanmughapriya, S., Carpenter, A.C., Kolmetzky, D., Gao, E., Van Berlo, J.H., et al. (2017). The mitochondrial Na + /Ca 2+ exchanger is essential for Ca 2+ homeostasis and viability HHS Public Access. 545, 93–97. Cerca con Google

Lur, G., Haynes, L.P., Prior, I.A., Gerasimenko, O. V., Feske, S., Petersen, O.H., Burgoyne, R.D., and Tepikin, A. V. (2009). Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors. Curr. Biol. Cerca con Google

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD Directly Links Aβ to Mitochondrial Toxicity in Alzheimer’s Disease. Science (80-. ). Cerca con Google

Luth, E.S., Stavrovskaya, I.G., Bartels, T., Kristal, B.S., and Selkoe, D.J. (2014). Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J. Biol. Chem. Cerca con Google

Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A., Hu, X., McCoy, J., Chu, C.T., Burton, E.A., et al. (2016). α-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. Cerca con Google

Mammucari, C., Raffaello, A., Vecellio Reane, D., and Rizzuto, R. (2016). Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. Biochim. Biophys. Acta - Mol. Cell Res. Cerca con Google

Mannella, C.A., Buttle, K., Rath, B.K., and Marko, M. (1998). Electron microscopic tomography of rat-liver mitochondria and their interactions with the endoplasmic reticulum. BioFactors. Cerca con Google

Marongiu, R., Spencer, B., Crews, L., Adame, A., Patrick, C., Trejo, M., Dallapiccola, B., Valente, E.M., and Masliah, E. (2009). Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J. Neurochem. Cerca con Google

Matenia, D., and Mandelkow, E.M. (2014). Emerging modes of PINK1 signaling: Another task for MARK2. Front. Mol. Neurosci. Cerca con Google

Matteucci, A., Patron, M., Reane, D.V., Gastaldello, S., Amoroso, S., Rizzuto, R., Brini, M., Raffaello, A., and Calì, T. (2018). Parkin-dependent regulation of the MCU complex component MICU1. Sci. Rep. Cerca con Google

McCormack, J.G., Halestrap, A.P., and Denton, R.M. (2017). Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. Cerca con Google

Means, C.K., Lygren, B., Langeberg, L.K., Jain, A., Dixon, R.E., Vega, A.L., Gold, M.G., Petrosyan, S., Taylor, S.S., Murphy, A.N., et al. (2011). An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc. Natl. Acad. Sci. U. S. A. Cerca con Google

Meier, P.J., Spycher, M.A., and Meyer, U.A. (1981). Isolation and characterization of rough endoplasmic reticulum associated with mitochondria from normal rat liver. BBA - Biomembr. Cerca con Google

Merrill, R.A., Dagda, R.K., Dickey, A.S., Cribbs, J.T., Green, S.H., Usachev, Y.M., and Strack, S. (2011). Mechanism of neuroprotective mitochondrial remodeling by pka/akap1. PLoS Biol. Cerca con Google

van der Merwe, C., Jalali Sefid Dashti, Z., Christoffels, A., Loos, B., and Bardien, S. (2015). Evidence for a common biological pathway linking three Parkinson’s disease-causing genes: Parkin, PINK1 and DJ-1. Eur. J. Neurosci. Cerca con Google

Metuzals, J., Chang, D., Hammar, K., and Reese, T.S. (1997). Organization of the cortical endoplasmic reticulum in the squid giant axon. J. Neurocytol. Cerca con Google

Moisoi, N., Klupsch, K., Fedele, V., East, P., Sharma, S., Renton, A., Plun-Favreau, H., Edwards, R.E., Teismann, P., Esposti, M.D., et al. (2009). Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ. Cerca con Google

Morais, V.A., Verstreken, P., Roethig, A., Smet, J., Snellinx, A., Vanbrabant, M., Haddad, D., Frezza, C., Mandemakers, W., Vogt-Weisenhorn, D., et al. (2009). Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. Cerca con Google

Morais, V.A., Haddad, D., Craessaerts, K., De Bock, P.J., Swerts, J., Vilain, S., Aerts, L., Overbergh, L., Grun̈ewald, A., Seibler, P., et al. (2014). PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science (80-. ). Cerca con Google

Moujalled, D., Weston, R., Anderton, H., Ninnis, R., Goel, P., Coley, A., Huang, D.C., Wu, L., Strasser, A., and Puthalakath, H. (2011). Cyclic-AMP-dependent protein kinase A regulates apoptosis by stabilizing the BH3-only protein Bim. EMBO Rep. Cerca con Google

Murata, H., Sakaguchi, M., Jin, Y., Sakaguchi, Y., Futami, J.I., Yamada, H., Kataoka, K., and Huh, N.H. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: Activation of AKT via MTORC2. J. Biol. Chem. Cerca con Google

Narendra, D.P., Kane, L.A., Hauser, D.N., Fearnley, I.M., and Youle, R.J. (2010a). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. Cerca con Google

Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010b). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8. Cerca con Google

Nwokonko, R.M., and Gill, D.L. (2012). Store-operated Ca2+ entry (SOCE) pathways. Store-Operated Ca2+ Entry Pathways 83–98. Cerca con Google

Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., et al. (2012). PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1010–1016. Cerca con Google

Okatsu, K., Uno, M., Koyano, F., Go, E., Kimura, M., Oka, T., Tanaka, K., and Matsuda, N. (2013). A dimeric pink1-containing complex on depolarized mitochondria stimulates parkin recruitment. J. Biol. Chem. Cerca con Google

Ottolini, D., Calì, T., Negro, A., and Brini, M. (2013). The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168. Cerca con Google

Ottolini, D., Calì, T., and Brini, M. (2014). Methods to measure intracellular Ca2+ fluxes with organelle-targeted aequorin-based probes. Methods Enzymol. 543, 21–45. Cerca con Google

Paillusson, S., Gomez-Suaga, P., Stoica, R., Little, D., Gissen, P., Devine, M.J., Noble, W., Hanger, D.P., and Miller, C.C.J. (2017). α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. Cerca con Google

Palty, R., Silverman, W.F., Hershfinkel, M., Caporale, T., Sensi, S.L., Parnis, J., Nolte, C., Fishman, D., Shoshan-Barmatz, V., Herrmann, S., et al. (2010). NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. 107, 436–441. Cerca con Google

Parihar, M.S., Parihar, A., Fujita, M., Hashimoto, M., and Ghafourifar, P. (2008). Mitochondrial association of alpha-synuclein causes oxidative stress. Cell. Mol. Life Sci. Cerca con Google

Patron, M., Checchetto, V., Raffaello, A., Teardo, E., VecellioReane, D., Mantoan, M., Granatiero, V., Szabò, I., DeStefani, D., and Rizzuto, R. (2014). MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53, 726–737. Cerca con Google

Pchitskaya, E., Popugaeva, E., and Bezprozvanny, I. (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium. Cerca con Google

Pérez-Sancho, J., Tilsner, J., Samuels, A.L., Botella, M.A., Bayer, E.M., and Rosado, A. (2016). Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends Cell Biol. Cerca con Google

Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E., and Mootha, V.K. (2010). MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature. Cerca con Google

Pickrell, A.M., and Youle, R.J. (2015). The roles of PINK1, Parkin, and mitochondrial fidelity in parkinson’s disease. Neuron. Cerca con Google

Pidoux, G., Witczak, O., Jarnss, E., Myrvold, L., Urlaub, H., Stokka, A.J., Küntziger, T., and Taskén, K. (2011). Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. Cerca con Google

Pivovarova, N.B., and Andrews, S.B. (2010). Calcium-dependent mitochondrial function and dysfunction in neurons: Minireview. FEBS J. Cerca con Google

Plovanich, M., Bogorad, R.L., Sancak, Y., Kamer, K.J., Strittmatter, L., Li, A.A., Girgis, H.S., Kuchimanchi, S., De Groot, J., Speciner, L., et al. (2013). MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling. PLoS One. Cerca con Google

Polianskyte, Z., Peitsaro, N., Dapkunas, A., Liobikas, J., Soliymani, R., Lalowski, M., Speer, O., Seitsonen, J., Butcher, S., Cereghetti, G.M., et al. (2009). LACTB is a filament-forming protein localized in mitochondria. Proc. Natl. Acad. Sci. 106, 18960–18965. Cerca con Google

PORTER, K.R., and PALADE, G.E. (1957). Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. Cerca con Google

Prabu, S.K., Anandatheerthavarada, H.K., Raza, H., Srinivasan, S., Spear, J.F., and Avadhani, N.G. (2006). Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J. Biol. Chem. Cerca con Google

Pridgeon, J.W., Olzmann, J.A., Chin, L.S., and Li, L. (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. Cerca con Google

Pryde, K.R., Smith, H.L., Chau, K.Y., and Schapira, A.H.V. (2016). PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 213, 163–171. Cerca con Google

QIN, S., GAO, J., WANG, X., and SU, B. (2018). Mitochondrial dynamics in neurodegenerative diseases. Sci. Sin. Vitae. Cerca con Google

Raffaello, A., Stefani, D. De, Sabbadin, D., Teardo, E., Merli, G., Picard, A., Checchetto, V., and Moro, S. (2013). The mitochondrial calcium uniporter is a multimer that can include a dominant-negative. 32, 2362–2376. Cerca con Google

Rao, S., Schmidt, O., Harbauer, A.B., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2012). Biogenesis of the preprotein translocase of the outer mitochondrial membrane: Protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell. Cerca con Google

Rasmo, D. De, Palmisano, G., Scacco, S., Technikova-Dobrova, Z., Panelli, D., Cocco, T., Sardanelli, A.M., Gnoni, A., Micelli, L., Trani, A., et al. (2010). Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion. Cerca con Google

De Rasmo, D., Panelli, D., Sardanelli, A.M., and Papa, S. (2008). cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell. Signal. Cerca con Google

De Rasmo, D., Signorile, A., Roca, E., and Papa, S. (2009). CAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J. Cerca con Google

De Rasmo, D., Signorile, A., Santeramo, A., Larizza, M., Lattanzio, P., Capitanio, G., and Papa, S. (2015). Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim. Biophys. Acta - Mol. Cell Res. Cerca con Google

De Rasmo, D., Micelli, L., Santeramo, A., Signorile, A., Lattanzio, P., and Papa, S. (2016). CAMP regulates the functional activity, coupling efficiency and structural organization of mammalian FOF1 ATP synthase. Biochim. Biophys. Acta - Bioenerg. Cerca con Google

Rasola, A., and Bernardi, P. (2011). Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. Cerca con Google

Rego, A.C., and Oliveira, C.R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. Cerca con Google

Rizzuto, R., Nakase, H., Darras, B., Francke, U., Fabrizi, G.M., Mengel, T., Walsh, F., Kadenbach, B., DiMauro, S., and Schon, E.A. (1989). A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J. Biol. Chem. Cerca con Google

Rizzuto, R., Simpson, A.W.M., Brini, M., and Pozzan, T. (1992). Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. Cerca con Google

Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993). Microdomains with high Ca2+close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science (80-. ). Cerca con Google

Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science (80-. ). Cerca con Google

Ronzitti, G., Bucci, G., Emanuele, M., Leo, D., Sotnikova, T.D., Mus, L. V., Soubrane, C.H., Dallas, M.L., Thalhammer, A., Cingolani, L.A., et al. (2014). Exogenous -Synuclein Decreases Raft Partitioning of Cav2.2 Channels Inducing Dopamine Release. J. Neurosci. Cerca con Google

ROSENBLUTH, J. (1962). Subsurface cisterns and their relationship to the neuronal plasma membrane. J. Cell Biol. Cerca con Google

Ryu, H., Lee, J., Impey, S., Ratan, R.R., and Ferrante, R.J. (2005). Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl. Acad. Sci. U. S. A. Cerca con Google

Schmidt, F., Levin, J., Kamp, F., Kretzschmar, H., Giese, A., and Bötzel, K. (2012). Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One. Cerca con Google

Schmidt, O., Harbauer, A.B., Rao, S., Eyrich, B., Zahedi, R.P., Stojanovski, D., Schönfisch, B., Guiard, B., Sickmann, A., Pfanner, N., et al. (2011). Regulation of mitochondrial protein import by cytosolic kinases. Cell. Cerca con Google

Schreiner, B., Hedskog, L., Wiehager, B., and Ankarcrona, M. (2015). Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J. Alzheimer’s Dis. Cerca con Google

Schrepfer, E., and Scorrano, L. (2016). Mitofusins, from Mitochondria to Metabolism. Mol. Cell. Cerca con Google

Schwoch, G., Trinczek, B., and Bode, C. (1990). Localization of catalytic and regulatory subunits of cyclic AMP-dependent protein kinases in mitochondria from various rat tissues. Biochem. J. Cerca con Google

Scorrano, L., De Matteis, M.A., Emr, S., Giordano, F., Hajnóczky, G., Kornmann, B., Lackner, L.L., Levine, T.P., Pellegrini, L., Reinisch, K., et al. (2019). Coming together to define membrane contact sites. Nat. Commun. Cerca con Google

Shiba-Fukushima, K., Imai, Y., Yoshida, S., Ishihama, Y., Kanao, T., Sato, S., and Hattori, N. (2012). PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. Cerca con Google

Shore, G.C., and Tata, J.R. (1977). Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J. Cell Biol. Cerca con Google

Soman, S., Keatinge, M., Moein, M., Da Costa, M., Mortiboys, H., Skupin, A., Sugunan, S., Bazala, M., Kuznicki, J., and Bandmann, O. (2017). Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1−/− zebrafish. Eur. J. Neurosci. Cerca con Google

Spacek, J., and Harris, K.M. (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. Cerca con Google

Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). α-synuclein in Lewy bodies [8]. Nature. Cerca con Google

De Stefani, D., Raffaello, A., Teardo, E., Szabó, I., and Rizzuto, R. (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. Cerca con Google

De Stefani, D., Bononi, A., Romagnoli, A., Messina, A., De Pinto, V., Pinton, P., and Rizzuto, R. (2012). VDAC1 selectively transfers apoptotic Ca 2 signals to mitochondria. Cell Death Differ. Cerca con Google

De Stefani, D., Rizzuto, R., and Pozzan, T. (2016). Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu. Rev. Biochem. 85, 161–192. Cerca con Google

Surmeier, D.J. (2018). Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 285, 3657–3668. Cerca con Google

Surmeier, D.J., and Schumacker, P.T. (2013). Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J. Biol. Chem. Cerca con Google

Surmeier, D.J., Schumacker, P.T., Guzman, J.D., Ilijic, E., Yang, B., and Zampese, E. (2017). Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun. 483, 1013–1019. Cerca con Google

Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. Cerca con Google

Taylor, S.S., Lev-Ram, V., Ellisman, M.H., Goldberg, J.L., Ilouz, R., Stiles, T.L., Bushong, E.A., Douglas, C., and Friedmann-Morvinski, D. (2017). Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. Elife 6, 1–23. Cerca con Google

Twig, G., Hyde, B., and Shirihai, O.S. (2008). Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochim. Biophys. Acta - Bioenerg. Cerca con Google

Vais, H., Mallilankaraman, K., Mak, D.O.D., Hoff, H., Payne, R., Tanis, J.E., and Foskett, J.K. (2016). EMRE Is a Matrix Ca2+ Sensor that Governs Gatekeeping of the Mitochondrial Ca2+ Uniporter. Cell Rep. Cerca con Google

Valente, E.M., Caputo, V., Salvi, S., Dallapiccola, B., Abou-Sleiman, P.M., Muqit, M.M.K., Healy, D.G., Gilks, W.P., Wood, N.W., Latchman, D.S., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science (80-. ). 304, 1158–1160. Cerca con Google

Várnai, P., Tóth, B., Tóth, D.J., Hunyady, L., and Balla, T. (2007). Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282, 29678–29690. Cerca con Google

Vicario, M., and Calì, T. (2019). Measuring Ca2+ levels in subcellular compartments with genetically encoded GFP-based indicators. In Methods in Molecular Biology, p. Cerca con Google

Voigt, A., Berlemann, L.A., and Winklhofer, K.F. (2016). The mitochondrial kinase PINK1: functions beyond mitophagy. J. Neurochem. 139, 232–239. Cerca con Google

Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-delfosse, A., Chen, S.G., Perry, G., Casadesus, G., and Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. Cerca con Google

Xia, Q. (2008). Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci. Cerca con Google

Xiong, H., Wang, D., Chen, L., Yeun, S.C., Ma, H., Tang, C., Xia, K., Jiang, W., Ronai, Z., Zhuang, X., et al. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Invest. Cerca con Google

Yamano, K., and Youle, R.J. (2013). PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769. Cerca con Google

Yamano, K., Matsuda, N., and Tanaka, K. (2016). The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. Cerca con Google

Yang, Y., Ouyang, Y., Yang, L., Beal, M.F., McQuibban, A., Vogel, H., and Lu, B. (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. 105, 7070–7075. Cerca con Google

Zallo, F., Gardenal, E., Verkhratsky, A., and Rodríguez, J.J. (2018). Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer’s disease mice. Neurosci. Lett. Cerca con Google

Zhao, X., León, I.R., Bak, S., Mogensen, M., Wrzesinski, K., Højlund, K., and Jensen, O.N. (2011). Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell. Proteomics. Cerca con Google

Zhao, X., Bak, S., Pedersen, A.J.T., Jensen, O.N., and Højlund, K. (2014). Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. J. Proteome Res. Cerca con Google

Zhou, W., Chen, K.H., Cao, W., Zeng, J., Liao, H., Zhao, L., and Guo, X. (2010). Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2. Atherosclerosis. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record