Distributed optical fiber sensing is a thriving research field that is finding practical applications in a variety of different fields including processes at extreme temperatures, security and civil engineering. The monitoring of dynamic perturbations, usually defined in the literature as distributed acoustic sensing (DAS), can be realized with excellent performance exploiting Rayleigh backscattering both in time and frequency domain. Devices implementing Rayleigh-based DAS are already commercially available. In this thesis the results of my three-year research are presented, reporting the development of high performance distributed acoustic sensors based on Rayleigh backscattering, and their applications. The research has focused on improving the spatial resolution of the chirped-pulse phase-sensitive optical time-domain reflectometer and on developing a novel algorithm to realize real distributed acoustic sensing with high spatial resolution and high acoustic bandwidth for the optical frequency-domain reflectometer (OFDR). Finally the early results of a measurement campaign performed in collaboration with the European Organization for Nuclear Research (CERN), where distributed optical fiber sensors were used to monitor superconducting lines and magnets, are presented and discussed.

Development of high performance distributed acoustic sensors based on Rayleigh backscattering / Marcon, Leonardo. - (2019 Dec 02).

Development of high performance distributed acoustic sensors based on Rayleigh backscattering

Marcon, Leonardo
2019

Abstract

Distributed optical fiber sensing is a thriving research field that is finding practical applications in a variety of different fields including processes at extreme temperatures, security and civil engineering. The monitoring of dynamic perturbations, usually defined in the literature as distributed acoustic sensing (DAS), can be realized with excellent performance exploiting Rayleigh backscattering both in time and frequency domain. Devices implementing Rayleigh-based DAS are already commercially available. In this thesis the results of my three-year research are presented, reporting the development of high performance distributed acoustic sensors based on Rayleigh backscattering, and their applications. The research has focused on improving the spatial resolution of the chirped-pulse phase-sensitive optical time-domain reflectometer and on developing a novel algorithm to realize real distributed acoustic sensing with high spatial resolution and high acoustic bandwidth for the optical frequency-domain reflectometer (OFDR). Finally the early results of a measurement campaign performed in collaboration with the European Organization for Nuclear Research (CERN), where distributed optical fiber sensors were used to monitor superconducting lines and magnets, are presented and discussed.
2-dic-2019
Distributed Optical Fiber Sensors; Rayleigh Backscattering; Distributed Acoustic Sensing, Chirped-Pulse Phase-OTDR, OFDR, CERN
Development of high performance distributed acoustic sensors based on Rayleigh backscattering / Marcon, Leonardo. - (2019 Dec 02).
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact