The interest for plasmonic nanolasers has been growing in the last ten years, since they are one of the most promising ways to reach the miniaturization of lasers. In fact, these devices could break the limit of physical confinement of light thanks to the virtual cavity given by plasmonic nanostructures which substitutes the current macroscopic optical cavities. These plasmonic devices can also support high speed operation mode, low lasing threshold and a narrow directional emission. For this reason, during this project, we focused on the design, the synthesis and the characterization of plasmonic nanolasers based on Au nanodome arrays and Ag nanodisk arrays. In order to synthesize highly ordered nanostructure arrays, we used Nanosphere Lithography (NSL), which is a cost effective and high throughput technique based on the self-assembling of polystyrene nanospheres. Thanks to the versatility of NSL, we have developed different nanofabrication protocols, combining NSL with Reactive Ion Etching (RIE) and Physical Vapor Deposition (PVD). Therefore, we investigated the optical properties of our synthesized arrays, recreating the optical band structure along the high symmetry directions of the reciprocal space. Suitable dye emitters (Pyridine 2 and Styryl 9M) were selected in order to couple their emission with the optical modes of the nanoarrays, on the basis of optical band structure information. In addition, in order to optimize the plasmonic properties and the local field enhancement of the metallic nanostructures, numerical simulations by COMSOL Multiphysics were performed. The interaction between dye and plasmonic structure generated an amplified emission. In particular, for Au nanodome arrays coupled with Pyridine 2 dissolved in ethanol, an amplification on the emission arises at 720 nm with a threshold behavior at 0.9 mJ/cm^2 and the FWHM of 14 nm. Furthermore, a highly directional emission was obtained at 17° with an angular divergence of 3° which takes place along the Rayleigh anomaly mode. By comparing the results of Au nanodome arrays and silica nanodome arrays, we concluded that lattice modes give a contribution to the emission directionality, while plasmonic modes provide a reduced lasing threshold overcoming the energy loss. Ag hexagonal nanodisk array showed a similar behavior to the Au nanodome arrays: we found a lasing threshold at 1.6 mJ/cm^2 , with also a similar FWHM. In this case, the emission is directed at 65° and presents an angular divergence of about 14° . Moreover, we investigated a nanolaser with a solid-state gain medium for the interest in applications and for the device integration on a chip. The Styryl 9M laser dye is embedded in a PMMA film and coupled with an Au nanodome array. This solid-state system presents an amplified emission at 795 nm with a threshold of 1.2 mJ/cm^2 and a FWHM of about 26 nm. The sample shows also a directional emission at 24° and with an angular divergence of 6° . Further investigations have shown the possibility to eliminate the substrate, creating a self-standing device, which exhibits an amplified emission with similar properties of that with the substrate. Finally, in order to discern the spontaneous or stimulated nature of the emission, we performed coherence measurements of the emitted beam. By a modified Michelson interferometer, a coherence length of about 29 um was determined for Au nanodome arrays above threshold. This result demonstrated that a coherent, low-threshold and highly directional emission can be obtained by coupling a suitable fluorescent dye to a properly designed virtual cavity realized by an ordered array of plasmonic nanostructures.

Nell'ultima decina di anni, l'interesse per i nanolaser plasmonici è cresciuto siccome sono uno tra i modi più promettenti per la miniaturizzazione dei laser. Infatti, questi dispositivi possono superare il limite di confinamento fisico della luce, grazie alla cavità virtuale data dalle nanostrutture plasmoniche che sostituiscono la convenzionale cavità ottica macroscopica. Inoltre, questi dispositivi plasmonici possono supportare modalità di funzionamento ad alta velocità, bassa soglia di emissione laser e una direzionalità ben definita. Per questa ragione, durante questo progetto, ci siamo concentrati sulla progettazione, la sintesi e la caratterizzazione di nanolasers plasmonici basati su array di nanocupole di oro e array di nanodischi di argento. Al fine di sintetizzare reticoli di nanoparticelle con un ordine elevato, abbiamo utilizzato la Nanosphere Lithography (NSL), una tecnica economica e ad alta produttività basata sull'autoassemblaggio di nanosfere di polistirene. Grazie alla versatilità della NSL, abbiamo sviluppato diversi protocolli di nanofabbricazione, combinando la NSL con i processi di Reactive Ion Etching (RIE) e deposizione fisica da vapore (PVD). Successivamente, abbiamo studiato le proprietà ottiche dei campioni sintetizzati, ricostruendo la struttura a bande ottica lungo le direzioni di alta simmetria dello spazio reciproco. Abbiamo selezionato due adeguati emettitori coloranti, la Pyridine 2 e lo Styryl 9M, al fine di accoppiare la loro emissione con le modalità ottiche dei reticoli nanostrutturati, sulla base delle informazioni della struttura a bande ottica. Inoltre, per ottimizzare le proprietà plasmoniche e l'amplificazione del campo locale delle nanostrutture metalliche, delle simulazioni numeriche sono state effettuate tramite il software COMSOL Multiphysics. L'interazione tra il colorante e la struttura plasmonica ha generato un'emissione amplificata. In particolare, nel reticolo di nanocupole di oro accoppiato alla piridina 2 disciolta in etanolo, un'amplificazione dell'emissione si presenta a720nm con un comportamento a soglia a 0.9 mJ/cm^2 . Inoltre, è stata ottenuta un'emissione direzionale a 17° con una divergenza angolare di 3° che avviene lungo l'anomalia di Rayleigh. Confrontando i risultati dei reticoli di nanocupole di oro con quelli dei reticoli di nanocupole di silice, abbiamo concluso che i modi di reticolo danno un contributo alla direzionalità dell'emissione, mentre i modi plasmonici forniscono una riduzione della soglia laser superando così la perdita di energia. Il reticolo esagonale di nanodischi di argento mostra un comportamento simile a quello con le nanocupole di oro: abbiamo trovato una soglia laser a 1.6 mJ/cm^2 , con anche una simile FWHM. In questo caso, questo fascio è diretto a 65° e presenta una divergenza angolare di circa 14° . Inoltre, abbiamo studiato anche un nanolaser con un mezzo di guadagno a stato solido per l'interesse nelle applicazioni e nell'integrazione di dispositivi su chip. Il colorante laser Styryl 9M è incorporato in un film di PMMA e accoppiato con un reticolo di nanocupole di oro. Questo sistema a stato solido presenta un'emissione amplificata a 795 nm con una soglia di 1.2 mJ/cm^2 e una FWHM di circa 26 nm. Questo campione manifesta anche un'emissione direzionale a 24° con una divergenza angolare di 6° . Ulteriori ricerche hanno dimostrato la possibilità di eliminare il substrato, creando un dispositivo autoportante, che presenta un'emissione amplificata con proprietà simili a quella con il substrato. Infine, per discernere la natura spontanea o stimolata dell'emissione, abbiamo misurato la coerenza del raggio emesso. Tramite un interferometro di Michelson dedicato, la lunghezza di coerenza è stimata a circa 29 um per i reticoli di nanocupole d'oro sopra la soglia. Questo risultato ha dimostrato che è possibile ottenere un'emissione coerente, a bassa soglia e altamente direzionale, accoppiando un colorante fluorescente adeguato con una cavità virtuale opportunamente progettata e realizzata da una reticolo ordinato di nanostrutture plasmoniche.

Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers / Piccotti, Diego. - (2019 Dec 02).

Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers

Piccotti, Diego
2019

Abstract

Nell'ultima decina di anni, l'interesse per i nanolaser plasmonici è cresciuto siccome sono uno tra i modi più promettenti per la miniaturizzazione dei laser. Infatti, questi dispositivi possono superare il limite di confinamento fisico della luce, grazie alla cavità virtuale data dalle nanostrutture plasmoniche che sostituiscono la convenzionale cavità ottica macroscopica. Inoltre, questi dispositivi plasmonici possono supportare modalità di funzionamento ad alta velocità, bassa soglia di emissione laser e una direzionalità ben definita. Per questa ragione, durante questo progetto, ci siamo concentrati sulla progettazione, la sintesi e la caratterizzazione di nanolasers plasmonici basati su array di nanocupole di oro e array di nanodischi di argento. Al fine di sintetizzare reticoli di nanoparticelle con un ordine elevato, abbiamo utilizzato la Nanosphere Lithography (NSL), una tecnica economica e ad alta produttività basata sull'autoassemblaggio di nanosfere di polistirene. Grazie alla versatilità della NSL, abbiamo sviluppato diversi protocolli di nanofabbricazione, combinando la NSL con i processi di Reactive Ion Etching (RIE) e deposizione fisica da vapore (PVD). Successivamente, abbiamo studiato le proprietà ottiche dei campioni sintetizzati, ricostruendo la struttura a bande ottica lungo le direzioni di alta simmetria dello spazio reciproco. Abbiamo selezionato due adeguati emettitori coloranti, la Pyridine 2 e lo Styryl 9M, al fine di accoppiare la loro emissione con le modalità ottiche dei reticoli nanostrutturati, sulla base delle informazioni della struttura a bande ottica. Inoltre, per ottimizzare le proprietà plasmoniche e l'amplificazione del campo locale delle nanostrutture metalliche, delle simulazioni numeriche sono state effettuate tramite il software COMSOL Multiphysics. L'interazione tra il colorante e la struttura plasmonica ha generato un'emissione amplificata. In particolare, nel reticolo di nanocupole di oro accoppiato alla piridina 2 disciolta in etanolo, un'amplificazione dell'emissione si presenta a720nm con un comportamento a soglia a 0.9 mJ/cm^2 . Inoltre, è stata ottenuta un'emissione direzionale a 17° con una divergenza angolare di 3° che avviene lungo l'anomalia di Rayleigh. Confrontando i risultati dei reticoli di nanocupole di oro con quelli dei reticoli di nanocupole di silice, abbiamo concluso che i modi di reticolo danno un contributo alla direzionalità dell'emissione, mentre i modi plasmonici forniscono una riduzione della soglia laser superando così la perdita di energia. Il reticolo esagonale di nanodischi di argento mostra un comportamento simile a quello con le nanocupole di oro: abbiamo trovato una soglia laser a 1.6 mJ/cm^2 , con anche una simile FWHM. In questo caso, questo fascio è diretto a 65° e presenta una divergenza angolare di circa 14° . Inoltre, abbiamo studiato anche un nanolaser con un mezzo di guadagno a stato solido per l'interesse nelle applicazioni e nell'integrazione di dispositivi su chip. Il colorante laser Styryl 9M è incorporato in un film di PMMA e accoppiato con un reticolo di nanocupole di oro. Questo sistema a stato solido presenta un'emissione amplificata a 795 nm con una soglia di 1.2 mJ/cm^2 e una FWHM di circa 26 nm. Questo campione manifesta anche un'emissione direzionale a 24° con una divergenza angolare di 6° . Ulteriori ricerche hanno dimostrato la possibilità di eliminare il substrato, creando un dispositivo autoportante, che presenta un'emissione amplificata con proprietà simili a quella con il substrato. Infine, per discernere la natura spontanea o stimolata dell'emissione, abbiamo misurato la coerenza del raggio emesso. Tramite un interferometro di Michelson dedicato, la lunghezza di coerenza è stimata a circa 29 um per i reticoli di nanocupole d'oro sopra la soglia. Questo risultato ha dimostrato che è possibile ottenere un'emissione coerente, a bassa soglia e altamente direzionale, accoppiando un colorante fluorescente adeguato con una cavità virtuale opportunamente progettata e realizzata da una reticolo ordinato di nanostrutture plasmoniche.
2-dic-2019
The interest for plasmonic nanolasers has been growing in the last ten years, since they are one of the most promising ways to reach the miniaturization of lasers. In fact, these devices could break the limit of physical confinement of light thanks to the virtual cavity given by plasmonic nanostructures which substitutes the current macroscopic optical cavities. These plasmonic devices can also support high speed operation mode, low lasing threshold and a narrow directional emission. For this reason, during this project, we focused on the design, the synthesis and the characterization of plasmonic nanolasers based on Au nanodome arrays and Ag nanodisk arrays. In order to synthesize highly ordered nanostructure arrays, we used Nanosphere Lithography (NSL), which is a cost effective and high throughput technique based on the self-assembling of polystyrene nanospheres. Thanks to the versatility of NSL, we have developed different nanofabrication protocols, combining NSL with Reactive Ion Etching (RIE) and Physical Vapor Deposition (PVD). Therefore, we investigated the optical properties of our synthesized arrays, recreating the optical band structure along the high symmetry directions of the reciprocal space. Suitable dye emitters (Pyridine 2 and Styryl 9M) were selected in order to couple their emission with the optical modes of the nanoarrays, on the basis of optical band structure information. In addition, in order to optimize the plasmonic properties and the local field enhancement of the metallic nanostructures, numerical simulations by COMSOL Multiphysics were performed. The interaction between dye and plasmonic structure generated an amplified emission. In particular, for Au nanodome arrays coupled with Pyridine 2 dissolved in ethanol, an amplification on the emission arises at 720 nm with a threshold behavior at 0.9 mJ/cm^2 and the FWHM of 14 nm. Furthermore, a highly directional emission was obtained at 17° with an angular divergence of 3° which takes place along the Rayleigh anomaly mode. By comparing the results of Au nanodome arrays and silica nanodome arrays, we concluded that lattice modes give a contribution to the emission directionality, while plasmonic modes provide a reduced lasing threshold overcoming the energy loss. Ag hexagonal nanodisk array showed a similar behavior to the Au nanodome arrays: we found a lasing threshold at 1.6 mJ/cm^2 , with also a similar FWHM. In this case, the emission is directed at 65° and presents an angular divergence of about 14° . Moreover, we investigated a nanolaser with a solid-state gain medium for the interest in applications and for the device integration on a chip. The Styryl 9M laser dye is embedded in a PMMA film and coupled with an Au nanodome array. This solid-state system presents an amplified emission at 795 nm with a threshold of 1.2 mJ/cm^2 and a FWHM of about 26 nm. The sample shows also a directional emission at 24° and with an angular divergence of 6° . Further investigations have shown the possibility to eliminate the substrate, creating a self-standing device, which exhibits an amplified emission with similar properties of that with the substrate. Finally, in order to discern the spontaneous or stimulated nature of the emission, we performed coherence measurements of the emitted beam. By a modified Michelson interferometer, a coherence length of about 29 um was determined for Au nanodome arrays above threshold. This result demonstrated that a coherent, low-threshold and highly directional emission can be obtained by coupling a suitable fluorescent dye to a properly designed virtual cavity realized by an ordered array of plasmonic nanostructures.
laser nanometrici litografia a nanosfere reticolo plasmonico plasmoni emissione amplificata Nanolaser NanoSphere Lithography plasmonic array plasmon amplified emission
Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers / Piccotti, Diego. - (2019 Dec 02).
File in questo prodotto:
File Dimensione Formato  
Piccotti_Diego_tesi.pdf

Open Access dal 30/09/2022

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 24.52 MB
Formato Adobe PDF
24.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact