Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Moret, Beatrice (2019) Shaping the brain with electricity. Modulating cortical excitability and plasticity with transcranial random noise stimulation. [Ph.D. thesis]

Full text disponibile come:

PDF Document (Tesi dottorato) - Accepted Version

Abstract (italian or english)

The development of new technologies, such as non-invasive brain stimulation (NIBS) methods, has become a new frontier in cognitive neuroscience.
Transcranial electrical stimulation (tES) has recently established its role as a promising tool for influencing brain functions, and even for enhancing cognitive, perceptual or motor performances, with potential benefits for pathological conditions. Interest has raised in transcranial random noise stimulation (tRNS), which consists in the application of alternating current over the cortex at random frequencies.
This thesis concentrates on the investigation of tRNS as a technique to boost brain functioning and to promote plastic effects. In particular, the focus is to investigate the neural plasticity of the human brain using tRNS independently and combined with behavioural training.
The first study concentrates on tRNS effect of the high-frequency band on primary motor cortex (M1) excitability. The results suggest that a wide range, compared to the reduced frequency bands, is required to induce a cortical excitability increase.
The second study describes an innovative experimental protocol consisting of tRNS coupled with perceptual training aimed to improve visual function in patients with amblyopia. By combining eight sessions of hf-tRNS with a lateral masking training, a general improvement in contrast sensitivity has been obtained and tRNS has been shown useful to improve visual acuity compared to sham stimulation.
The third study involved, in addition to tRNS, an exergame training (physical exercise combined with a videogame) chosen as a potential training tool for healthy young adults to improve the motor response speed and the response time when inhibition is required. The protocol consists of eight sessions of motor and cognitive training associated with the activation of the prefrontal cortex activation (PFC), the target area. Interestingly, the exergame training led to an improvement of simple reaction time, while the tRNS showed its efficacy in a higher demanding task, the Go/NoGo, with faster performance in go trials.
This manuscript aims to contribute to the understanding of the mechanisms of action of tRNS in modulating neural excitability and boosting brain plasticity and offers new insights into the combined approach of tRNS and behavioural training.
Future directions include creating well-calibrated protocols exploiting NIBS and behavioural training, in order to improve, compensate and recovery our abilities toward new perspective of treatment.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Campana, Gianluca
Supervisor:Palazzi, Claudio
Data di deposito della tesi:07 December 2019
Anno di Pubblicazione:02 December 2019
Key Words:transcranial random noise stimulation; brain plasticity; perceptual training; cognitive training
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/01 Psicologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:12778
Depositato il:25 Jan 2021 15:13
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aaen-Stockdale, C., & Hess, R. F. (2008). The amblyopic deficit for global motion is spatial scale invariant. Vision Research, 48(19), 1965–1971. Cerca con Google

Achtman, R. L., Green, C. S., & Bavelier, D. (2008). Video games as a tool to train visual skills. Restorative Neurology and Neuroscience, 26(4–5), 435–446. Cerca con Google

Ackerman, P. L., Kanfer, R., & Calderwood, C. (2010). Use it or lose it? Wii brain exercise practice and reading for domain knowledge. Psychology and Aging, 25(4), 753–766. Cerca con Google

Ahissar, M., & Hochstein, S. (1996). Learning pop-out detection: Specificities to stimulus characteristics. Vision Research, 36(21), 3487–3500. Cerca con Google

Alagapan, S., Schmidt, S. L., Lefebvre, J., Hadar, E., Shin, H. W., & Frӧhlich, F. (2016). Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent. PLOS Biology, 14(3), e1002424. Cerca con Google

Ambrus, G. G., Paulus, W., & Antal, A. (2010). Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 121(11), 1908–1914. Cerca con Google

Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. NeuroReport, 12(16), 3553–3555. Cerca con Google

Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26(9), 2687–2691. Cerca con Google

Ardolino, G., Bossi, B., Barbieri, S., & Priori, A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology, 568(2), 653–663. Cerca con Google

Astle, A. T., McGraw, P. V., & Webb, B. S. (2011). Can Human Amblyopia be Treated in Adulthood? Strabismus, 19(3), 99–109. Cerca con Google

Bach, M. (1996). The Freiburg Visual Acuity Test - Automatic Measurement of Visual Acuity. Optometry and Vision Science, 73(1), 49–53. Cerca con Google

Bächinger, M., Zerbi, V., Moisa, M., Polania, R., Liu, Q., Mantini, D., … Wenderoth, N. (2017). Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 37(18), 4766–4777. Cerca con Google

Barker, A. T. (1999). An introduction to the basic principles of magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl, 51, 1–21. Cerca con Google

Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-Invasive Magnetic Stimulation of Human Motor Cortex. The Lancet, 325(8437), 1106–1107. Cerca con Google

Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777. Cerca con Google

Basser, P. J., & Roth, B. J. (1991). Stimulation of a myelinated nerve axon by electromagnetic induction. Medical & Biological Engineering & Computing, 29(3), 261–268. Cerca con Google

Battleday, R. M., Muller, T., Clayton, M. S., & Cohen Kadosh, R. (2014). Mapping the Mechanisms of Transcranial Alternating Current Stimulation: A Pathway from Network Effects to Cognition. Frontiers in Psychiatry, 5, 162. Cerca con Google

Bear, M. F., Cooper, L. N., & Ebner, F. F. (1987). A physiological basis for a theory of synapse modification. Science, 237(4810), 42–48. Cerca con Google

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects. Journal of Cognitive Neuroscience, 15(7), 991–1001. Cerca con Google

Bedny, M., Konkle, T., Pelphrey, K., Saxe, R., & Pascual-Leone, A. (2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20(21), 1900–1906. Cerca con Google

Beeli, G., Casutt, G., Baumgartner, T., & Jäncke, L. (2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4(1), 33. Cerca con Google

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, 57(1), 289–300. Cerca con Google

Benjamini, Y., & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. The Annals of Statistics The Annals of Statistics, 29(4), 1165–1188. Cerca con Google

Berardi, N., Pizzorusso, T., Ratto, G. M., & Maffei, L. (2003). Molecular basis of plasticity in the visual cortex. Trends in Neurosciences, 26(7), 369–378. Cerca con Google

Best, J. R. (2013). Exergaming in Youth. Zeitschrift Für Psychologie, 221(2), 72–78. Cerca con Google

Bikson, M., Datta, A., & Elwassif, M. (2009). Establishing safety limits for transcranial direct current stimulation. Clinical Neurophysiology, 120(6), 1033–1034. Cerca con Google

Bliss, T. V. P., & Cooke, S. F. (2011). Long-term potentiation and long-term depression: a clinical perspective. Clinics , 66 , 3–17. Cerca con Google

Boggio, P. S., Bermpohl, F., Vergara, A. O., Muniz, A. L. C. R., Nahas, F. H., Leme, P. B., … Fregni, F. (2007). Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression. Journal of Affective Disorders, 101(1–3), 91–98. Cerca con Google

Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do Action Video Games Improve Perception and Cognition? Frontiers in Psychology, 2, 226. Cerca con Google

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. Cerca con Google

Boros, K., Poreisz, C., Münchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. European Journal of Neuroscience, 27(5), 1292–1300. Cerca con Google

Brem, A. K., Almquist, J. N. F., Mansfield, K., Plessow, F., Sella, F., Santarnecchi, E., … Erdogmus, D. (2018). Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia, 118, 107–114. Cerca con Google

Brevet-Aeby, C., Brunelin, J., Iceta, S., Padovan, C., & Poulet, E. (2016). Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neuroscience and Biobehavioral Reviews, 71, 112–134. Cerca con Google

Brevet-Aeby, C., Mondino, M., Poulet, E., & Brunelin, J. (2019). Three repeated sessions of transcranial random noise stimulation (tRNS) leads to long-term effects on reaction time in the Go/No Go task. Neurophysiologie Clinique, 49(1), 27–32. Cerca con Google

Brodmann K. (1909). Vergleichende Lokalisationslehre der Grobhirnrinde. Cerca con Google

Camilleri, R., Pavan, A., & Campana, G. (2016). The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Neuropsychologia Journal, 89, 225–231. Cerca con Google

Camilleri, R., Pavan, A., Ghin, F., & Campana, G. (2014). Improving myopia via perceptual learning: is training with lateral masking the only (or the most) efficacious technique? Attention, Perception, and Psychophysics, 76(8), 2485–2494. Cerca con Google

Campana, G., Camilleri, R., Moret, B., Ghin, F., & Pavan, A. (2016). Opposite effects of high-and low-frequency transcranial random noise stimulation probed with visual motion adaptation. Scientific Reports, 6, 38919. Cerca con Google

Campana, G., Camilleri, R., Pavan, A., Veronese, A., & Lo Giudice, G. (2014). Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): A pilot study. Frontiers in in psychology, 5,1402. Cerca con Google

Campana, G., & Casco, C. (2003). Learning in combined-feature search: Specificity to orientation. Perception & Psychophysics, 65(8), 1197–1207. Cerca con Google

Caporale, N., & Dan, Y. (2008). Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annual Review of Neuroscience, 31(1), 25–46. Cerca con Google

Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., … Walsh, V. (2013). Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe. Journal of Neuroscience, 33(37), 14899–14907. Cerca con Google

Cappon, D., D’ostilio, K., Garraux, G., Rothwell, J., & Bisiacchi, P. (2016). Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Brain Stimulation, 9(4), 518–524. Cerca con Google

Casco, C., Campana, G., & Gidiuli, O. (2001). Stimulus-specific dynamics of learning in conjunction search tasks These practice effects are specific for. Visual Cognition, 8(2), 145–162. Cerca con Google

Casco, C., Campana, G., Grieco, A., & Fuggetta, G. (2004). Perceptual learning modulates electrophysiological and psychophysical response to visual texture segmentation in humans. Neuroscience Letters, 371(1), 18–23. Cerca con Google

Casco, C., Guzzon, D., Moise, M., Vecchies, A., Testa, T., & Pavan, A. (2014). Specificity and generalization of perceptual learning in low myopia. Restorative Neurology and Neuroscience, 32(5), 639–653. Cerca con Google

Castaño-Castaño, S., Garcia-Moll, A., Morales-Navas, M., Fernandez, E., Sanchez-Santed, F., & Nieto-Escamez, F. (2017). Transcranial direct current stimulation improves visual acuity in amblyopic Long-Evans rats. Brain Research, 1657, 340–346. Cerca con Google

Chaieb, L., Antal, A., & Paulus, W. (2015). Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Frontiers in Neuroscience, 9, 1–9. Cerca con Google

Chaieb, L., Kovacs, G., Cziraki, C., Greenlee, M., Paulus, W., & Antal, A. (2009). Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Experimental Brain Research, 198(4), 439–444. Cerca con Google

Chaieb, L., Paulus, W., & Antal, A. (2011). Evaluating Aftereffects of Short-Duration Transcranial Random Noise Stimulation on Cortical Excitability. Neural Plasticity, 5. Cerca con Google

Chan, H. N., Alonzo, A., Martin, D. M., Player, M., Mitchell, P. B., Sachdev, P., & Loo, C. K. (2012). Treatment of major depressive disorder by transcranial random noise stimulation: Case report of a novel treatment. Biological Psychiatry, 72(4), e9–e10. Cerca con Google

Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. The Journal of Physiology, 586(23), 5717–5725. Cerca con Google

Chen, R., Yung, D., & Li, J.-Y. (2003). Organization of Ipsilateral Excitatory and Inhibitory Pathways in the Human Motor Cortex. Journal of Neurophysiology, 89(3), 1256–1264. Cerca con Google

Chung, S. T. L., Li, R. W., & Levi, D. M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research, 46, 3853–3861. Cerca con Google

Cieslik, E. C., Zilles, K., Caspers, S., Roski, C., Kellermann, T. S., Jakobs, O., … Eickhoff, S. B. (2013). Is There “One” DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation. Cerebral Cortex, 23(11), 2677–2689. Cerca con Google

Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1), 18–41. Cerca con Google

Ciuffreda, K., Levi, D. M., & Selenow, A. (1991). Amblyopia: Basic and clinical aspects. Butterworth-Heinemann. Cerca con Google

Claes, L., Stamberger, H., Van de Heyning, P., De Ridder, D., & Vanneste, S. (2014). Auditory Cortex tACS and tRNS for Tinnitus: Single versus Multiple Sessions. Neural Plasticity, 2014. Cerca con Google

Clavagnier, S., Thompson, B., & Hess, R. F. (2013). Long Lasting Effects of Daily Theta Burst rTMS Sessions in the Human Amblyopic Cortex. Brain Stimulation, 6, 860–867. Cerca con Google

Coles, A. S., Kozak, K., & George, T. P. (2018). A review of brain stimulation methods to treat substance use disorders. The American Journal on Addictions, 27(2), 71–91. Cerca con Google

Contemori, G., Trotter, Y., Cottereau, B. R., & Maniglia, M. (2019). tRNS boosts perceptual learning in peripheral vision. Neuropsychologia, 125, 129–136. Cerca con Google

Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–1673. Cerca con Google

Costigan, M., Scholz, J., & Woolf, C. J. (2009). Neuropathic pain: a maladaptive response of the nervous system to damage. Annual Review of Neuroscience, 32, 1–32. Cerca con Google

Cotter, S. A. (2006). Treatment of Anisometropic Amblyopia in Children with Refractive Correction. Ophthalmology, 113(6), 895–903. Cerca con Google

Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of Executive Functioning in Young and Older Adults: Immediate Training Gains, Transfer, and Long-Term Maintenance. Psychology and Aging, 23(4), 720–730. Cerca con Google

De Giglio, L., De Luca, F., Prosperini, L., Borriello, G., Bianchi, V., Pantano, P., & Pozzilli, C. (2015). A low-cost cognitive rehabilitation with a commercial video game improves sustained attention and executive functions in multiple sclerosis: A pilot study. Neurorehabilitation and Neural Repair, 29(5), 453–461. Cerca con Google

Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M. A. (2016). A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimulation, 9(4), 501–517. Cerca con Google

Di Lazzaro, V., Oliviero, A., Meglio, M., Cioni, B., Tamburrini, G., Tonali, P., & Rothwell, J. C. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology, 111(5), 794–799. Cerca con Google

Di Lazzaro, V., Oliviero, A., Profice, P., Saturno, E., Pilato, F., Insola, A., … Rothwell, J. C. (1998). Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 109(5), 397–401. Cerca con Google

Di Lazzaro, V., Oliviero, A., Saturno, E., Dileone, M., Pilato, F., Nardone, R., … Tonali, P. (2005). Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. The Journal of Physiology, 564(2), 661–668. Cerca con Google

Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Ranieri, F., Ricci, V., … Ziemann, U. (2007). Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clinical Neurophysiology, 118(10), 2207–2214. Cerca con Google

Di Lazzaro, V., Pilato, F., Oliviero, A., Dileone, M., Saturno, E., Mazzone, P., … Rothwell, J. C. (2006). Origin of Facilitation of Motor-Evoked Potentials After Paired Magnetic Stimulation: Direct Recording of Epidural Activity in Conscious Humans. Journal of Neurophysiology, 96(4), 1765–1771. Cerca con Google

Ding, Z., Li, J., Spiegel, D. P., Chen, Z., Chan, L., Luo, G., … Thompson, B. (2016). The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Scientific Reports,6, 19280. Cerca con Google

Eggenberger, P., Theill, N., Holenstein, S., Schumacher, V., & de Bruin, E. D. (2015). Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: A secondary analysis of a 6-month randomized controlled trial with I-year follow-up. Clinical Interventions in Aging, 10, 1711. Cerca con Google

Epelbaum, M., Milleret, C., Buisseret, P., & Duffer, J. L. (1993). The Sensitive Period for Strabismic Amblyopia in Humans. Ophthalmology, 100(3), 323–327. Cerca con Google

Fahle, M., Poggio, T., & Poggio, T.A. (2002). Perceptual learning. MIT Press. Cerca con Google

Fahle, M., Friederici, A. D., & Ungerleider, L. G. (2005). Perceptual learning: specificity versus generalization. Current Opinion in Neurobiology, 15, 154–160. Cerca con Google

Fertonani, A., & Miniussi, C. (2016). Transcranial Electrical Stimulation: What We Know and Do Not Know About Mechanisms. The Neuroscientist, 23(2), 1–15. Cerca con Google

Fertonani, A., & Miniussi, C. (2017). Transcranial electrical stimulation: What we know and do not know about mechanisms. Neuroscientist, 23(2), 109–123. Cerca con Google

Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning. The Journal of Neuroscience, 31(43), 15416–15423. Cerca con Google

Fiorentini, A., & Berardi, N. (1981). Learning in grating waveform discrimination: Specificity for orientation and spatial frequency. Vision Research, 21(7), 1149–1158. Cerca con Google

Flor, H., Nikolajsen, L., & Jensen, T. S. (2006). Phantom limb pain: A case of maladaptive CNS plasticity? Nature Reviews Neuroscience, 7(11), 873. Cerca con Google

Fox, J. (2015). Effect Displays in R for Generalised Linear Models. Journal of Statistical Software, 8(15), 1–9. Cerca con Google

Francis, J. T., Gluckman, B. J., & Schiff, S. J. (2003). Sensitivity of Neurons to Weak Electric Fields. Journal of Neuroscience, 23(19), 7255-7261. Cerca con Google

Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 66(2), 198–204. Cerca con Google

Fröhlich, F., & McCormick, D. A. (2010). Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron, 67(1), 129–143. Cerca con Google

Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. Current Biology, 14(7), 573–578. Cerca con Google

Ghin, F., Pavan, A., Contillo, A., & Mather, G. (2018). The effects of high-frequency transcranial random noise stimulation (hf-tRNS) on global motion processing: An equivalent noise approach. Brain Stimulation, 11(6), 1263–1275. Cerca con Google

Giaschi, D., Chapman, C., Meier, K., Narasimhan, S., & Regan, D. (2015). The effect of occlusion therapy on motion perception deficits in amblyopia. Vision Research, 114, 122–134. Cerca con Google

Gibson, E. J. (1953). Improvement in perceptual judgments as a function of controlled practice or training. Psychological Bulletin, 50(6), 401–431. Cerca con Google

Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363. Cerca con Google

Gladwin, T. E., den Uyl, T. E., Fregni, F. F., & Wiers, R. W. (2012). Enhancement of selective attention by tDCS: Interaction with interference in a Sternberg task. Neuroscience Letters, 512(1), 33–37. Cerca con Google

Gold, J. I., & Shadlen, M. N. (2007). The Neural Basis of Decision Making. Annual Review of Neuroscience, 30(1), 535–574. Cerca con Google

Green, C. S., & Seitz, A. R. (2015). The Impacts of Video Games on Cognition (and How the Government Can Guide the Industry). Policy Insights from the Behavioral and Brain Sciences, 2(1), 101–110. Cerca con Google

Green, C. S., & Bavelier, D. (2008). Exercising your brain: a review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692–701. Cerca con Google

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534. Cerca con Google

Greenwald, M. J., & Parks, M. M. (1999). In Clinical Ophthalmology. Amblyopia. New York: Harper & Row. Cerca con Google

Grier, E. C. (2005). School neuropsychology: A practitioner’s handbook. Psychology in the Schools (Vol. 42). Guilford Press. Cerca con Google

Gugino, L. D., Romero, J. R., Linda, A., Titone, D., Ramirez, M., Pascual-Leone, A., … Shenton, M. E. (2001). Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clinical Neurophysiology (Vol. 112). Cerca con Google

Harrad, R. (1996). Psychophysics of suppression. Eye, 10(2), 270–273. Cerca con Google

Harris, H., Gliksberg, M., & Sagi, D. (2012). Report Generalized Perceptual Learning in the Absence of Sensory Adaptation. Current Biology, 22, 1813–1817. Cerca con Google

Hebb, D. O., & Hebb, D. O. (1949). The organization of behavior (Vol. 65). New York: Wiley. Cerca con Google

Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862. Cerca con Google

Herpich, F., Melnick, M. D., Agosta, S., Huxlin, K. R., Tadin, D., & Battelli, L. (2019). Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. The Journal of Neuroscience, 39(28), 5551–5561. Cerca con Google

Hess, R. F., & Howell, E. R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification. Vision Research, 17(9), 1049–1055. Cerca con Google

Hess, R. F., Mansouri, B., & Thompson, B. (2011). Restoration of Binocular Vision in Amblyopia. Strabismus, 19(3), 110–118. Cerca con Google

Hess, R. F., Thompson, B., Black, J. M., Machara, G., Zhang, P., Bobier, W. R., & Cooperstock, J. (2012). An iPod treatment of amblyopia: an updated binocular approach. Optometry (St. Louis, Mo.), 83(2), 87–94. Cerca con Google

Ho, K., Taylor, J. L., & Loo, C. K. (2015). Comparison of the Effects of Transcranial Random Noise Stimulation and Transcranial Direct Current Stimulation on Motor Cortical Excitability. The Journal of Ect, 31(1), 67–72. Cerca con Google

Hoshi, E. (2006). Functional specialization within the dorsolateral prefrontal cortex: A review of anatomical and physiological studies of non-human primates. Neuroscience Research, 54(2), 73–84. Cerca con Google

Hua, T., Bao, P., Huang, C. B., Wang, Z., Xu, J., Zhou, Y., & Lu, Z. L. (2010). Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats. Current Biology, 20(10), 887–894. Cerca con Google

Huang, C. B., Zhou, Y., & Lu, Z. L. (2008). Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. PNAS, 105(10), 4068–4073. Cerca con Google

Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta Burst Stimulation of the Human Motor Cortex. Neuron, 45(2), 201–206. Cerca con Google

Huerta, P. T., & Volpe, B. T. (2009). Transcranial magnetic stimulation, synaptic plasticity and network oscillations. Journal of NeuroEngineering and Rehabilitation, 6(1), 7. Cerca con Google

Hughes, S. L., Seymour, R. B., Campbell, R. T., Whitelaw, N., & Bazzarre, T. (2009). Best-Practice Physical Activity Programs for Older Adults: Findings From the National Impact Study. American Journal of Public Health, 99(2), 362–368. Cerca con Google

Hunter, M. A., Coffman, B. A., Gasparovic, C., Calhoun, V. D., Trumbo, M. C., & Clark, V. P. (2015). Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Research, 1594, 92–107. Cerca con Google

Iezzi, E., Conte, A., Suppa, A., Agostino, R., Dinapoli, L., Scontrini, A., & Berardelli, A. (2008). Phasic Voluntary Movements Reverse the Aftereffects of Subsequent Theta-Burst Stimulation in Humans. Journal of Neurophysiology, 100(4), 2070–2076. Cerca con Google

Inukai, Y., Saito, K., Sasaki, R., Tsuiki, S., Miyaguchi, S., Kojima, S., … Onishi, H. (2016). Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Frontiers in Human Neuroscience, 10, 668. Cerca con Google

Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33(3), 253–258. Cerca con Google

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829-6833. Cerca con Google

Jalinous, R. (1991). Technical and practical aspects of magnetic nerve stimulation. Journal of Clinical Neurophysiology, 8(1), 10–25. Cerca con Google

James, W. (2018). The principles of psychology. Personality.Culture.Society, 20(3–4), 27–64. Cerca con Google

Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. Journal of Vision, 9(3), 1–1. Cerca con Google

Jiao, Y., Zhang, Z., Zhang, C., Wang, X., Sakata, K., Lu, B., & Sun, Q. Q. (2011). A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12131–12136. Cerca con Google

Joos, K., De Ridder, D., & Vanneste, S. (2015). The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus. Experimental Brain Research, 233(5), 1433–1440. Cerca con Google

Julkunen, P., Säisänen, L., Hukkanen, T., Danner, N., & Könönen, M. (2012). Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation? Brain Stimulation, 5(4), 526–532. Cerca con Google

Kandel, E. R., Schwartz, J. H. (James H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). McGraw-Hill, Health Professions Division. Cerca con Google

Karalunas, S. L., Nigg, J. T., & Huang-Pollock, C. L. (2012). Decomposing attention-deficit/hyperactivity disorder (ADHD)-related effects in response speed and variability. Neuropsychology, 26(6), 684–694. Cerca con Google

Karmarkar, U. R., & Dan, Y. (2006). Experience-Dependent Plasticity in Adult Visual Cortex. Neuron, 52(4), 577–585. Cerca con Google

Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 861–868. Cerca con Google

Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Neurobiology, 88, 4966–4970. Cerca con Google

Kim, S., Stephenson, M. C., Morris, P. G., & Jackson, S. R. (2014). tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7 T magnetic resonance spectroscopy study. NeuroImage, 99, 237–243. Cerca con Google

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. Cerca con Google

Klinke, R., Hartmann, R., Heid, S., Tillein, J., & Kral, A. (2001). Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation. Audiology and Neuro-Otology, 6(4), 203–206. Cerca con Google

Klomjai, W., Katz, R., & Lackmy-Vallée, A. (2015). Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Annals of Physical and Rehabilitation Medicine, 58(4), 208–213. Cerca con Google

Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425. Cerca con Google

Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2(3), 145–156. Cerca con Google

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science (New York, N.Y.), 302(5648), 1181–1185. Cerca con Google

Konorski, J. (1948). Conditioned reflexes and neuron organization. New York, NT, US: Cambridge University Press. Cerca con Google

Kovács, I., Polat, U., Pennefather, P. M., Chandna, A., & Norcia, A. M. (2000). A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Research, 40, 1775–1783. Cerca con Google

Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342–348. Cerca con Google

Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., … Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419. Cerca con Google

Kühn, S., Lorenz, R., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., … Consortium, T. I. (2014). Positive Association of Video Game Playing with Left Frontal Cortical Thickness in Adolescents. PLoS ONE, 9(3), e91506. Cerca con Google

Kujirai, T., Caramia, M. D., Rothwell, J. C., Day, B. L., Thompson, P. D., Ferbert, A., … Marsden, C. D. (1993). Corticocortical inhibition in human motor cortex. The Journal of Physiology, 471(1), 501–519. Cerca con Google

Kuo, M. F., Paulus, W. & Nitsche, M. A. (2016).Sex differences in cortical neuroplasticity in humans. Neuroreport 17, 1703–1707. Cerca con Google

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13). Cerca con Google

Laczó, B., Antal, A., Rothkegel, H., & Paulus, W. (2014). Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restorative Neurology and Neuroscience, 32(3), 403–410. Cerca con Google

Lamendella, J. T. (1977). General principles of neurofunctional organization and their manifestation in primary and nonprimary language acquisition. Language Learning, 27(1), 155–196. Cerca con Google

LeDoux, J. (2002). Synaptic self: how our brains become who we are. New York, United States: Viking, 137. Cerca con Google

Lee, D., Seo, H., & Jung, M. W. (2012). Neural Basis of Reinforcement Learning and Decision Making. Annual Review of Neuroscience, 35(1), 287–308. Cerca con Google

Levi, D. M. (2005). Perceptual learning in adults with amblyopia: A reevaluation of critical periods in human vision. Developmental Psychobiology, 46(3), 222–232. Cerca con Google

Levi, D. M., & Li, R. W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research, 49(21), 2535–2549. Cerca con Google

Levitt, H. (1971). Transformed Up-Down Methods in Psychoacoustics. The Journal of the Acoustical Society of America, 49(2B), 467–477. Cerca con Google

Li, J., Thompson, B., Deng, D., Chan, L. Y. L., Yu, M., & Hess, R. F. (2013). Dichoptic training enables the adult amblyopic brain to learn. Current Biology, 23(8), R308–R309. Cerca con Google

Li, R. W., & Levi, D. M. (2004). Characterizing the mechanisms of improvement for position discrimination in adult amblyopia. Journal of Vision, 4(6), 476–487. Cerca con Google

Li, R. W., Young, K. G., Hoenig, P., & Levi, D. M. (2005). Perceptual Learning Improves Visual Performance in Juvenile Amblyopia. Investigative Opthalmology & Visual Science, 46(9), 3161. Cerca con Google

Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working Memory Plasticity in Old Age: Practice Gain, Transfer, and Maintenance. Psychology and Aging, 23(4), 731–742. Cerca con Google

Li, X.-Y., Wan, Y., Tang, S.-J., Guan, Y., Wei, F., & Ma, D. (2016). Maladaptive Plasticity and Neuropathic Pain. Neural Plasticity, 2016. Cerca con Google

Lieberman, J. A. (2008). Electromyography and Evoked Potentials. Essentials of Neuroanesthesia and Neurointensive Care, 283–289. Cerca con Google

Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238–2247. Cerca con Google

Livingston, R. B. (1966). Brain Mechanisms in Conditioning and Learning. Neuroscience Research Program Bulletin (Vol. 4). Cerca con Google

Lunghi, C., & Sale, A. (2015). A cycling lane for brain rewiring. Current Biology, 25(23), R1122-3. Cerca con Google

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 111(5), 800–805. Cerca con Google

Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589–600. Cerca con Google

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An Embarrassment of Riches. Neuron, 44(1), 5–21. Cerca con Google

Mameli, M., & Lüscher, C. (2011). Synaptic plasticity and addiction: Learning mechanisms gone awry. Neuropharmacology, 61(7), 1052–1059. Cerca con Google

Maniglia, M., Pavan, A., Cuturi, L. F., Campana, G., Sato, G., & Casco, C. (2011). Reducing Crowding by Weakening Inhibitory Lateral Interactions in the Periphery with Perceptual Learning. PLoS ONE, 6(10), e25568. Cerca con Google

Maniglia, M., Pavan, A., Sato, G., Contemori, G., Montemurro, S., Battaglini, L., & Casco, C. (2016). Perceptual learning leads to long lasting visual improvement in patients with central vision loss. Restorative Neurology and Neuroscience, 34(5), 697–720. Cerca con Google

Mansouri, B., Thompson, B., & Hess, R. F. (2008). Measurement of suprathreshold binocular interactions in amblyopia. Vision Research, 48(28), 2775–2784. Cerca con Google

Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annual Review of Neuroscience, 23(1), 649–711. Cerca con Google

Mastropasqua, T., Galliussi, J., Pascucci, D., & Turatto, M. (2015). Location transfer of perceptual learning: Passive stimulation and double training. Vision Research, 108, 93–102. Cerca con Google

Maurer, D., Lewis, T. L., & Mondloch, C. J. (2005). Missing sights: Consequences for visual cognitive development. Trends in Cognitive Sciences, 9, 144–151. Cerca con Google

Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. British Medical Bulletin, 65(1), 193–207. Cerca con Google

Mazzucchi, A. (2012). Lobi frontali, capacità esecutive e loro riabilitazione. In La riabilitazione neuropsicologica. Premesse teoriche e applicazioni cliniche (pp. 365–388). Cerca con Google

McDonnell, M. D., & Abbott, D. (2009). What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology. PLoS Computational Biology, 5(5), e1000348. Cerca con Google

McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12(7), 415–425. Cerca con Google

McDougall, S., & House, B. (2012). Brain training in older adults: Evidence of transfer to memory span performance and pseudo-Matthew effects. Aging, Neuropsychology, and Cognition, 19(1–2), 195–221. Cerca con Google

McKee, S. P., Levi, D. M., & Movshon, J. A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision, 3(5), 380–405. Cerca con Google

McMackin, R., Bede, P., Pender, N., Hardiman, O., & Nasseroleslami, B. (2019). Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage: Clinical, 22, 101706. Cerca con Google

Merton, P. A., & Morton, H. B. (1980). Stimulation of the cerebral cortex in the intact human subject. Nature, 285(5762), 227–227. Cerca con Google

Miller, D. J., & Robertson, D. P. (2011). Educational benefits of using game consoles in a primary classroom: A randomised controlled trial. British Journal of Educational Technology, 42(5), 850–864. Cerca con Google

Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167–202. Cerca con Google

Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 1123–1136. Cerca con Google

Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 37(8), 1702–1712. Cerca con Google

Miniussi, C., & Ruzzoli, M. (2013). Transcranial stimulation and cognition. In Handbook of clinical neurology (Vol. 116, pp. 739–750). Cerca con Google

Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 5, 505–511. Cerca con Google

Moliadze, V., Fritzsche, G., & Antal, A. (2014). Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials. Neural Plasticity, 2014, 1–6. Cerca con Google

Møller, A. R. (2006). Neural plasticity and disorders of the nervous system. Neural Plasticity and Disorders of the Nervous System, 1–394. Cerca con Google

Momi, D., Smeralda, C., Sprugnoli, G., Ferrone, S., Rossi, S., Rossi, A., … Santarnecchi, E. (2018). Acute and long-lasting cortical thickness changes following intensive first-person action videogame practice. Behavioural Brain Research, 353, 62–73. Cerca con Google

Momi, D., Smeralda, C., Sprugnoli, G., Neri, F., Rossi, S., Rossi, A., … Santarnecchi, E. (2019). Thalamic morphometric changes induced by first-person action videogame training. European Journal of Neuroscience, 49(9), 1180–1195. Cerca con Google

Moret, B., Camilleri, R., Pavan, A., Lo Giudice, G., Veronese, A., Rizzo, R., & Campana, G. (2018). Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Neuropsychologia, 114, 125–133. Cerca con Google

Moret, B., Donato, R., Nucci, M., Cona, G., Campana, G. (2019). Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Scientific Reports, 9(1), 15150. Cerca con Google

Moss, F., Ward, L. M., & Sannita, W. G. (2004). Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology, 115(2), 267–281. Cerca con Google

Mukai, I., Kim, D., Fukunaga, M., Japee, S., Marrett, S., & Ungerleider, L. G. (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. Journal of Neuroscience, 27(42), 11401–11411. Cerca con Google

Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology, 122(12), 2384–2389. Cerca con Google

Mylius, V., Ayache, S. S., Ahdab, R., Farhat, W. H., Zouari, H. G., Belke, M., … Lefaucheur, J. P. (2013). Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: Inter-rater reliability, accuracy, and influence of gender and age. NeuroImage, 78, 224–232. Cerca con Google

Nelson, C. A. (2000). Neural plasticity and human development: the role of early experience in sculpting memory systems. Developmental Science, 3(2), 115–136. Cerca con Google

Nelson, J. T., McKinley, R. A., Golob, E. J., & Warm, J. S. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). NeuroImage, 85, 909–917. Cerca con Google

Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nature Reviews Neuroscience, 9(1), 65–75. Cerca con Google

Nieratschker, V., Kiefer, C., Giel, K., Krüger, R., & Plewnia, C. (2015). The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulation, 8(2), 283–288. Cerca con Google

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633–639. Cerca con Google

Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci, 15(4), 619–626. Cerca con Google

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. Cerca con Google

Nitsche, M. A, & Paulus, W. (2011). Transcranial direct current stimulation – update 2011. Restorative Neurology and Neuroscience, 29, 463–492. Cerca con Google

Niyazov, D. M., Butler, A. J., Kadah, Y. M., Epstein, C. M., & Hu, X. P. (2005). Functional magnetic resonance imaging and transcranial magnetic stimulation: Effects of motor imagery, movement and coil orientation. Clinical Neurophysiology, 116(7), 1601–1610. Cerca con Google

Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., … Kawashima, R. (2012). Brain training game improves executive functions and processing speed in the elderly: A randomized controlled trial. PLoS ONE, 7(1). Cerca con Google

Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., … Kawashima, R. (2013). Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial. PLoS ONE, 8(2). Cerca con Google

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. Cerca con Google

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. Cerca con Google

Oyama, S. (1979). The concept of the sensitive period in developmental studies. Merrill-Palmer Quarterly, 25(2), 83–103. Cerca con Google

Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11. Cerca con Google

Palm, U., Chalah, M. A., Padberg, F., Al-Ani, T., Abdellaoui, M., Sorel, M., … Ayache, S. S. (2016). Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Restorative Neurology and Neuroscience, 34(2), 189–199. Cerca con Google

Palm, U., Hasan, A., Keeser, D., Falkai, P., & Padberg, F. (2013). Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia. Schizophrenia Research, 146(1–3), 372–373. Cerca con Google

Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron, 87(5), 932–945. Cerca con Google

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28(1), 377–401. Cerca con Google

Pascual-Leone, A., Freitas, C., Oberman, L., Horvath, J. C., Halko, M., Eldaief, M., … Rotenberg, A. (2011). Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topography, 24(3–4), 302–315. Cerca con Google

Pasqualotto, A. (2016). Transcranial random noise stimulation benefits arithmetic skills. Neurobiology of Learning and Memory, 133, 7–12. Cerca con Google

Paulus, W. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617. Cerca con Google

Pavan, A., Ghin, F., Contillo, A., Milesi, C., Campana, G., & Mather, G. (2019). Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimulation. Cerca con Google

Penton, T., Dixon, L., Evans, L. J., & Banissy, M. J. (2017). Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex. Scientific Reports, 7(1). Cerca con Google

Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11(6), 663–672. Cerca con Google

Pinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus, 3-56.Pirulli, C., Fertonani, A., & Miniussi, C. (2013). The Role of Timing in the Induction of Neuromodulation in Perceptual Learning by Transcranial Electric Stimulation. Brain Stimulation, 6, 683–689. Cerca con Google

Plow, E. B., Obretenova, S. N., Fregni, F., Pascual-Leone, A., & Merabet, L. B. (2012). Comparison of Visual Field Training for Hemianopia With Active Versus Sham Transcranial Direct Cortical Stimulation. Neurorehabilitation and Neural Repair, 26(6), 616–626. Cerca con Google

Plow, E. B., Obretenova, S. N., Halko, M. A., Kenkel, S., Psych, D., Jackson, M. Lou, … Merabet, L. B. (2011). Combining Visual Rehabilitative Training and Noninvasive Brain Stimulation to Enhance Visual Function in Patients With Hemianopia: A Comparative Case Study. PMRJ, 3, 825–835. Cerca con Google

Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018–1021. Cerca con Google

Pogosyan, A., Gaynor, L. D., Eusebio, A., & Brown, P. (2009). Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans. Current Biology, 19(19), 1637–1641. Cerca con Google

Polat, U. (1999). Functional architecture of long-range perceptual interactions. Spatial Vision, 12(2), 143–162. Cerca con Google

Polat, U., Sagi, D., & Norcia, A. M. (1997). Abnormal long-range spatial interactions in amblyopia. Vision Research, 37(6), 737–744. Cerca con Google

Polat, U. (2009). Making perceptual learning practical to improve visual functions. Vision Research, 49(21), 2566–2573. Cerca con Google

Polat, U., Ma-Naim, T., Belkin, M., & Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6692–6697. Cerca con Google

Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33(7), 993–999. Cerca con Google

Popescu, T., Krause, B., Terhune, D. B., Twose, O., Page, T., Humphreys, G., & Cohen Kadosh, R. (2016). Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task. Neuropsychologia, 81, 255–264. Cerca con Google

Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214. Cerca con Google

Pourtois, G., Rauss, K. S., Vuilleumier, P., & Schwartz, S. (2008). Effects of perceptual learning on primary visual cortex activity in humans. Vision Research, 48, 55–62. Cerca con Google

Prichard, G., Weiller, C., Fritsch, B., & Reis, J. (2014). Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimulation, 7(4), 532–540. Cerca con Google

Priori, A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595. Cerca con Google

Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215-228. Cerca con Google

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16(2), 323–341. Cerca con Google

Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing. Journal of Neuroscience, 30(45), 15067–15079. Cerca con Google

Reed, T., & Cohen Kadosh, R. (2018). Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. Journal of Inherited Metabolic Disease, 41(6), 1123–1130. Cerca con Google

Remedios, L., Mabil, P., Flores-Hernández, J., Torres-Ramírez, O., Huidobro, N., Castro, G., … Manjarrez, E. (2019). Effects of Short-Term Random Noise Electrical Stimulation on Dissociated Pyramidal Neurons from the Cerebral Cortex. Neuroscience, 404, 371–386. Cerca con Google

Ridding, M. C., & Rothwell, J. C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience, 8(7), 559–567. Cerca con Google

Robinovitch L. G. (1914). Electrical analgesia, sleep and resuscitation. Anesthesia, New York:(Appleton;), 628–643. Cerca con Google

Romanska, A., Rezlescu, C., Susilo, T., Duchaine, B., & Banissy, M. J. (2015). High-frequency transcranial random noise stimulation enhances perception of facial identity. Cerebral Cortex, 25(11),4334-4340. Cerca con Google

Romei, V., Thut, G., & Silvanto, J. (2016). Information-Based Approaches of Noninvasive Transcranial Brain Stimulation. Trends in Neurosciences, 39(11), 782–795. Cerca con Google

Rosa, A., Silva, M., Ferreira, S., Murta, J., & Castelo-Branco, M. (2013). Plasticity in the human visual cortex: an ophthalmology-based perspective. BioMed research international, 2013. Cerca con Google

Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., Avanzini, G., Bestmann, S., … Ziemann, U. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039. Cerca con Google

Rossini, P. M., Burke, D., Chen, R., Cohen, L. G., Daskalakis, Z., Di Iorio, R., … Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 126(6), 1071–1107. Cerca con Google

Roth, B. J., & Basser, P. J. (1990). A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Transactions on Biomedical Engineering, 37(6), 588-597. Cerca con Google

Rothwell, J., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: motor evoked potentials. Electroencephalogr Clin Neurophysiol Suppl, (52), 97–103. Cerca con Google

Sacco, K. (2013). Le Neuroimmagini. Nuove frontiere per lo studio del cervello umano in vivo. Cerca con Google

Sagi, D. (2011). Perceptual learning in Vision Research. Vision Research, 51(13), 1552–1566. Cerca con Google

Saiote, C., Polanía, R., Rosenberger, K., Paulus, W., & Antal, A. (2013). High-Frequency TRNS Reduces BOLD Activity during Visuomotor Learning. PLoS ONE, 8(3), e59669. Cerca con Google

Sale, A., Berardi, N., Spolidoro, M., Baroncelli, L., & Maffei, L. (2010). GABAergic inhibition in visual cortical plasticity. Frontiers in Cellular Neuroscience, 4, 10. Cerca con Google

Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. Psychological Review (Vol. 103). Cerca con Google

Sandrini, M., Umiltà, C., & Rusconi, E. (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience & Biobehavioral Reviews, 35(3), 516–536. Cerca con Google

Sanes, J. R., & Lichtman, J. W. (1999). Can molecules explain long-term potentiation? Nature Neuroscience, 2(7), 597–604. Cerca con Google

Santarnecchi, E., Brem, A.-K., Levenbaum, E., Thompson, T., Kadosh, R. C., & Pascual-Leone, A. (2015). Enhancing cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences, 4, 171–178. Cerca con Google

Schmidt, R. A., & Bjork, R. A. (1992). New Conceptualizations of Practice: Common Principles in Three Paradigms Suggest New Concepts for Training. Psychological Science, 3(4), 207–217. Cerca con Google

Schoen, I., & Fromherz, P. (2008). Extracellular Stimulation of Mammalian Neurons Through Repetitive Activation of Na + Channels by Weak Capacitive Currents on a Silicon Chip. Journal of Neurophysiology, 100(1), 346–357. Cerca con Google

Schoups, A, Vogels, R., & Orban, G. A. (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. The Journal of Physiology, 483(3), 797–810. Cerca con Google

Schoups, Aniek, Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identi®cation improves orientation coding in V1 neurons. Nature, 412, 549–553. Cerca con Google

Schwartz, S., Maquet, P., & Frith, C. (2002). Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 17137–17142. Cerca con Google

Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15(6), 770–786. Cerca con Google

Schwarzkopf, D. S., Silvanto, J., & Rees, G. (2011). Stochastic Resonance Effects Reveal the Neural Mechanisms of Transcranial Magnetic Stimulation. Journal of Neuroscience, 31(9), 3143–3147. Cerca con Google

Shafi, M. M., Westover, M. B., Fox, M. D., & Pascual-Leone, A. (2012). Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. European Journal of Neuroscience, 35(6), 805–825. Cerca con Google

Siebner, H. R., Lang, N., Rizzo, V., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning of Low-Frequency Repetitive Transcranial Magnetic Stimulation with Transcranial Direct Current Stimulation: Evidence for Homeostatic Plasticity in the Human Motor Cortex. Journal of neuroscience, 24(13), 3379-9985. Cerca con Google

Siebner, H., & Rothwell, J. (2003). Transcranial magnetic stimulation: new insights into representational cortical plasticity. Experimental Brain Research, 148(1), 1–16. Cerca con Google

Siegel, S. R., L Haddock, B., Dubois, A. M., & Wilkin, L. D. (2009). Active Video/Arcade Games (Exergaming) and Energy Expenditure in College Students. International Journal of Exercise Science, 2(3), 165–174. Cerca con Google

Silvanto, J., & Cattaneo, Z. (2017). Common framework for "virtual lesion" and state-dependent TMS: The facilitatory/suppressive range model of online TMS effects on behavior. Brain and Cognition, 119, 32–38. Cerca con Google

Silvanto, J., Cattaneo, Z., Battelli, L., & Pascual-Leone, A. (2008). Baseline Cortical Excitability Determines Whether TMS Disrupts or Facilitates Behavior. Journal of Neurophysiology, 99(5), 2725–2730. Cerca con Google

Simmers, A. J., & Bex, P. J. (2004). The representation of global spatial structure in amblyopia. Vision Research, 44(5), 523–533. Cerca con Google

Simmers, A. J., Ledgeway, T., & Hess, R. F. (2005). The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Research, 45(4), 449–460. Cerca con Google

Simmers, A. J., Ledgeway, T., Hess, R. F., & McGraw, P. V. (2003). Deficits to global motion processing in human amblyopia. Vision Research, 43(6), 729–738. Cerca con Google

Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224–232. Cerca con Google

Sireteanu, R., Lagreze, W. D., & Constantinescu, D. H. (1993). Distortions in two-dimensional visual space perception in strabismic observers. Vision Research, 33(5–6), 677–690. Cerca con Google

Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23(11), 987–992. Cerca con Google

Solgi, M., Liu, T., & Weng, J. (2013). A computational developmental model for specificity and transfer in perceptual learning. Journal of Vision, 13(1), 7–7. Cerca con Google

Soltaninejad, Z., & Nejati, V. (2015). Effect of Anodal and Cathodal Transcranial Direct Current Stimulation on DLPFC on Modulation of Inhibitory Control in ADHD. Article in Journal of Attention Disorders,23(4),325-332. Cerca con Google

Spiegel, D. P., Byblow, W. D., Hess, R. F., & Thompson, B. (2013a). Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehabilitation and Neural Repair, 27(8), 760–769. Cerca con Google

Spiegel, D. P., Li, J., Hess, R. F., Byblow, W. D., Deng, D., Yu, M., & Thompson, B. (2013b). Transcranial Direct Current Stimulation Enhances Recovery of Stereopsis in Adults With Amblyopia. Neurotherapeutics, 10(4), 831–839. Cerca con Google

Spierer, L., Chavan, C. F., & Manuel, A. L. (2013). Training-induced behavioral and brain plasticity in inhibitory control. Frontiers in Human Neuroscience, 7, 427. Cerca con Google

Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation. Journal of Neuroscience, 29(16), 5202–5206. Cerca con Google

Stagg, C- J., & Nitsche, M. A. (2011). Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist, 17(1), 37–53. Cerca con Google

Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proceedings of the National Academy of Sciences of the United States of America (Vol. 70). Cerca con Google

Stephani, C., Nitsche, M. A., Sommer, M., & Paulus, W. (2011). Impairment of motor cortex plasticity in Parkinson’s disease, as revealed by theta-burst-transcranial magnetic stimulation and transcranial random noise stimulation. Parkinsonism & Related Disorders, 17(4), 297–298. Cerca con Google

Takeuchi, H., & Kawashima, R. (2012). Effects of processing speed training on cognitive functions and neural systems. Reviews in the Neurosciences, 23(3), 289–301. Cerca con Google

Taylor, M. J. D., & Griffin, M. (2015). The use of gaming technology for rehabilitation in people with multiple sclerosis. Multiple Sclerosis Journal, 21(4), 355–371. Cerca con Google

Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. Journal of Neuroscience, 28(52), 14147–14155. Cerca con Google

Thompson, B., Mansouri, B., Koski, L., & Hess, R. F. (2008). Brain Plasticity in the Adult: Modulation of Function in Amblyopia with rTMS. Current Biology, 18(14), 1067–1071. Cerca con Google

To, L., Thompson, B., Blum, J. R., Maehara, G., Hess, R. F., & Cooperstock, J. R. (2011). A game platform for treatment of amblyopia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(3), 280–289. Cerca con Google

Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. In J. Castellan & F. Restle (Eds.), Cognitive theory (pp. 200–239). Cerca con Google

Tsirlin, I., Colpa, L., Goltz, H. C., & Wong, A. M. F. (2015). Behavioral training as new treatment for adult amblyopia: A meta-analysis and systematic review. Investigative Ophthalmology and Visual Science, 56(6), 4061–4075. Cerca con Google

Valero-Cabré, A., Amengual, J. L., Stengel, C., Pascual-Leone, A., & Coubard, O. A. (2017). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience and Biobehavioral Reviews, 83, 381–404. Cerca con Google

Valls-Solé, J., Pascual-Leone, A., Wassermann, E. M., & Hallett, M. (1992). Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 85(6), 355–364. Cerca con Google

Van den Oever, M. C., Spijker, S., & Smit, A. B. (2012). The synaptic pathology of drug addiction. In Synaptic Plasticity (pp. 469-491). Springer, Vienna.. Cerca con Google

van der Groen, O., & Wenderoth, N. (2016). Transcranial Random Noise Stimulation of Visual Cortex: Stochastic Resonance Enhances Central Mechanisms of Perception. The Journal of Neuroscience, 36(19), 5289–5298. Cerca con Google

van Koningsbruggen, M. G., Ficarella, S. C., Battelli, L., & Hickey, C. (2016). Transcranial random-noise stimulation of visual cortex potentiates value-driven attentional capture. Social Cognitive and Affective Neuroscience, 11(9), 1481–1488. Cerca con Google

Van Wezel, R. J. A., & Britten, K. H. (2006). Motion Adaptation in Area MT. Journal of Neurophysiology, 88(6), 3469–3476. Cerca con Google

Vanneste, S., Song, J.-J., & De Ridder, D. (2013). Tinnitus and musical hallucinosis: The same but more. NeuroImage, 82, 373–383. Cerca con Google

Violante, I. R., Li, L. M., Carmichael, D. W., Lorenz, R., Leech, R., Hampshire, A., … Sharp, D. J. (2017). Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. ELife,l6, e22001. Cerca con Google

Von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69(1), 36–58. Cerca con Google

Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., … Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1). Cerca con Google

Wallace, D. K., Lazar, E. L., Melia, M., Birch, E. E., Holmes, J. M., Hopkins, K. B., … Weise, K. K. (2011). Stereoacuity in children with anisometropic amblyopia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 15(5), 455–461. Cerca con Google

Wang, J. (2015). Compliance and patching and atropine amblyopia treatments. Vision Research, 114, 31–40. Cerca con Google

Ward, L. M. (2009). Physics of neural synchronisation mediated by stochastic resonance. Contemporary Physics, 50(5), 563–574. Cerca con Google

Ward, L. M., Doesburg, S. M., Kitajo, K., MacLean, S. E., & Roggeveen, A. B. (2006). Neural synchrony in stochastic resonance, attention, and consciousness. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 60(4), 319–326. Cerca con Google

Wessel, J. R. (2018). Prepotent motor activity and inhibitory control demands in different variants of the go/no-go paradigm. Psychophysiology, 55(3), e12871. Cerca con Google

Wickens, T. (2002). Elementary signal detection theory. Oxforf University Press, USA. Cerca con Google

Wiesel, T. N., & Hubel, D. H. (1963). Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. Journal of Neurophysiology, 26, 978–993. Cerca con Google

Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., … Wright, E. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 2805–2814. Cerca con Google

Winder, D. G., & Sweatt, J. D. (2001). Roles of serine/threonine phosphatases in hippocampel synaptic plasticity. Nature Reviews Neuroscience, 2(7), 461–474. Cerca con Google

Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 26(4), 379–395. Cerca con Google

Wong, A. M. F. (2012). New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Canadian Journal of Ophthalmology, 47(5), 399–409. Cerca con Google

Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience, 4(2), 139–147. Cerca con Google

Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9, 131. Cerca con Google

Woolf, C. J. (1989). Recent advances in the pathophysiology of acute pain. Br. J. Anaesth, 63(2), 139–146. Cerca con Google

Wright, L., Lipszyc, J., Dupuis, A., Thayapararajah, S. W., & Schachar, R. (2014). Response inhibition and psychopathology: A meta-analysis of Go/No-Go task performance. Journal of Abnormal Psychology, 123(2), 429–439. Cerca con Google

Xiao, L. Q., Zhang, J. Y., Wang, R., Klein, S. A., Levi, D. M., & Yu, C. (2008). Complete Transfer of Perceptual Learning across Retinal Locations Enabled by Double Training. Current Biology, 18(24), 1922–1926. Cerca con Google

Yang, T., & Banissy, M. J. (2017). Enhancing anger perception in older adults by stimulating inferior frontal cortex with high frequency transcranial random noise stimulation. Neuropsychologia, 102, 163–169. Cerca con Google

Yoshii, A., & Constantine-Paton, M. (2010). Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Developmental Neurobiology, 70(5), 304-322. Cerca con Google

Zheng, W., & Knudsen, E. I. (1999). Functional selection of adaptive auditory space map by GABA(a)-mediated inhibition. Science, 284(5416), 962–965. Cerca con Google

Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X., & Lu, Z. L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research, 46(5), 739–750. Cerca con Google

Ziemann, U. (2017). Thirty years of transcranial magnetic stimulation: where do we stand? Experimental Brain Research, 235(4), 973–984. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record