Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Piccotti, Diego (2019) Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 29 September 2022 for intellectual property related reasons.
Visibile to: nobody

23Mb

Abstract (italian or english)

The interest for plasmonic nanolasers has been growing in the last ten years, since they are one of the most promising ways to reach the miniaturization of lasers.
In fact, these devices could break the limit of physical confinement of light thanks to the virtual cavity given by plasmonic nanostructures which substitutes the current macroscopic optical cavities.
These plasmonic devices can also support high speed operation mode, low lasing threshold and a narrow directional emission.

For this reason, during this project, we focused on the design, the synthesis and the characterization of plasmonic nanolasers based on Au nanodome arrays and Ag nanodisk arrays.
In order to synthesize highly ordered nanostructure arrays, we used Nanosphere Lithography (NSL), which is a cost effective and high throughput technique based on the self-assembling of polystyrene nanospheres.
Thanks to the versatility of NSL, we have developed different nanofabrication protocols, combining NSL with Reactive Ion Etching (RIE) and Physical Vapor Deposition (PVD).
Therefore, we investigated the optical properties of our synthesized arrays, recreating the optical band structure along the high symmetry directions of the reciprocal space.
Suitable dye emitters (Pyridine 2 and Styryl 9M) were selected in order to couple their emission with the optical modes of the nanoarrays, on the basis of optical band structure information.
In addition, in order to optimize the plasmonic properties and the local field enhancement of the metallic nanostructures, numerical simulations by COMSOL Multiphysics were performed.

The interaction between dye and plasmonic structure generated an amplified emission.
In particular, for Au nanodome arrays coupled with Pyridine 2 dissolved in ethanol, an amplification on the emission arises at 720 nm with a threshold behavior at 0.9 mJ/cm^2 and the FWHM of 14 nm.
Furthermore, a highly directional emission was obtained at 17° with an angular divergence of 3° which takes place along the Rayleigh anomaly mode.
By comparing the results of Au nanodome arrays and silica nanodome arrays, we concluded that lattice modes give a contribution to the emission directionality, while plasmonic modes provide a reduced lasing threshold overcoming the energy loss.

Ag hexagonal nanodisk array showed a similar behavior to the Au nanodome arrays: we found a lasing threshold at 1.6 mJ/cm^2 , with also a similar FWHM.
In this case, the emission is directed at 65° and presents an angular divergence of about 14° .

Moreover, we investigated a nanolaser with a solid-state gain medium for the interest in applications and for the device integration on a chip.
The Styryl 9M laser dye is embedded in a PMMA film and coupled with an Au nanodome array.
This solid-state system presents an amplified emission at 795 nm with a threshold of 1.2 mJ/cm^2 and a FWHM of about 26 nm.
The sample shows also a directional emission at 24° and with an angular divergence of 6° .
Further investigations have shown the possibility to eliminate the substrate, creating a self-standing device, which exhibits an amplified emission with similar properties of that with the substrate.

Finally, in order to discern the spontaneous or stimulated nature of the emission, we performed coherence measurements of the emitted beam.
By a modified Michelson interferometer, a coherence length of about 29 um was determined for Au nanodome arrays above threshold.
This result demonstrated that a coherent, low-threshold and highly directional emission can be obtained by coupling a suitable fluorescent dye to a properly designed virtual cavity realized by an ordered array of plasmonic nanostructures.

Abstract (a different language)

Nell'ultima decina di anni, l'interesse per i nanolaser plasmonici è cresciuto siccome sono uno tra i modi più promettenti per la miniaturizzazione dei laser.
Infatti, questi dispositivi possono superare il limite di confinamento fisico della luce, grazie alla cavità virtuale data dalle nanostrutture plasmoniche che sostituiscono la convenzionale cavità ottica macroscopica.
Inoltre, questi dispositivi plasmonici possono supportare modalità di funzionamento ad alta velocità, bassa soglia di emissione laser e una direzionalità ben definita.

Per questa ragione, durante questo progetto, ci siamo concentrati sulla progettazione, la sintesi e la caratterizzazione di nanolasers plasmonici basati su array di nanocupole di oro e array di nanodischi di argento.
Al fine di sintetizzare reticoli di nanoparticelle con un ordine elevato, abbiamo utilizzato la Nanosphere Lithography (NSL), una tecnica economica e ad alta produttività basata sull'autoassemblaggio di nanosfere di polistirene.
Grazie alla versatilità della NSL, abbiamo sviluppato diversi protocolli di nanofabbricazione, combinando la NSL con i processi di Reactive Ion Etching (RIE) e deposizione fisica da vapore (PVD).
Successivamente, abbiamo studiato le proprietà ottiche dei campioni sintetizzati, ricostruendo la struttura a bande ottica lungo le direzioni di alta simmetria dello spazio reciproco.
Abbiamo selezionato due adeguati emettitori coloranti, la Pyridine 2 e lo Styryl 9M, al fine di accoppiare la loro emissione con le modalità ottiche dei reticoli nanostrutturati, sulla base delle informazioni della struttura a bande ottica.
Inoltre, per ottimizzare le proprietà plasmoniche e l'amplificazione del campo locale delle nanostrutture metalliche, delle simulazioni numeriche sono state effettuate tramite il software COMSOL Multiphysics.

L'interazione tra il colorante e la struttura plasmonica ha generato un'emissione amplificata.
In particolare, nel reticolo di nanocupole di oro accoppiato alla piridina 2 disciolta in etanolo, un'amplificazione dell'emissione si presenta a720nm con un comportamento a soglia a 0.9 mJ/cm^2 .
Inoltre, è stata ottenuta un'emissione direzionale a 17° con una divergenza angolare di 3° che avviene lungo l'anomalia di Rayleigh.
Confrontando i risultati dei reticoli di nanocupole di oro con quelli dei reticoli di nanocupole di silice, abbiamo concluso che i modi di reticolo danno un contributo alla direzionalità dell'emissione, mentre i modi plasmonici forniscono una riduzione della soglia laser superando così la perdita di energia.

Il reticolo esagonale di nanodischi di argento mostra un comportamento simile a quello con le nanocupole di oro: abbiamo trovato una soglia laser a 1.6 mJ/cm^2 , con anche una simile FWHM.
In questo caso, questo fascio è diretto a 65° e presenta una divergenza angolare di circa 14° .

Inoltre, abbiamo studiato anche un nanolaser con un mezzo di guadagno a stato solido per l'interesse nelle applicazioni e nell'integrazione di dispositivi su chip.
Il colorante laser Styryl 9M è incorporato in un film di PMMA e accoppiato con un reticolo di nanocupole di oro.
Questo sistema a stato solido presenta un'emissione amplificata a 795 nm con una soglia di 1.2 mJ/cm^2 e una FWHM di circa 26 nm.
Questo campione manifesta anche un'emissione direzionale a 24° con una divergenza angolare di 6° .
Ulteriori ricerche hanno dimostrato la possibilità di eliminare il substrato, creando un dispositivo autoportante, che presenta un'emissione amplificata con proprietà simili a quella con il substrato.

Infine, per discernere la natura spontanea o stimolata dell'emissione, abbiamo misurato la coerenza del raggio emesso.
Tramite un interferometro di Michelson dedicato, la lunghezza di coerenza è stimata a circa 29 um per i reticoli di nanocupole d'oro sopra la soglia.
Questo risultato ha dimostrato che è possibile ottenere un'emissione coerente, a bassa soglia e altamente direzionale, accoppiando un colorante fluorescente adeguato con una cavità virtuale opportunamente progettata e realizzata da una reticolo ordinato di nanostrutture plasmoniche.

EPrint type:Ph.D. thesis
Tutor:Cesca, Tiziana
Supervisor:Mattei, Giovanni
Ph.D. course:Ciclo 32 > Corsi 32 > SCIENZA E INGEGNERIA DEI MATERIALI E DELLE NANOSTRUTTURE
Data di deposito della tesi:02 December 2019
Anno di Pubblicazione:02 December 2019
Key Words:laser nanometrici litografia a nanosfere reticolo plasmonico plasmoni emissione amplificata Nanolaser NanoSphere Lithography plasmonic array plasmon amplified emission
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:12365
Depositato il:10 Feb 2021 18:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Richard P Feynman. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science magazine, 1960. 1 Cerca con Google

[2] S. A. Maier. Plasmonics: fundamental and application. Springer, 2007. 1, 5, 15 Cerca con Google

[3] R Gordon Gould. The laser, light amplification by stimulated emission of radiation. In The Ann Arbor Conference on Optical Pumping, the University of Michigan, volume 15, page 128, 1959. 1, 5 Cerca con Google

[4] TH Maiman. Stimulated emission of radiation in ruby. Nature, 187:493–494, 1960. 1 Cerca con Google

[5] Ifor David Williams Samuel and Graham Alexander Turnbull. Organic semiconductor lasers. Chemical Reviews, 107(4):1272–1295, 2007. 1 Cerca con Google

[6] JM Pitarke, VM Silkin, EV Chulkov, and PM Echenique. Theory of surface plasmons and surface-plasmon polaritons. Reports on progress in physics, 70(1):1, 2006. 2 Cerca con Google

[7] David J Bergman and Mark I Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physical review letters, 90(2):027402, 2003. 2 Cerca con Google

[8] Martin T Hill, Yok-Siang Oei, Barry Smalbrugge, Youcai Zhu, Tjibbe De Vries, Peter J Van Veldhoven, Frank WM Van Otten, Tom J Eijkemans, Jarosław P Turkiewicz, Huug De Waardt, et al. Lasing in metallic-coated nanocavities. Nature Photonics, 1(10):589, 2007. 2 Cerca con Google

[9] MA Noginov, G Zhu, AM Belgrave, Reuben Bakker, VM Shalaev, EE Narimanov, S Stout, E Herz, T Suteewong, and U Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460(7259):1110–1112, 2009. 2 Cerca con Google

[10] Rupert F Oulton, Volker J Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal, and Xiang Zhang. Plasmon lasers at deep subwavelength scale. Nature, 461(7264):629, 2009. Cerca con Google

[11] Ren-Min Ma, Rupert F Oulton, Volker J Sorger, Guy Bartal, and Xiang Zhang. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature materials, 10(2):110, 2011. Cerca con Google

[12] Jae Yong Suh, Chul Hoon Kim, Wei Zhou, Mark D Huntington, Dick T Co, Michael R Wasielewski, and Teri W Odom. Plasmonic bowtie nanolaser arrays. Nano Letters, 12(11):5769–5774, 2012. 2, 27 Cerca con Google

[13] Yu-Jung Lu, Chun-Yuan Wang, Jisun Kim, Hung-Ying Chen, Ming-Yen Lu, Yen-Chun Chen,Wen-Hao Chang, Lih-Juann Chen, Mark I Stockman, Chih-Kang Shih, et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano letters, 14(8):4381–4388, 2014. Cerca con Google

[14] Ekaterina I Galanzha, Robert Weingold, Dmitry A Nedosekin, Mustafa Sarimollaoglu, Jacqueline Nolan, Walter Harrington, Alexander S Kuchyanov, Roman G Parkhomenko, Fumiya Watanabe, Zeid Nima, et al. Spaser as a biological probe. Nature communications, 8:15528, 2017. Cerca con Google

[15] Kun-Ching Shen, Chen-Ta Ku, Chiieh Hsieh, Hao-Chung Kuo, Yuh-Jen Cheng, and Din Ping Tsai. Deep-ultraviolet hyperbolic metacavity laser. Advanced Materials, 30 (21):1706918, 2018. 2 Cerca con Google

[16] Alastair D Humphrey and William L Barnes. Plasmonic surface lattice resonances on arrays of different lattice symmetry. Physical Review B, 90(7):075404, 2014. 2, 26 Cerca con Google

[17] Nikolay I Zheludev, SL Prosvirnin, N Papasimakis, and VA Fedotov. Lasing spaser Nature Photonics, 2(6):351, 2008. 2, 27 Cerca con Google

[18] Frerik van Beijnum, Peter J van Veldhoven, Erik Jan Geluk, Michiel JA de Dood, W Gert, and Martin P van Exter. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 110(20):206802, 2013. 2 Cerca con Google

[19] Wei Zhou, Montacer Dridi, Jae Yong Suh, Chul Hoon Kim, Dick T Co, Michael R Wasielewski, George C Schatz, Teri W Odom, et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 8(7):506–511, 2013. 2, 27, 77 Cerca con Google

[20] Ran Li, Danqing Wang, Jun Guan, Weijia Wang, Xianyu Ao, George C Schatz, Richard Schaller, and TeriWOdom. Plasmon nanolasing with aluminum nanoparticle arrays. JOSA B, 36(7):E104–E111, 2019. 2 Cerca con Google

[21] Claire Deeb, Zhi Guo, Ankun Yang, Libai Huang, and Teri W Odom. Correlating nanoscopic energy transfer and far-field emission to unravel lasing dynamics in plasmonic nanocavity arrays. Nano letters, 18(2):1454–1459, 2018. 2 Cerca con Google

[22] Thang B Hoang, Gleb M Akselrod, Ankun Yang, Teri W Odom, and Maiken H Mikkelsen. Millimeter-scale spatial coherence from a plasmon laser. Nano letters, 17(11):6690–6695, 2017. 2 Cerca con Google

[23] Weijia Wang, Nicolas Watkins, Ankun Yang, Richard D Schaller, George C Schatz, and Teri W Odom. Ultrafast dynamics of lattice plasmon lasers. The journal of physical chemistry letters, 2019. 2 Cerca con Google

[24] DanqingWang, Marc R Bourgeois,Won-Kyu Lee, Ran Li, Dhara Trivedi, Michael P Knudson,WeijiaWang, George C Schatz, and TeriWOdom. Stretchable nanolasing from hybrid quadrupole plasmons. Nano letters, 18(7):4549–4555, 2018. 2 Cerca con Google

[25] Ankun Yang, Thang B Hoang, Montacer Dridi, Claire Deeb, Maiken H Mikkelsen, George C Schatz, and Teri W Odom. Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications, 6, 2015. 2 Cerca con Google

[26] Danqing Wang, Ankun Yang, Weijia Wang, Yi Hua, Richard D Schaller, George C Schatz, and Teri W Odom. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature nanotechnology, 12(9):889, 2017. 2 Cerca con Google

[27] TK Hakala, HT Rekola, AI Väkeväinen, J-P Martikainen, M Neˇcada, AJ Moilanen, and P Törmä. Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nature communications, 8:13687, 2017. 2, 77 Cerca con Google

[28] Heikki T Rekola, Tommi K Hakala, and Päivi Törmä. Lasing in small-sized aluminum nanoparticle arrays. In Metamaterials, Metadevices, and Metasystems 2017, volume 10343, page 103432E. International Society for Optics and Photonics, 2017. 2 Cerca con Google

[29] Sara Pourjamal, Tommi K Hakala, Marek Neˇcada, Francisco Freire-Fernàndez, Mikko Kataja, Heikki Rekola, Jani-Petri Martikainen, Päivi Törmä, and Sebastiaan van Dijken. Lasing in ni nanodisk arrays. ACS nano, 13(5):5686–5692, 2019. 2 Cerca con Google

[30] Rui Guo, Marek Neˇcada, Tommi K Hakala, Aaro I Väkeväinen, and Päivi Törmä. Lasing at k points of a honeycomb plasmonic lattice. Physical review letters, 122(1): 013901, 2019. 2 Cerca con Google

[31] Heikki T Rekola, Tommi K Hakala, and Päivi Törmä. One-dimensional plasmonic nanoparticle chain lasers. ACS Photonics, 5(5):1822–1826, 2018. 2 Cerca con Google

[32] Konstantinos S Daskalakis, Aaro I Väkeväinen, Jani-Petri Martikainen, Tommi K Hakala, and Päivi Törmä. Ultrafast pulse generation in an organic nanoparticlearray laser. Nano letters, 18(4):2658–2665, 2018. 2 Cerca con Google

[33] Päivi Törmä. Nanolasing: Multimode superlattice arrays. Nature nanotechnology, 12(9):838, 2017. 2 Cerca con Google

[34] A Hinke Schokker, Floor van Riggelen, Yakir Hadad, Andrea Alù, and A Femius Koenderink. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices. Physical Review B, 95(8):085409, 2017. 2, 77 Cerca con Google

[35] Ke Guo and A Femius Koenderink. Spatial intensity distribution in plasmonic particle array lasers. Physical Review Applied, 11(2):024025, 2019. Cerca con Google

[36] Ke Guo, Sachin Kasture, and A Femius Koenderink. Plasmon antenna array “patchwork” lasers—towards low etendue, speckle free light sources. OSA Continuum, 2(6):1982–1997, 2019. Cerca con Google

[37] A Femius Koenderink. Plasmon nanocavity array lasers: Cooperating over losses and competing for gain. ACS nano, 13(7):7377–7382, 2019. 2 Cerca con Google

[38] A Hinke Schokker and A Femius Koenderink. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica, 3(7):686–693, 2016. 2 Cerca con Google

[39] Hsin-Yu Wu, Longju Liu, Meng Lu, and Brian T Cunningham. Lasing emission from plasmonic nanodome arrays. Advanced Optical Materials, 2016. 2 Cerca con Google

[40] John C Hulteen and Richard P Van Duyne. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(3):1553–1558, 1995. 3 Cerca con Google

[41] Christy L Haynes and Richard P Van Duyne. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B, 105(24):5599–5611, 2001. 3, 31 Cerca con Google

[42] O Svelto. Principles of Lasers. Heidelberg: Springer, 2010. 5, 88 Cerca con Google

[43] Anthony E Siegman. Lasers, volume 37. Mill Valley, CA, 1986. 5, 9, 28, 77, 88 Cerca con Google

[44] Albert Einstein. Zur quantentheorie der strahlung (on the quantum theory of radiation). Physikalische Zeitschrift, 18, 1917. 5 Cerca con Google

[45] E. Hecht. Optics. Pearson education. Addison-Wesley, 2002. ISBN 9780321188786. URL https://books.google.it/books?id=T3ofAQAAMAAJ. 13 Vai! Cerca con Google

[46] M Vollmer and U Kreibig. Optical properties of metal clusters. Springer Ser. Mat. Sci, 1995. 15 Cerca con Google

[47] RobertW. Boyd. Nonlinear Optics. Academic Press, 2003. 16 Cerca con Google

[48] Peter B Johnson and R-W_ Christy. Optical constants of the noble metals. Physical Review B, 6(12):4370, 1972. 17, 18, 19 Cerca con Google

[49] Tatsuya Kashiwa and Ichiro Fukai. A treatment by the fd-td method of the dispersive characteristics associated with electronic polarization. Microwave and Optical Technology Letters, 3(6):203–205, 1990. 17 Cerca con Google

[50] F Hao and P Nordlander. Efficient dielectric function for fdtd simulation of the optical properties of silver and gold nanoparticles. Chemical Physics Letters, 446(1): 115–118, 2007. 18 Cerca con Google

[51] Gustav Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen (contributions to the optics of diffusing media). Annalen der Physik, 330(3):377–445, 1908. 19, 22, 35, 57 Cerca con Google

[52] Craig F Bohren and Donald R Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 2008. 21 Cerca con Google

[53] Uwe Kreibig and Michael Vollmer. Optical properties of metal clusters, volume 25. Springer Science & Business Media, 2013. 19 Cerca con Google

[54] R Gans. Fortpflanzung des lichts durch ein inhomogenes medium (propagation of light through a inhomogeneous medium). Annalen der Physik, 352(14):709–736, 1915. 19 Cerca con Google

[55] John David Jackson. Classical electrodynamics. Wiley, 1999. 21 Cerca con Google

[56] M Meier and A Wokaun. Enhanced fields on large metal particles: dynamic depolarization. Optics Letters, 8(11):581–583, 1983. 21 Cerca con Google

[57] Alexander Moroz. Depolarization field of spheroidal particles. JOSA B, 26(3):517–527, 2009. 21 Cerca con Google

[58] Th Kokkinakis and K Alexopoulos. Observation of radiative decay of surface plasmons in small silver particles. Physical Review Letters, 28(25):1632, 1972. 22 Cerca con Google

[59] Edward Mills Purcell. Spontaneous emission probabilities at radio frequencies. Physical Review, 69:681, 1946. 22 Cerca con Google

[60] Pascal Anger, Palash Bharadwaj, and Lukas Novotny. Enhancement and quenching of single-molecule fluorescence. Physical Review Letters, 96(11):113002, 2006. 22 Cerca con Google

[61] M Meier, A Wokaun, and Paul F Liao. Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the rayleigh limit. JOSA B, 2(6): 931–949, 1985. 23 Cerca con Google

[62] C Ropers, DJ Park, G Stibenz, G Steinmeyer, J Kim, DS Kim, and C Lienau. Femtosecond light transmission and subradiant damping in plasmonic crystals. Physical review letters, 94(11):113901, 2005. 23 Cerca con Google

[63] FJ García De Abajo. Colloquium: Light scattering by particle and hole arrays. Reviews of Modern Physics, 79(4):1267, 2007. 23 Cerca con Google

[64] Robert Williams Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 18(1):269, 1902. 23 Cerca con Google

[65] Lord Rayleigh. Iii. note on the remarkable case of diffraction spectra described by prof. wood. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(79):60–65, 1907. 23 Cerca con Google

[66] Ugo Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld’s waves). JOSA, 31(3):213–222, 1941. 23 Cerca con Google

[67] Mohammad Ramezani, Gabriel Lozano, Marc A Verschuuren, and Jaime Gómez-Rivas. Modified emission of extended light emitting layers by selective coupling to collective lattice resonances. Physical Review B, 94(12):125406, 2016. 23 Cerca con Google

[68] Ugo Fano. Effects of configuration interaction on intensities and phase shifts. Physical Review, 124(6):1866, 1961. 25 Cerca con Google

[69] Shengli Zou, Nicolas Janel, and George C Schatz. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of chemical physics, 120(23):10871–10875, 2004. 25 Cerca con Google

[70] Uri Laor and George C Schatz. The role of surface roughness in surface enhanced raman spectroscopy (sers): the importance of multiple plasmon resonances. Chemical Physics Letters, 82(3):566–570, 1981. 25 Cerca con Google

[71] SRK Rodriguez, MC Schaafsma, A Berrier, and J Gómez Rivas. Collective resonances in plasmonic crystals: Size matters. Physica B: Condensed Matter, 407(20): 4081–4085, 2012. 26 Cerca con Google

[72] Dhara J Trivedi, Danqing Wang, Teri W Odom, and George C Schatz. Model for describing plasmonic nanolasers using maxwell-liouville equations with finitedifference time-domain calculations. Physical Review A, 96(5):053825, 2017. 27, 30 Cerca con Google

[73] Themistoklis PH Sidiropoulos, Robert Röder, Sebastian Geburt, Ortwin Hess, Stefan A Maier, Carsten Ronning, and Rupert F Oulton. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nature Physics, 10(11):870, 2014. 27 Cerca con Google

[74] Shih-Hui Chang and Allen Taflove. Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. Optics express, 12(16):3827–3833, 2004. 28 Cerca con Google

[75] GabrielaMSlavcheva, JohnMArnold, and RichardWZiolkowski. Fdtd simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities. IEEE Journal of selected topics in quantum electronics, 10(5):1052–1062, 2004. Cerca con Google

[76] Yingyan Huang and Seng-Tiong Ho. Computational model of solid-state, molecular, or atomic media for fdtd simulation based on a multi-level multi-electron system governed by pauli exclusion and fermi-dirac thermalization with application to semiconductor photonics. Optics express, 14(8):3569–3587, 2006. Cerca con Google

[77] Sebastian Wuestner, Andreas Pusch, Kosmas L Tsakmakidis, Joachim M Hamm, and Ortwin Hess. Gain and plasmon dynamics in active negative-index metamaterials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1950):3525–3550, 2011. Cerca con Google

[78] Andreas Pusch, Sebastian Wuestner, Joachim M Hamm, Kosmas L Tsakmakidis, and Ortwin Hess. Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A maxwell-bloch langevin approach. ACS nano, 6(3):2420–2431, 2012. Cerca con Google

[79] Montacer Dridi and George C Schatz. Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain. JOSA B, 30 (11):2791–2797, 2013. 28, 29 Cerca con Google

[80] JP Martikainen, TK Hakala, HT Rekola, and P Törmä. Modelling lasing in plasmonic nanoparticle arrays. Journal of Optics, 18(2):024006, 2016. 28 Cerca con Google

[81] Allen Taflove and Susan C Hagness. Computational electrodynamics. Artech House Publishers, 2000. 28, 61 Cerca con Google

[82] Jan Trieschmann, Shumin Xiao, Ludmila J Prokopeva, Vladimir P Drachev, and Alexander V Kildishev. Experimental retrieval of the kinetic parameters of a dye in a solid film. Optics Express, 19(19):18253–18259, 2011. 28 Cerca con Google

[83] Klaus Böhringer and Ortwin Hess. A full-time-domain approach to spatiotemporal dynamics of semiconductor lasers. i. theoretical formulation. Progress in Quantum Electronics, 32(5):159–246, 2008. Cerca con Google

[84] Sebastian Wuestner, Andreas Pusch, Kosmas L Tsakmakidis, Joachim M Hamm, and Ortwin Hess. Overcoming losses with gain in a negative refractive index metamaterial. Physical Review Letters, 105(12):127401, 2010. 28 Cerca con Google

[85] JA Rogers and RG Nuzzo. Nanostructured plasmonic sensors. Chem Rev, 108(2): 494521, 2008. 31 Cerca con Google

[86] Huaqing Li and Nianqiang Wu. A large-area nanoscale gold hemisphere pattern as a nanoelectrode array. Nanotechnology, 19(27):275301, 2008. 31 Cerca con Google

[87] J Rybczynski, U Ebels, and M Giersig. Large-scale, 2d arrays of magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219(1):1–6, 2003. 32 Cerca con Google

[88] Boris Kalinic, Tiziana Cesca, Carlo Scian, Niccoló Michieli, Ionut Gabriel Balasa, Enrico Trave, and Giovanni Mattei. Emission efficiency enhancement of er3+ ions in silica by near-field coupling with plasmonic and pre-plasmonic nanostructures. physica status solidi (a), 215(3):1700437, 2018. 32 Cerca con Google

[89] Valentina Russo, Tiziana Cesca, Carlo Scian, Davide Silvestri, Margherita Morpurgo, Giovanni Mattei, et al. Gold–silver alloy semi-nanoshell arrays for label-free plasmonic biosensors. Nanoscale, 9(28):10117–10125, 2017. 32 Cerca con Google

[90] Michael Christian Gwinner, Elisabeth Koroknay, Liwei Fu, Piotr Patoka, Witold Kandulski, Michael Giersig, and Harald Giessen. Periodic large-area metallic splitring resonator metamaterial fabrication based on shadow nanosphere lithography. Small, 5(3):400–406, 2009. 32 Cerca con Google

[91] Zuzanna A Lewicka, Yang Li, Arash Bohloul, W Yu William, and Vicki L Colvin. Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials. Nanotechnology, 24(11):115303, 2013. 32 Cerca con Google

[92] George Gabriel Stokes. On the effect of the internal friction of fluids on the motion of pendulums, volume 9. Pitt Press Cambridge, 1851. 33 Cerca con Google

[93] Nikolai D Denkov. Two-dimensional crystallization. Nature, 361(6407):26, 1993. 34 Cerca con Google

[94] Seyed Milad Mahpeykar, Qiuyang Xiong, Jue Wei, Lingju Meng, Brandon K Russell, Peter Hermansen, Akshay V Singhal, and Xihua Wang. Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management. Advanced Optical Materials, 4(7):1106–1114, 2016. 36 Cerca con Google

[95] Takashi Yamasaki and Tetsuo Tsutsui. Fabrication and optical properties of twodimensional ordered arrays of silica microspheres. Japanese journal of applied physics, 38(10R):5916, 1999. 37, 38 Cerca con Google

[96] StephenMRossnagel, Jerome J Cuomo, andWilliam DicksonWestwood. Handbook of plasma processing technology: fundamentals, etching, deposition, and surface interactions. William Andrew, 1990. 38 Cerca con Google

[97] Donald M Mattox. Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010. 40 Cerca con Google

[98] Fathima S Ameer, Shilpa Varahagiri, DonaldWBenza, Daniel RWillett, YimeiWen, Fenglin Wang, George Chumanov, and Jeffrey N Anker. Tuning localized surface plasmon resonance wavelengths of silver nanoparticles by mechanical deformation. The Journal of Physical Chemistry C, 120(37):20886–20895, 2016. 46 Cerca con Google

[99] Jihad René Albani. Structure and dynamics of macromolecules: absorption and fluorescence studies. Elsevier, 2011. 48 Cerca con Google

[100] HD Försterling and H Kuhn. Physikalische Chemie in Experimenten, Verlag Chemie. Weinheim, 1971. 48 Cerca con Google

[101] Joseph T Verdeyen. Laser Electronics. 3ed. Prentice Hall, 1995. 49, 50 Cerca con Google

[102] IP Kaminow, LW Stulz, EA Chandross, and CA Pryde. Photobleaching of organic laser dyes in solid matrices. Applied Optics, 11(7):1563–1567, 1972. 51, 74 Cerca con Google

[103] T Bernas, M ZarEBski, RR Cook, and JW Dobrucki. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. Journal of Microscopy, 215(3):281–296, 2004. 51 Cerca con Google

[104] Michelle S Mackey andWade N Sisk. Photostability of pyrromethene 567 laser dye solutions via photoluminescence measurements. Dyes and Pigments, 51(2):79–85, 2001. 51 Cerca con Google

[105] James Pawley. Handbook of biological confocal microscopy. Springer Science & Business Media, 2010. 51 Cerca con Google

[106] Carl Zeiss Microscopy GmbH. Zeiss geminisem, 2019. URL https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes/geminisem.html. Available on line. 54 Vai! Cerca con Google

[107] Bruker Corporation. Tapping mode afm, 2019. URL https://blog.brukerafmprobes.com/guide-to-spm-and-afm-modes/tapping-mode-afm/. Available on line. 54 Vai! Cerca con Google

[108] David Neˇcas and Petr Klapetek. Gwyddion: an open-source software for spm data analysis. Open Physics, 10(1):181–188, 2012. 54 Cerca con Google

[109] James A Lock and Gérard Gouesbet. Generalized lorenz–mie theory and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11):800–807, 2009. 57 Cerca con Google

[110] G Pellegrini and G Mattei. High-performance magneto-optic surface plasmon resonance sensor design: An optimization approach. Plasmonics, 9(6):1457–1462, 2014. 57 Cerca con Google

[111] Charalambos C Katsidis and Dimitrios I Siapkas. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied optics, 41(19):3978–3987, 2002. 57 Cerca con Google

[112] Peter P Silvester and Ronald L Ferrari. Finite elements for electrical engineers. Cambridge university press, 1996. 57 Cerca con Google

[113] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equations with pardiso. Future Generation Computer Systems, 20(3):475–487, 2004. 57 Cerca con Google

[114] D Cassagne, C Jouanin, and D Bertho. Hexagonal photonic-band-gap structures. Physical review B, 53(11):7134, 1996. 65 Cerca con Google

[115] Lukas Novotny and Bert Hecht. Principles of nano-optics. Cambridge University Press, 2012. 65 Cerca con Google

[116] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Quantum mechanics: non-relativistic theory, volume 3. Elsevier, 2013. 68 Cerca con Google

[117] Franco Laeri, Ferdi Schüth, Ulrich Simon, and Michael Wark. Host-Guest-Systems Based on Nanoporous Crystals. John Wiley & Sons, 2006. 74, 75 Cerca con Google

[118] Frank J Duarte, Paul Kelley, LloydWHillman, and Peter F Liao. Dye laser principles: with applications. Academic Press, 1990. 77 Cerca con Google

[119] Uri Ganiel, A Hardy, G Neumann, and D Treves. Amplified spontaneous emission and signal amplification in dye-laser systems. IEEE Journal of Quantum Electronics, 11(11):881–892, 1975. 77 Cerca con Google

[120] Otto Loebich. The optical properties of gold. Gold Bulletin, 5(1):2–10, 1972. 84 Cerca con Google

[121] Mark Csele. Fundamentals of light sources and lasers. Wiley Online Library, 2004. 88 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record