Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Gennari, Claudio (2020) Enhancement of alloys formability by electroplastic effect. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
23Mb

Abstract (italian or english)

This thesis summarizes the results obtained during the PhD research period in Industrial Engineering at the Industrial Engineering Doctorate School of University of Padua. The research project was mainly focused on the effect of the electrical current on the plastic deformation and on the microstructure of different metal alloys known as Electroplastic Effect (EPE).
The research project was conducted in collaboration with the Metallurgy, Mechanical and Electrical Engineering groups of the Industrial Engineering Department of University of Padua.
This thesis is organized in five different chapters. The first chapter deals with the state of the art of the Electroplastic Effect, starting from the first scientific papers and then focusing mainly on the various theories that try to explain the phenomenon. In the second chapter, already performed researches at University of Padua are reported. The third chapter focuses on the experimental apparatus used during the research period. Fourth chapter is focused on the experimental results obtained using continuous and pulsed direct current on four types of high technological interest metal alloys (pure aluminum, titanium grade five, an experimental TWIP steel and four grades of duplex stainless steels). The fifth chapter deals with electropulsed treatment on a super duplex stainless steel. It has been decided to include two appendixes that contributed to the scientific training of the candidate. Appendix A reports the results concerning the influence of small volume fraction and different morphologies of secondary phases on the ductile-to-brittle (DBT) transition of a UNS S32205 duplex stainless steels. Finally, appendix B describes the influence of cold rolling on the laser weldability of UNS S32750 duplex stainless steel.
Most of the research activities were carried out in the laboratories of the Metallurgy group, the Electrical Engineering group and the Mechanical Engineering group of the Industrial Engineering Department of University of Padua. Specifically, tensile tests were carried out at the Precision Manufacturing Laboratory under the supervision of Professor Stefania Bruschi and Professor Andrea Ghiotti, electrical measurements were performed at the Laboratory of Electroheating of Padova (LEP) under the supervision of Professor Michele Forzan and Professor Renato Gobbo, finally, the characterization of the samples were performed at the metallurgy laboratories supervised by Professor Irene Calliari and Professor Manuele Dabalà. Some activities were conducted outside the University of Padua in collaboration with other institutions. In particular laser welding and phase quantification by means of electromagnetic measurements were carried out thanks to Professor Istvan Mészáros of the Department of Materials Science and Engineering of the Budapest University of Technology and Economics and finally, impact toughness tests were conducted at the Quality Control Laboratories of Acciaierie Valbruna S.p.A. under the guidance of Engineer Enrico Piva.
This research work helped to improve the knowledge on the electroplasticity phenomenon, in particular for a specific class of steels in which two phases with different metallurgical characteristics are present.

Abstract (a different language)

Il presente elaborato riassume i risultati ottenuti durante il periodo di ricerca necessario al conseguimento del titolo di Dottore di Ricerca in Ingegneria Industriale presso la Scuola di Dottorato dell’Università degli Studi di Padova. Il progetto di ricerca consiste nello studio dell’effetto della corrente elettrica sulla deformazione plastica e sulla stabilità microstrutturale di diverse leghe metalliche conosciuto come Effetto Elettroplastico (EPE).
Il progetto di ricerca è nato all’interno del Dipartimento di Ingegneria Industriale dell’Università degli Studi di Padova in seguito ad una collaborazione tra il gruppo di Metallurgia, Ingegneria Meccanica e Ingegneria Elettrica.
La tesi è suddivisa in cinque capitoli. Il primo capitolo tratta dello stato dell’arte del fenomeno dell’elettroplasticità, a partire dai primi articoli scientifici che ne hanno parlato per poi focalizzarsi principalmente sulle possibili spiegazioni del fenomeno. Nel secondo capitolo sono esposti i lavori già effettuati all’interno dell’Università di Padova prima dell’inizio del percorso di Dottorato. Il terzo capitolo riassume le apparecchiature utilizzate durante il periodo di ricerca. Il quarto capitolo espone i risultati ottenuti utilizzando corrente continua e pulsata su quattro categorie di leghe metalliche di elevato interesse tecnologico (alluminio commercialmente puro, lega di Titanio grado cinque, acciaio inossidabile TWIP e quattro acciai inossidabili bifasici). Nel quinto capitolo viene studiato l’effetto di trattamenti elettro-pulsati su un acciaio inossidabile bifasico. In appendice sono riportati due lavori che esulano dal progetto di ricerca ma che si sono ritenuti utili nella formazione scientifica del candidato. L’appendice A riporta uno studio sull’influenza della morfologia di una piccola frazione volumetrica di fasi secondarie sulla transizione duttile fragile di un acciaio inossidabile bifasico UNS S32205. L’appendice B tratta invece l’influenza della deformazione plastica a freddo sulla saldabilità tramite laser di un acciaio inossidabile bifasico UNS S32750.
La maggior parte delle attività di ricerca sono state effettuate presso i laboratori del gruppo di Metallurgia, del gruppo di Ingegneria Elettrica e del gruppo di Tecnologia Meccanica del Dipartimento di Ingegneria Industriale (DII) dell’Università degli Studi di Padova. Nello specifico le prove di trazione sono state eseguite presso il laboratorio di Precision Manufacturing sotto la supervisione della Professoressa Stefania Bruschi e del Professor Andrea Ghiotti, le misure elettriche sono state eseguite presso il Laboratorio di Electroheating di Padova (LEP) sotto la guida del Professor Michele Forzan e del Professor Renato Gobbo, mentre la caratterizzazione è stata eseguita presso i laboratori di metallurgia supervisionati dalla Professoressa Irene Calliari e dal Professor Manuele Dabalà. Alcune attività sono state svolte in collaborazione con altre istituzioni, in particolare le saldature laser e la quantificazione delle fasi per mezzo di misure elettromagnetiche grazie al Professor Istvan Mészáros del Dipartimento di Scienza e Ingegneria dei Materiali della Budapest University of Technology and Economics e le prove di resilienza presso il laboratorio Controllo Qualità delle Acciaierie Valbruna S.p.A. di Vicenza sotto la guida dell’Ingegner Enrico Piva.
Il presente lavoro di ricerca ha contribuito ad aumentare la conoscenza del fenomeno dell’elettroplasticità, in particolare per una determinata classe di acciai in cui sono presenti due fasi con diverse caratteristiche metallurgiche.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Calliari, Irene
Ph.D. course:Ciclo 32 > Corsi 32 > INGEGNERIA INDUSTRIALE > INGEGNERIA DEI MATERIALI
Data di deposito della tesi:20 February 2020
Anno di Pubblicazione:20 February 2020
Key Words:electroplastic effect, electroplasticity, metallurgy, characterization, formability, duplex stainless steel, tensile test
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/21 Metallurgia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:12849
Depositato il:26 Jan 2021 15:58
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

CHAPTER 1 Cerca con Google

[1] Salandro, W.A.; Bunget, C.; Mears, L. "Thermo-Mechanical Investigations of the Electroplastic Effect", In Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference, Volume 1; ASME, (2011); pp. 573–582. Cerca con Google

[2] Jones, J.J.; Mears, L.; Roth, J.T. "Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability", J. Manuf. Sci. Eng. (2012), Volume 134, pp.034504. Cerca con Google

[3] Green, C.R.; Mcneal, T.A.; Roth, J.T.; Erie, P.S.; College, T.B. "Springback elimination for al-6111 alloys using electrically-assisted manufacturing (EAM)", Trans. North Am. Manuf. Res. Inst. (2009). Cerca con Google

[4] Kim, M.-S.; Vinh, N.T.; Yu, H.-H.; Hong, S.-T.; Lee, H.-W.; Kim, M.-J.; Han, H.N.; Roth, J.T. "Effect of electric current density on the mechanical property of advanced high strength steels under quasi-static tensile loads", Int. J. Precis. Eng. Manuf. (2014), Volume 15, pp.1207–1213. Cerca con Google

[5] Samuel, E.I.; Bhowmik, A.; Qin, R. "Accelerated spheroidization Induced by high Intensity electric pulse In a severely deformed eutectold steel", J. Mater. Res. (2010), Volume 25, pp.1020–1024. Cerca con Google

[6] Wang, X.; Sánchez Egea, A.; Xu, J.; Meng, X.; Wang, Z.; Shan, D.; Guo, B.; Cao, J. "Current-Induced Ductility Enhancement of a Magnesium Alloy AZ31 in Uniaxial Micro-Tension Below 373 K", Materials (Basel). (2018), Volume 12, pp.111. Cerca con Google

[7] Machlin, E.S. "Applied voltage and the plastic properties of “brittle” rock salt", J. Appl. Phys. (1959), Volume 30, pp.1109–1110. Cerca con Google

[8] Nabarro, F.N.R. Theory of Crystal Dislocations; Oxford University Press: Oxford, (1967); Cerca con Google

[9] Kravchenko, V.Y. "Effect of directed electron beam on moving dislocations", Sov. Phys. JETP (1967), Volume 24, pp.1135–1142. Cerca con Google

[10] Troitskii, O.A. "Electromechanical effect in metals", Pis’ma Zhurn Experim Teor. Fiz (1969), Volume 10, pp.18. Cerca con Google

[11] Klimov, K.M.; Novikov, I.I. "The “electroplastic effect”", Strength Mater. (1984), Volume 16, pp.270–276. Cerca con Google

[12] Okazaki, K.; Kagawa, M.; Conrad, H. "A study of the electroplastic effect in metals", Scr. Metall. (1978), Volume 12, pp.1063–1068. Cerca con Google

[13] Okazaki, K.; Kagawa, M.; Conrad, H. "An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium", Mater. Sci. Eng. (1980), Volume 45, pp.109–116. Cerca con Google

[14] Fiks, V.B. "Interaction of conduction electrons with single dislocations in metals", J. Exp. Theor. Phys. (1981), Volume 53, pp.1209–1211. Cerca con Google

[15] Bolko, I.; Geguzin, E.; Klinchuk, I. "Drag of dislocations by an electron wind in metals", Zhurnal Eksp. i Teor. Fiz. (1981), Volume 54, pp.1156–1158. Cerca con Google

[16] Goldman, P.D.; Motowidlo, L.R.; Galligan, J.M. "The absence of an electroplastic effect in lead at 4.2K", Scr. Metall. (1981), Volume 15, pp.353–356. Cerca con Google

[17] Troitskii, O.A. "The electroplastic effect in metals", Dislocations Solids. 8 Basic Probl. Appl. (1984), Volume 1, pp.497–540. Cerca con Google

[18] Sprecher, A.F.; Mannan, S.L.; Conrad, H. "Overview no. 49 On The Mechanisms For The Electroplastic Effect In Metals", Acta Metall. (1986), Volume 34, pp.1145–1162. Cerca con Google

[19] Kopanev, A.A. "The nature of the electroplastic effect in metals", Strength Mater. (1991), Volume 23, pp.55–59. Cerca con Google

[20] Molotskii, M.I.; Fleurov, V. "Magnetic effect in electroplasticity of metals", Phys. Rev. (1995), Volume 52, pp.829–834. Cerca con Google

[21] Davies, T.J.; Ogwu, A.A. "A possible route to improving the ductility of brittle intermetallic compounds", J. Alloys Compd. (1995), Volume 228, pp.105–111. Cerca con Google

[22] Roschupkin, A.M.; Bataronov, I.L. "Physical basis of the electroplastic deformation of metals", Russ. Phys. J. (1996), Volume 39, pp.230–236. Cerca con Google

[23] Conrad, H. "Influence of an electric or magnetic field on the liquid–solid transformation in materials and on the microstructure of the solid", Mater. Sci. Eng. A (2000), Volume 287, pp.205–212. Cerca con Google

[24] Conrad, H. "Effects of electric current on solid state phase transformations in metals", Mater. Sci. Eng. A (2000), Volume 287, pp.227–237. Cerca con Google

[25] Conrad, H. "Electroplasticity in metals and ceramics", Mater. Sci. Eng. A (2000), Volume 287, pp.276–287. Cerca con Google

[26] Tang, G.; Zheng, M.; Zhu, Y.; Zhang, J.; Fang, W.; Li, Q. "The application of the electro-plastic technique in the cold-drawing of steel wires", J. Mater. Process. Technol. (1998), Volume 84, pp.268–270. Cerca con Google

[27] Tang, G.; Zhang, J.; Zheng, M.; Zhang, J.; Fang, W.; Li, Q. "Experimental study of electroplastic effect on stainless steel wire 304L", Mater. Sci. Eng. A (2000), Volume 281, pp.263–267. Cerca con Google

[28] Livesey, S..; Duan, X.; Priestner, R.; Collins, J. "An electroplastic effect in 314% silicon steel", Scr. Mater. (2001), Volume 44, pp.803–809. Cerca con Google

[29] Levitin, V..; Loskutov, S.. "The effect of a current pulse on the fatigue of titanium alloy", Solid State Commun. (2004), Volume 131, pp.181–183. Cerca con Google

[30] Golovin, Y.I. "Magnetoplastic effects in solids", Phys. Solid State (2004), Volume 46, pp.789–824. Cerca con Google

[31] Al’shits, V.I.; Darinskaya, E. V.; Petrzhik, E.A. "In situ investigation of the magnetoplastic effect in NaCl crystals by the continuous etching method", Sov. physics. Solid state (1991), Volume 33, pp.1694–1699. Cerca con Google

[32] Molotskii, M.I. "Possible mechanism of the magnetoplastic effect", Sov. physics. Solid state (1991), Volume 33, pp.1760–1761. Cerca con Google

[33] Bilyk, S.R.; Ramesh, K.T.; Wright, T.W. "Finite deformations of metal cylinders subjected to electromagnetic fields and mechanical forces", J. Mech. Phys. Solids (2005), Volume 53, pp.525–544. Cerca con Google

[34] Xu, Z.; Tang, G.; Tian, S.; Ding, F.; Tian, H. "Research of electroplastic rolling of AZ31 Mg alloy strip", J. Mater. Process. Technol. (2007), Volume 182, pp.128–133. Cerca con Google

[35] Jiang, Y.; Tang, G.; Guan, L.; Wang, S.; Xu, Z.; Shek, C.; Zhu, Y. "Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip", J. Mater. Res. (2008), Volume 23, pp.2685–2691. Cerca con Google

[36] Jiang, Y.; Tang, G.; Shek, C.; Liu, W. "Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment", J. Alloys Compd. (2011), Volume 509, pp.4308–4313. Cerca con Google

[37] Wang, S.; Tang, G.; Xu, Z.; Xin, Y.; Guan, L. "Corrosion behavior of the electroplastic rolled AZ31 magnesium alloy in simulated sea water", Mater. Sci. Technol. (2010), Volume 3. Cerca con Google

[38] Jiang, Y.; Tang, G.; Shek, C.; Zhu, Y.; Xu, Z. "On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy", Acta Mater. (2009), Volume 57, pp.4797–4808. Cerca con Google

[39] Salandro, W.A.; Jones, J.J.; Bunget, C.; Mears, L.; Roth, J.T. Electrically Assisted Forming; Springer Series in Advanced Manufacturing; Springer International Publishing: Cham, (2015); ISBN 978-3-319-08878-5. Cerca con Google

[40] Tilak, T.K.; Jayaprakasam, S.; Padmanabhan, K.A.; Misochenko, A.A.; Stolyarov, V. V.; J.V., T.K.; Jayaprakasam, S.; Padmanabhan, K.A.; Misochenko, A.A.; Stolyarov, V. V.; et al. "On the tensile behaviour of coarse and ultrafine grained NiTi", Mater. Charact. (2019), Volume 149, pp.41–51. Cerca con Google

[41] Stolyarov, V. "Features of Electroplastic Effect in Alloys with Martensite Transformation", Acta Metall. Sin. (English Lett. (2018), Volume 31, pp.1305–1310. Cerca con Google

[42] Stolyarov, V. V "Influence of structure refinement on electroplastic effect in shape memory TiNi alloys", Mater. Phys. Mech. (2015), Volume 24, pp.218–223. Cerca con Google

[43] Stolyarov, V. V "Deformation Behavior of Ultrafine-Grained Materials Under Tension with Current", Russ. Phys. J. (2015), Volume 58, pp.803–807. Cerca con Google

[44] Stolyarov, V. V "Role of structure refinement and electropulse current in the mechanical behavior of shape memory alloy", J. Mach. Manuf. Reliab. (2015), Volume 44, pp.704–709. Cerca con Google

[45] Potapova, A.A.; Resnina, N.N.; Stolyarov, V. V "Shape memory effects in TiNi-based alloys subjected to electroplastic rolling", J. Mater. Eng. Perform. (2014), Volume 23, pp.2391–2395. Cerca con Google

[46] Kukudzhanov, V.N.; Kolomiets-Romanenko, A. V. "Study of the influence of electric current dynamical action on mechanical properties of materials with ordered structure of defects", Mech. Solids (2010), Volume 45, pp.465–475. Cerca con Google

[47] Salandro, W.A.; Bunget, C.; Mears, L.; Wesley, A.S.; Bunget, C.; Mears, L.; Salandro, W.A.; Bunget, C.; Mears, L. "Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal", In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Volume 1; ASME, (2010); pp. 581–590. Cerca con Google

[48] Salandro, W.A.; Bunget, C.; Mears, L. "Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods", J. Manuf. Sci. Eng. (2011), Volume 133, pp.041008. Cerca con Google

[49] Salandro, W.A.; Bunget, C.J.; Mears, L. "Several Factors Affecting the Electroplastic Effect During an Electrically-Assisted Forming Process", J. Manuf. Sci. Eng. (2011), Volume 133, pp.064503. Cerca con Google

[50] Salandro, W.A.; Bunget, C.J.; Mears, L. "A thermal-based approach for determining electroplastic characteristics", Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2012), Volume 226, pp.775–788. Cerca con Google

[51] Bunget, C.; Salandro, W.; Mears, L.; Roth, J.T. "Energy-based modeling of an electrically-assisted forging process", Trans. North Am. Manuf. Res. Inst. SME (2010), Volume 38, pp.647–654. Cerca con Google

[52] Salandro, W.A.; Bunget, C.; Mears, L. "Modeling the Electroplastic Effect During Electrically-Assisted Forming of 304 Stainless Steel", Proc. Asme Int. Manuf. Sci. Eng. Conf. 2012 (2012), pp.93–102. Cerca con Google

[53] Salandro, W.; Roth, J. "Formation of 5052 aluminum channels using electrically-assisted manufacturing (eam)", In Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference; (2009); pp. 1–10. Cerca con Google

[54] Salandro, W.A.; Jones, J.J.; Mcneal, T.A.; Roth, J.T.; Erie, P.S.; Hong, S.; Smith, M.T. "Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments", J. Manuf. Sci. Eng. (2010), Volume 132, pp.1–11. Cerca con Google

[55] Baranov, S.A.; Staschenko, V.I.; Sukhov, A. V; Troitskii, O.A.; Tyapkin, A. V "Electroplastic Metal Cutting", Russ. Electr. Eng. (2011), Volume 82, pp.477–479. Cerca con Google

[56] Xu, Z.; Wang, H.; Sun, Z.; Ye, Y.; Tang, G. "Effect of electropulsing-assisted turning process on AISI 5120 cementation steel", Mater. Sci. Technol. (United Kingdom) (2017), Volume 33, pp.1454–1460. Cerca con Google

[57] Hameed, S.; González Rojas, H.A.; Sánchez Egea, A.; Alberro, A.N. "Electroplastic cutting influence on power consumption during drilling process", Int. J. Adv. Manuf. Technol. (2016), Volume 87, pp.1835–1841. Cerca con Google

[58] Sánchez Egea, A.; González Rojas, H.A.; Montilla Montaña, C.A.; Kallewaard Echeverri, V. "Effect of electroplastic cutting on the manufacturing process and surface properties", J. Mater. Process. Technol. (2015), Volume 222, pp.327–334. Cerca con Google

[59] Sánchez Egea, A.; González-Rojas, H.A.; Montilla-Montaña, C.A.; Kallewaard-Echeverri, V. "Turning Process Assisted in situ by Short Time Current Pulses", Procedia Eng. (2015), Volume 132, pp.507–512. Cerca con Google

[60] Jones, E.; Jones, J.J.; Mears, L. "Empirical Modeling of Direct Electric Current Effect on Machining Cutting Force", In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference; (2016); pp. 1–7. Cerca con Google

[61] Kinsey, B.; Cullen, G.; Jordan, A.; Mates, S. "Investigation of electroplastic effect at high deformation rates for 304SS and Ti – 6Al – 4V", CIRP Ann. - Manuf. Technol. (2013), Volume 62, pp.279–282. Cerca con Google

[62] Fan, R.; Magargee, J.; Hu, P.; Cao, J. "Materials Science & Engineering A In fl uence of grain size and grain boundaries on the thermal and mechanical behavior of 70 / 30 brass under electrically-assisted deformation", Mater. Sci. Eng. A (2013), Volume 574, pp.218–225. Cerca con Google

[63] Magargee, J.; Morestin, F.; Cao, J. "Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation", J. Eng. Mater. Technol. (2013), Volume 135, pp.041003. Cerca con Google

[64] Magargee, J.; Fan, R.; Cao, J. "Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation", J. Manuf. Sci. Eng. (2013), Volume 135, pp.061022. Cerca con Google

[65] Sánchez Egea, A.; González Rojas, H.A.; Celentano, D.J.; Travieso-Rodríguez, J.A.; Llumà i Fuentes, J. "Electroplasticity-assisted bottom bending process", J. Mater. Process. Technol. (2014), Volume 214, pp.2261–2267. Cerca con Google

[66] Chu, X.R.; Wang, L.; Lin, S.X.; Yue, Z.M.; Gao, J. "Experimental Investigation on Formability of AZ31B Magnesium Alloy V-Bending Under Pulse Current", Acta Metall. Sin. (English Lett. (2018), Volume 31, pp.1249–1257. Cerca con Google

[67] Li, X.; Zhou, Q.; Zhao, S.; Chen, J. "Effect of pulse current on bending behavior of ti6al4v alloy", Procedia Eng. (2014), Volume 81, pp.1799–1804. Cerca con Google

[68] Gennari, C.; Pezzato, L.; Simonetto, E.; Gobbo, R.; Forzan, M.; Calliari, I. "Investigation of Electroplastic Effect on Four Grades of Duplex Stainless Steels", Materials (Basel). (2019), Volume 12, pp.1911. Cerca con Google

[69] Xu, H.; Liu, X.; Zhang, D.; Zhang, X. "Minimizing serrated flow in Al-Mg alloys by electroplasticity", J. Mater. Sci. Technol. (2019), Volume 35, pp.1108–1112. Cerca con Google

[70] Park, J.-W.; Jeong, H.-J.; Jin, S.-W.; Kim, M.-J.; Lee, K.; Kim, J.J.; Hong, S.-T.; Han, H.N. "Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy", Mater. Charact. (2017), Volume 133, pp.70–76. Cerca con Google

[71] Wang, X.; Xu, J.; Shan, D.; Guo, B.; Cao, J. "Effects of specimen and grain size on electrically-induced softening behavior in uniaxial micro-tension of AZ31 magnesium alloy: Experiment and modeling", Mater. Des. (2017), Volume 127, pp.134–143. Cerca con Google

[72] Xu, X.; Zhao, Y.; Wang, X.; Zhang, Y.; Ning, Y. "Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy", Mater. Sci. Eng. A (2016), Volume 654, pp.278–281. Cerca con Google

[73] Kuang, J.; Low, T.S.E.; Niezgoda, S.R.; Li, X.; Geng, Y.; Luo, A.A.; Tang, G. "Abnormal texture development in magnesium alloy Mg-3Al-1Zn during large strain electroplastic rolling: Effect of pulsed electric current", Int. J. Plast. (2016), Volume 87, pp.86–99. Cerca con Google

[74] Kuang, J.; Li, X.; Zhang, R.; Ye, Y.; Luo, A.A.; Tang, G. "Enhanced rollability of Mg 3Al 1Zn alloy by pulsed electric current: a comparative study", Mater. Des. (2016), Volume 100, pp.204–216. Cerca con Google

[75] Jiang, T.; Peng, L.; Yi, P.; Lai, X. "Flow behavior and plasticity of Ti-6Al-4V under different electrically assisted treatments", Mater. Res. Express (2016), Volume 3. Cerca con Google

[76] Lin, S.X.; Chu, X.R.; Bao, W.K.; Gao, J.; Ruan, L.Q. "Experimental investigation of pulse current on mechanical behaviour of AZ31 alloy", Mater. Sci. Technol. (2015), Volume 31, pp.1131–1138. Cerca con Google

[77] Jiang, Y. bin; Guan, L.; Tang, G. yi; Cheng, B.; Liu, D. bo "Microstructure and texture evolution of Mg-3Zn-1Al magnesium alloy during large-strain electroplastic rolling", Int. J. Miner. Metall. Mater. (2015), Volume 22, pp.411–416. Cerca con Google

[78] Jeong, H.J.; Park, J. won; Jeong, K.J.; Hwang, N.M.; Hong, S.T.; Han, H.N. "Effect of Pulsed Electric Current on TRIP-Aided Steel", Int. J. Precis. Eng. Manuf. - Green Technol. (2019), Volume 6, pp.315–327. Cerca con Google

[79] Sánchez Egea, A.; Peiró, J.J.; Signorelli, J.W.; González Rojas, H.A.; Celentano, D.J. "On the microstructure effects when using electropulsing versus furnace treatments while drawing inox 308L", J. Mater. Res. Technol. (2019), Volume 8, pp.2269–2279. Cerca con Google

[80] Zhao, Z.; Wang, G.; Hou, H.; Zhang, Y.; Wang, Y. "The effect of pulsed current on the shear deformation behavior of Ti-6Al-4V alloy", Sci. Rep. (2018), Volume 8, pp.1–9. Cerca con Google

[81] Gennari, C.; Bruschi, S.; Forzan, M.; Calliari, I. "Electrical assisted uniaxial tensile test on UNS S32205, UNS S32304 and UNS S32750 duplex stainless steels", In Proceedings of the EUROMAT; Thessalonikki, (2017). Cerca con Google

[82] Li, X.; Wang, F.; Li, X.; Zhu, J.; Tang, G. "Mg–3Al–1Zn alloy strips processed by electroplastic differential speed rolling", Mater. Sci. Technol. (United Kingdom) (2017), Volume 33, pp.215–219. Cerca con Google

[83] Jeong, H.J.; Kim, M.J.; Park, J.W.; Yim, C.D.; Kim, J.J.; Kwon, O.D.; Madakashira, P.P.; Han, H.N. "Effect of pulsed electric current on dissolution of Mg 17 Al 12 phases in as-extruded AZ91 magnesium alloy", Mater. Sci. Eng. A (2017), Volume 684, pp.668–676. Cerca con Google

[84] Wu, W.; Xue, T.; Si, C. "Effect of Dislocation Magnification and Solute Atoms Concentration Variation on the Electroplastic Effect of 2024 Aluminum Alloy", Sci. Adv. Mater. (2017), Volume 9, pp.1468–1475. Cerca con Google

[85] Zhao, Z.; Wang, G.; Hou, H.; Han, B.; Zhang, Y.; Zhang, N. "Influence of High-Energy Pulse Current on the Mechanical Properties and Microstructures of Ti-6Al-4V Alloy", J. Mater. Eng. Perform. (2017), Volume 26, pp.5146–5153. Cerca con Google

[86] Molotskii, M.I. "Theoretical basis for electro- and magnetoplasticity", Mater. Sci. Eng. A (2000), Volume 287, pp.248–258. Cerca con Google

[87] Antolovich, S.D.; Conrad, H. "The Effects of Electric Currents and Fields on Deformation in Metals, Ceramics, and Ionic Materials: An Interpretive Survey", Mater. Manuf. Process. (2004), Volume 19, pp.587–610. Cerca con Google

[88] Ho, P.S.; Kwok, T. "Electromigration in metals", Reports Prog. Phys. (1989), Volume 52, pp.301–348. Cerca con Google

[89] Psyk, V.; Risch, D.; Kinsey, B.L.; Tekkaya, A.E.; Kleiner, M. "Electromagnetic forming - A review", J. Mater. Process. Technol. (2011), Volume 211, pp.787–829. Cerca con Google

[90] Jassby, K.M.; Vreeland, T. "Dislocation mobility in pure copper at 4.2°K", Phys. Rev. B (1973), Volume 8, pp.3537–3541. Cerca con Google

[91] Zuev, L.B.; Gromov, V.E.; Kurilov, V.F.; Gurevich, L.I. "Mobility of dislocations in zinc single crystals under the action of current pulses", Sov. Phys. Dokl. (1978), Volume 33, pp.199. Cerca con Google

[92] Lavrentev, F.F.; Salita, O.P.; Vladimirova, V.L. "Dislocation Mobility in the {1122} 〈1123〉 Slip System of Zinc Single Crystals", Phys. Status Solidi (1968), Volume 29, pp.569–574. Cerca con Google

[93] Al’shits, V.I.; Darinskaya, E. V; Perekalina, T.M.; Urusovskaya, A.A. "The motion of dislocations in NaCl crystals under the action of a constant magnetic field", Fiz. Tverd. Tela (1987), Volume 29, pp.467–471. Cerca con Google

[94] Alshits, V.I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E.A. "Magnetoplastic effect: Basic properties and physical mechanisms", Crystallogr. Reports (2003), Volume 48, pp.768–795. Cerca con Google

[95] Alshits, V..; Darinskaya, E..; Petrzhik, E.. "Effects of magnetic fields on the dislocation unlocking from paramagnetic centers in non-magnetic crystals", Mater. Sci. Eng. A (1993), Volume 164, pp.322–326. Cerca con Google

[96] Darinskaya, E. V.; Petrzhik, E.A.; Erofeeva, S.A. "Dislocation motion in InSb crystals under a magnetic field", J. Phys. Condens. Matter (2002), Volume 14, pp.12883–12886. Cerca con Google

[97] Darinskaya, E. V; Petrzhik, E.A.; Erofeev, S.A.; Kisel’, V.P. "Magnetoplastic effect in InSb", J. Exp. Theor. Phys. Lett. (1999), Volume 70, pp.309–313. Cerca con Google

[98] Darinskaya, E.V.; Petrzhik, E.A.; Erofeeva, S.A.; Kisel, V.P. "Magnetoplastic Effect in Compound Semiconductors", Solid State Phenom. (2009), Volume 69–70, pp.503–506. Cerca con Google

[99] Al’shits, V.I.; Darinskaya, E. V "Magnetoplastic effect in LiF crystals and longitudinal spin relaxation", JETP Lett. (1999), Volume 70, pp.761–766. Cerca con Google

[100] Al’shits, V.I.; Darinskaya, E. V; Mikhina, E.Y.; Petrzhik, E.A. "On the nature of the influence of an electric current on the magnetically stimulated microplasticity of Al single crystals", JETP Lett. (1998), Volume 67, pp.832–838. Cerca con Google

[101] Al’shits, V.I.; Darinskaya, E. V; Kazakova, O.L. "Influence of the concentration of Ca impurity on the magnetic threshold of the magnetoplastic effect in NaCl crystals", Phys. Solid State (1998), Volume 40, pp.70–73. Cerca con Google

[102] Al’shits, V.I.; Darinskaya, E. V; Kazakova, O.L.; Mikhina, E.Y.; Petrzhik, E.A. "Magnetoplastic effect and spin-lattice relaxation in a dislocation-paramagnetic-center system", JETP Lett. (1996), Volume 63, pp.668–673. Cerca con Google

[103] Alshits, V.I.; Darinskaya, E.V.; Kazakova, O.L.; Mikhina, E.Y.; Petrzhik, E.A. "Magnetoplastic effect in non-magnetic crystals and internal friction", J. Alloys Compd. (1994), Volume 211–212, pp.548–553. Cerca con Google

[104] Al’shits, V.I.; Darinskaya, E. V; Petrzhik, E.A.; Caffrey, J.F. "Magnetoplastic effect in aluminum single-crystals", Sov. physics. Solid state (1992), Volume 34, pp.81–83. Cerca con Google

[105] Al’shits, V.I.; Darinskaya, E. V; Gektina, I. V; Lavrent’ev, F.F. "Investigation of Magnetoplastic Effect in Zinc Single Crystals", Kristallografiya (1990), Volume 35, pp.1014–1016. Cerca con Google

[106] Golovin, Y.I.; Morgunov, R.B.; Zhulikov, S.E. "The role of internal mechanical stresses in dislocation motion stimulated by magnetic field", Crystallogr. Reports (1998), Volume 43, pp.640–644. Cerca con Google

[107] Nowick, A.S. Anelastic relaxation in crystalline solids; Elsevier, (2012); Vol. 1; ISBN 0323143318. Cerca con Google

[108] Zhao, J.; Wang, G.X.; Dong, Y.; Ye, C. "Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing", J. Appl. Phys. (2017), Volume 122. Cerca con Google

[109] Ruszkiewicz, B.J.; Mears, L.; Roth, J.T. "Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum", J. Manuf. Sci. Eng. (2018), Volume 140, pp.091014. Cerca con Google

[110] Nguyen-Tran, H.D.; Oh, H.S.; Hong, S.T.; Han, H.N.; Cao, J.; Ahn, S.H.; Chun, D.M. "A review of electrically-assisted manufacturing", Int. J. Precis. Eng. Manuf. - Green Technol. (2015), Volume 2, pp.365–376. Cerca con Google

[111] Ross, C.D.; Kronenberger, T.J.; Roth, J.T. "Effect of dc on the Formability of Ti–6Al–4V", J. Eng. Mater. Technol. (2009), Volume 131, pp.031004. Cerca con Google

[112] Ng, M.K.; Fan, Z.; Gao, R.X.; Smith, E.F.; Cao, J. "Characterization of electrically-assisted micro-rolling for surface texturing using embedded sensor", CIRP Ann. - Manuf. Technol. (2014), Volume 63, pp.269–272. Cerca con Google

[113] Zhu, R.F.; Tang, G.Y.; Shi, S.Q.; Fu, M.W. "Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy", Mater. Des. (2013), Volume 44, pp.606–611. Cerca con Google

[114] Zhu, R.; Tang, G.; Shi, S.; Fu, M. "Effect of electroplastic rolling on deformability and oxidation of NiTiNb shape memory alloy", J. Mater. Process. Technol. (2013), Volume 213, pp.30–35. Cerca con Google

[115] Pasechnik, N.V.; Zarapin, A.Y.; Chichenev, N.A. "The rolling equipment of new generation for manufacturing the precise strips from difficultly deformed materials", Shuiyun Gongcheng/Port & Waterw. Eng. (1998), Volume n 11, pp.58–64. Cerca con Google

[116] Troitskii, O.A.; Spitsyn, V.I.; Sokolov, N. V.; Ryzhkov, V.G. "Application of high-density current in plastic working of metals", Phys. Status Solidi (1979), Volume 52, pp.85–93. Cerca con Google

[117] Yao, K.-F.; Wang, J.; Zheng, M.; Yu, P.; Zhang, H. "A research on electroplastic effects in wire-drawing process of an austenitic stainless steel", Scr. Mater. (2001), Volume 45, pp.533–539. Cerca con Google

[118] Tang, G.; Zhang, J.; Yan, Y.; Zhou, H.; Fang, W. "The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire", J. Mater. Process. Technol. (2003), Volume 137, pp.96–99. Cerca con Google

[119] Zimniak, Z.; Radkiewicz, G. "The electroplastic effect in the cold-drawing of copper wires for the automotive industry", Arch. Civ. Mech. Eng. (2008), Volume 8, pp.173–179. Cerca con Google

[120] Stashenko, V.I.; Troitskii, O.A.; Novikova, N.N. "Electroplastic drawing of a cast-iron wire", J. Mach. Manuf. Reliab. (2009), Volume 38, pp.182–184. Cerca con Google

[121] Stashenko, V.I.; Troitskii, O.A.; Novikova, N.N. "Electroplastic drawing medium-carbon steel", J. Mach. Manuf. Reliab. (2009), Volume 38, pp.369–372. Cerca con Google

[122] Wang, S.Z. Effect of Electric Pulses on Drawability and Corrosion Property of AZ31 Magnesium Alloy, Tsinghua University, (2009). Cerca con Google

[123] Mai, J.; Peng, L.; Lai, X.; Lin, Z. "Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate", J. Mater. Process. Technol. (2013), Volume 213, pp.314–321. Cerca con Google

[124] Kim, W.; Yeom, K.H.; Thien, N.T.; Hong, S.T.; Min, B.K.; Ik Oh, S.; Kim, M.J.; Han, H.N.; Lee, H.W. "Electrically assisted blanking using the electroplasticity of ultra-high strength metal alloys", CIRP Ann. - Manuf. Technol. (2014), Volume 63, pp.273–276. Cerca con Google

[125] Asghar, J.; Reddy, N. V. "Importance of Tool Configuration in Incremental Sheet Metal Forming of Difficult to Form Materials using Electro-Plasticity", In Proceedings of the Proceedings of the World Congress on Engineering; (2013); Vol. III, pp. 1–5. Cerca con Google

[126] Jones, J.J.; Mears, L. "A Process Comparison of Simple Stretch Forming Using Both Conventional and Electrically-Assisted Forming Techniques", In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Volume 1; ASME, (2010); pp. 623–631. Cerca con Google

[127] Ferrando, W.A. The concept of electrically assisted friction stir welding (EAFSW) and application to the processing of various metals; NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SURVIVABILITY …, (2008); Cerca con Google

[128] Pitschman, M.; Dolecki, J.W.; Johns, G.W.; Zhou, J.; Roth, J.T. "Application of Electric Current in Friction Stir Welding", In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Volume 1; ASME, (2010); pp. 185–189. Cerca con Google

[129] Potluri, H.; Jones, J.J.; Mears, L. "Comparison of Electrically-Assisted and Conventional Friction Stir Welding Processes by Feed Force and Torque", (2013), pp.V001T01A055. Cerca con Google

[130] Xu, Z.T.; Peng, L.F.; Yi, P.Y.; Lai, X.M. "Study on a Novel Electrical-Assisted Pressure Welding Process of Thin Metallic Foils", Appl. Mech. Mater. (2012), Volume 271–272, pp.147–151. Cerca con Google

[131] Hosoi, A.; Yano, T.; Morita, Y.; Ju, Y. "Quantitative evaluation of the displacement distribution and stress intensity factor of fatigue cracks healed by a controlled high-density electric current field", Fatigue Fract. Eng. Mater. Struct. (2014), Volume 37, pp.1025–1033. Cerca con Google

[132] Qin, R.; Su, S. "Thermodynamics of crack healing under electropulsing", J. Mater. Res. (2002), Volume 17, pp.2048–2052. Cerca con Google

[133] Xiao, S.H.; Guo, J.D.; Wu, S.D.; He, G.H.; Li, S.X. "Recrystallization in fatigued copper single crystals under electropulsing", Scr. Mater. (2002), Volume 46, pp.1–6. Cerca con Google

[134] Song, H.; Wang, Z.J. "Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing", Mater. Sci. Eng. A (2008), Volume 490, pp.1–6. Cerca con Google

[135] Liu, Y.; Fan, J.; Zhang, H.; Jin, W.; Dong, H.; Xu, B. "Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment", J. Alloys Compd. (2015), Volume 622, pp.229–235. Cerca con Google

[136] Rahnama, A.; Qin, R.S. "The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel", Mater. Sci. Eng. A (2015), Volume 627, pp.145–152. Cerca con Google

[137] Lu, W.J.; Zhang, X.F.; Qin, R.S. "Stability of precipitates under electropulsing in 316L stainless steel", Mater. Sci. Technol. (2015), Volume 31, pp.1530–1535. Cerca con Google

[138] Sheng, Y.; Hua, Y.; Wang, X.; Zhao, X.; Chen, L.; Zhou, H.; Wang, J.; Berndt, C.C.; Li, W. "Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties", Materials (Basel). (2018), Volume 11, pp.185. Cerca con Google

[139] Zhu, R.; Jiang, Y.; Guan, L.; Li, H.; Tang, G. "Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy", J. Alloys Compd. (2016), Volume 658, pp.548–554. Cerca con Google

[140] Wang, Z. jin; Song, H. "Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet", J. Alloys Compd. (2009), Volume 470, pp.522–530. Cerca con Google

[141] SONG, H.; WANG, Z. jin; GAO, T. jun "Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet", Trans. Nonferrous Met. Soc. China (English Ed. (2007), Volume 17, pp.87–92. Cerca con Google

[142] Guan, L.; Tang, G.; Jiang, Y.; Chu, P.K. "Texture evolution in cold-rolled AZ31 magnesium alloy during electropulsing treatment", J. Alloys Compd. (2009), Volume 487, pp.309–313. Cerca con Google

[143] Ma, B.; Zhao, Y.; Ma, J.; Guo, H.; Yang, Q. "Formation of local nanocrystalline structure in a boron steel induced by electropulsing", J. Alloys Compd. (2013), Volume 549, pp.77–81. Cerca con Google

[144] Qin, R.S.; Rahnama, A.; Lu, W.J.; Zhang, X.F.; Elliott-Bowman, B. "Electropulsed steels", Mater. Sci. Technol. (2014), Volume 30, pp.1040–1044. Cerca con Google

[145] Rahnama, A.; Qin, R.S. "Electropulse-induced microstructural evolution in a ferritic-pearlitic 0.14% C steel", Scr. Mater. (2015), Volume 96, pp.17–20. Cerca con Google

[146] Zhang, W.; Sui, M.; Zhou, Y.; He, G.; Guo, J.; Li, D. "Electropulsing-induced evolution of microstructures in materials", Acta Metall. Sin. (2003), Volume 39, pp.1009–1018. Cerca con Google

[147] Klinger, L.; Levin, L.; Srolovitz, D.J. "Interface Diffusion under an Electric Field. Interface Evolution", Mater. Sci. Forum (1996), Volume 207–209, pp.109–112. Cerca con Google

[148] Dolinsky, Y.; Elperin, T. "Thermodynamics of phase transitions in current-carrying conductors", Phys. Rev. B (1993), Volume 47, pp.14778. Cerca con Google

[149] Lu, W.J.; Zhang, X.F.; Qin, R.S. "Electropulsing-induced strengthening of steel at high temperature", Philos. Mag. Lett. (2014), Volume 94, pp.688–695. Cerca con Google

[150] Zhou, Y.; Zhang, W.; Wang, B.; He, G.; Guo, J. "Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing", J. Mater. Res. (2002), Volume 17, pp.2105–2111. Cerca con Google

[151] Zhou, Y.; Zhang, W.; Wang, B.; Guo, J. "Ultrafine-grained microstructure in a Cu-Zn alloy produced by electropulsing treatment", J. Mater. Res. (2003), Volume 18, pp.1991–1997. Cerca con Google

[152] Ye, X.; Thtse, Z.; Tang, G.; Song, G. "Retraction notice to Effect of electroplastic rolling on deformability, mechanical property and microstructure evolution of Ti-6Al-4V alloy strip", Mater. Charact. (2017), Volume 132, pp.467. Cerca con Google

[153] Zhou, Y.; Guo, J.; Zhang, W.; He, G. "Influence of electropulsing on nucleation during phase transformation", J. Mater. Res. (2002), Volume 17, pp.3012–3014. Cerca con Google

[154] Li, X.; Wang, S.; Zhao, S.; Ding, W.; Chen, J.; Wu, G. "Effect of Pulse Current on the Tensile Deformation of SUS304 Stainless Steel", J. Mater. Eng. Perform. (2015), Volume 24, pp.5065–5070. Cerca con Google

[155] Qin, R.S.; Zhou, B.L. "Effect of electric current pulses on grain size in castings", Int. J. Non-Equilibrium Process. (1998), Volume 11, pp.77–86. Cerca con Google

[156] Rahnama, A.; Qin, R. "Room temperature texturing of austenite/ferrite steel by electropulsing", Sci. Rep. (2017), Volume 7, pp.1–6. Cerca con Google

[157] Wang, X.; Dai, W.; Ma, C.; Zhao, X. "Effect of electric current direction on recrystallization rate and texture of a Cu-Zn alloy", J. Mater. Res. (2013), Volume 28, pp.1378–1385. Cerca con Google

[158] Jiang, Y.; Guan, L.; Tang, G.; Shek, C.; Zhang, Z. "Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip", Mater. Sci. Eng. A (2011), Volume 528, pp.5627–5635. Cerca con Google

CHAPTER 2 Cerca con Google

[1] Liu, X.; Lan, S.; Ni, J. "Experimental study of Electro-Plastic Effect on Advanced High Strength Steels", Mater. Sci. Eng. A (2013), Volume 582, pp.211–218. Cerca con Google

[2] Reed-Hill, R.E. "Physical metallurgy principles". Cerca con Google

[3] Tiwari, G.P.; Ramanujan, R. V. "Relation between the electron to atom ratio and some properties of metallic systems", J. Mater. Sci. (2001), Volume 36, pp.271–283. Cerca con Google

[4] Thornton, P.R.; Mitchell, T.E.; Hirsch, P.B. "The dependence of cross-slip on stacking-fault energy in face-centred cubic metals and alloys", Philos. Mag. (1962), Volume 7, pp.1349–1369. Cerca con Google

[5] Smallman, R.E.; Westmacott, & K.H.; Westucott, K.H. "Stacking faults in face-centred cubic metals and alloys Stacking Faults in Face-Centred Cubic Metals and Alloyst", (2010), pp.37–41. Cerca con Google

[6] Honeycombe, R.W.K. The plastic deformation of metals; Edward Arnold London, (1968); Vol. 231;. Cerca con Google

[7] Magargee, J.; Fan, R.; Cao, J. "Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation", J. Manuf. Sci. Eng. (2013), Volume 135, pp.061022. Cerca con Google

[8] Conrad, H. "Some effects of an electric field on the plastic deformation of metals and ceramics", Mater. Res. Innov. (1998), Volume 2, pp.1–8. Cerca con Google

[9] Magargee, J.; Fan, R. "Analysis and Observations of Current Density Sensitivity and Thermaliy Activated Mechanicai Beiiavior in Eiectricaiiy-Assisted Deformation", (2013), Volume 135. Cerca con Google

[10] Touloukian, Y.S.; Ho, C.Y. "Properties of aluminium and aluminium alloys. thermoplastic properties", Res. Center, Purdue Univ. West Lafyette, IN, Rep. (1973), Volume 2. Cerca con Google

[11] Molotskii, M.I. "Theoretical basis for electro- and magnetoplasticity", Mater. Sci. Eng. A (2000), Volume 287, pp.248–258. Cerca con Google

[12] Mclean, D. "Dislocations and Plastic Deformation", Int. Mater. Rev. (1974), Volume 19, pp.268–268. Cerca con Google

[13] Breda, M.; Michieletto, F.; Beridze, E.E.E.; Gennari, C. "Experimental Study on Electroplastic Effect in AISI 316L Austenitic Stainless Steel", Appl. Mech. Mater. (2015), Volume 792, pp.568–571. Cerca con Google

[14] Perkins, T.A.; Kronenberger, T.J.; Roth, J.T. "Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working", J. Manuf. Sci. Eng. (2007), Volume 129, pp.84. Cerca con Google

[15] Ross, C.; Roth, J.T. "The Effects of DC Current on the Tensile Properties of Metals", (2008), pp.363–372. Cerca con Google

[16] Salandro, W.A.; Bunget, C.J.; Mears, L. "A thermal-based approach for determining electroplastic characteristics", Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2012), Volume 226, pp.775–788. Cerca con Google

[17] Magargee, J.; Morestin, F.; Cao, J. "Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation", J. Eng. Mater. Technol. (2013), Volume 135, pp.041003. Cerca con Google

[18] Fan, R.; Magargee, J.; Hu, P.; Cao, J. "Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation", Mater. Sci. Eng. A (2013), Volume 574, pp.218–225. Cerca con Google

CHAPTER 3 Cerca con Google

[1] Sprecher, A.F.; Mannan, S.L.; Conrad, H. "Overview no. 49 On The Mechanisms For The Electroplastic Effect In Metals", Acta Metall. (1986), Volume 34, pp.1145–1162. Cerca con Google

[2] Lutterotti, L. "Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction", Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (2010), Volume 268, pp.334–340. Cerca con Google

[3] Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J. "Texture, residual stress and structural analysis of thin films using a combined X-ray analysis", Thin Solid Films (2004), Volume 450, pp.34–41. Cerca con Google

[4] Lutterotti, L.; Bortolotti, M.; Ischia, G.; Lonardelli, I.; Wenk, H.R. "Rietveld texture analysis from diffraction images", Zeitschrift fur Krist. Suppl. (2007), Volume 1, pp.125–130. Cerca con Google

[5] Hilley, M.E.; Larson, J.A.; Jatczak, C.F.; Ricklefs, R.E. "Residual Stress Measurement by X-ray Diffraction-SAE J784a, Society of Automotive Engineers", Inc., New York, New York (1971). Cerca con Google

CHAPTER 4 Cerca con Google

[1] Froes, F.H. Titanium: Physical Metallurgy Processing and Applications; (1989); Vol. 53; ISBN 9788578110796. Cerca con Google

[2] Bhadeshia, H.K.D.H. Metallurgy of Titanium and its Alloys Available online: https://www.phase-trans.msm.cam.ac.uk/2004/titanium/titanium.html (accessed on Aug 7, 2019). Vai! Cerca con Google

[3] Metallurgical Materials Science and Alloy Design - Titanium alloys Available online: http://www.dierk-raabe.com/titanium-alloys/ (accessed on Aug 8, 2019). Vai! Cerca con Google

[4] Hume-Rothery, W.; Powell, H.M. "On the Theory of Super-Lattice Structures in Alloys", Zeitschrift für Krist. - Cryst. Mater. (1935), Volume 91, pp.23–47. Cerca con Google

[5] Hume-Rothery, W. "The structure of metals and alloys", Indian J. Phys. (1969), Volume 11, pp.74. Cerca con Google

[6] Hume-Rothery, W. "Atomic theory for students of metallurgy", (1952). Cerca con Google

[7] Froes, F.H. "Titanium: Alloying", Encycl. Mater. Sci. Technol. (2004), pp.9361–9364. Cerca con Google

[8] Zhang, B.; Wang, J.; Wang, Y.; Wang, Y.; Li, Z. "Strain-rate-dependent tensile response of Ti-5Al-2.5Sn alloy", Materials (Basel). (2019), Volume 12. Cerca con Google

[9] El-Domiaty, A. "The effect of strain, strain rate and temperature on formability of Ti-6Al-4V alloy", J. Mater. Process. Tech. (1992), Volume 32, pp.243–251. Cerca con Google

[10] Ross, C.D.; Kronenberger, T.J.; Roth, J.T. "Effect of dc on the Formability of Ti–6Al–4V", J. Eng. Mater. Technol. (2009), Volume 131, pp.031004. Cerca con Google

[11] Wang, Z. jin; Song, H. "Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet", J. Alloys Compd. (2009), Volume 470, pp.522–530. Cerca con Google

[12] Park, J.-W.; Jeong, H.-J.; Jin, S.-W.; Kim, M.-J.; Lee, K.; Kim, J.J.; Hong, S.-T.; Han, H.N. "Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy", Mater. Charact. (2017), Volume 133, pp.70–76. Cerca con Google

[13] Jiang, Y. bin; Guan, L.; Tang, G. yi; Cheng, B.; Liu, D. bo "Microstructure and texture evolution of Mg-3Zn-1Al magnesium alloy during large-strain electroplastic rolling", Int. J. Miner. Metall. Mater. (2015), Volume 22, pp.411–416. Cerca con Google

[14] Jones, J.J.; Mears, L.; Roth, J.T. "Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability", J. Manuf. Sci. Eng. (2012), Volume 134, pp.034504. Cerca con Google

[15] Wang, S.Z. Effect of Electric Pulses on Drawability and Corrosion Property of AZ31 Magnesium Alloy, Tsinghua University, (2009). Cerca con Google

[16] Chu, X.R.; Wang, L.; Lin, S.X.; Yue, Z.M.; Gao, J. "Experimental Investigation on Formability of AZ31B Magnesium Alloy V-Bending Under Pulse Current", Acta Metall. Sin. (English Lett. (2018), Volume 31, pp.1249–1257. Cerca con Google

[17] XIE, H.Y.; WANG, Q.; Peng, F.; LIU, K.; DONG, X.H.; WANG, J.F. "Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests", Trans. Nonferrous Met. Soc. China (English Ed. (2015), Volume 25, pp.2686–2692. Cerca con Google

[18] Magargee, J.; Fan, R.; Cao, J. "Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation", J. Manuf. Sci. Eng. (2013), Volume 135, pp.061022. Cerca con Google

[19] Fonstein, N. "Advanced high strength sheet steels: Physical metallurgy, design, processing, and properties", Adv. High Strength Sheet Steels Phys. Metall. Des. Process. Prop. (2015), pp.1–396. Cerca con Google

[20] De Cooman, B.C.; Estrin, Y.; Kim, S.K. "Twinning-induced plasticity (TWIP) steels", Acta Mater. (2018), Volume 142, pp.283–362. Cerca con Google

[21] Kim, J.; Lee, S.J.; De Cooman, B.C. "Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity", Scr. Mater. (2011), Volume 65, pp.363–366. Cerca con Google

[22] De Cooman, B.C.; Kwon, O.; Chin, K.-G. "State-of-the-knowledge on TWIP steel", Mater. Sci. Technol. (2012), Volume 28, pp.513–527. Cerca con Google

[23] El-Danaf, E.; Kalidindi, S.R.; Doherty, R.D. "Influence of grain size and stacking-fault energy on deformation twinning in fcc metals", Metall. Mater. Trans. A (1999), Volume 30, pp.1223–1233. Cerca con Google

[24] De Cooman, B.C.; Kwon, O.; Chin, K.G. "State-of-the-knowledge on TWIP steel", Mater. Sci. Technol. (2012), Volume 28, pp.513–527. Cerca con Google

[25] Martin, S.; Wolf, S.; Martin, U.; Krüger, L.; Rafaja, D. "Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature", Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2016), Volume 47, pp.49–58. Cerca con Google

[26] De Cooman, B.C.; Chin, K.; Kim, J. "High Mn TWIP Steels for Automotive Applications", New Trends Dev. Automot. Syst. Eng. (2011). Cerca con Google

[27] Idrissi, H.; Renard, K.; Schryvers, D.; Jacques, P.J. "On the relationship between the twin internal structure and the work-hardening rate of TWIP steels", Scr. Mater. (2010), Volume 63, pp.961–964. Cerca con Google

[28] Martin, S.; Ullrich, C.; Imek, D.; Martin, U.; Rafaja, D. "Stacking fault model of-martensite and its DIFFaX implementation", J. Appl. Crystallogr. (2011), Volume 44, pp.779–787. Cerca con Google

[29] Zimniak, Z.; Dobras, D. "Electroplastic effect of high manganese austenitic steel", Arch. Metall. Mater. (2019), Volume 64, pp.431–436. Cerca con Google

[30] Breda, M.; Calliari, I.; Bruschi, S.; Forzan, M.; Ghiotti, A.; Michieletto, F.; Spezzapria, M.; Gennari, C. "Influence of stacking fault energy in electrically assisted uniaxial tension of FCC metals", Mater. Sci. Technol. (2017), Volume 33, pp.317–325. Cerca con Google

[31] De Paula Martins, J.; De Carvalho, A.L.M.; Padilha, A.F. "Texture analysis of cold rolled and annealed aluminum alloy produced by twin-roll casting", Mater. Res. (2012), Volume 15, pp.97–102. Cerca con Google

[32] Li, S.; Zhao, Q.; Liu, Z.; Li, F. "A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys", J. Mater. Eng. Perform. (2018), Volume 27, pp.3350–3373. Cerca con Google

[33] Hirsch, J. "Texture evolution during rolling of aluminium alloys", TMS Light Met. (2008), pp.1071–1077. Cerca con Google

[34] Magargee, J.; Morestin, F.; Cao, J. "Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation", J. Eng. Mater. Technol. (2013), Volume 135, pp.041003. Cerca con Google

[35] Lutterotti, L. "Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction", Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (2010), Volume 268, pp.334–340. Cerca con Google

[36] Mittemeijer, E.J.; Welzel, U. "The “state of the art” of the diffraction analysis of crystallite size and lattice strain", Zeitschrift fur Krist. (2008), Volume 223, pp.552–560. Cerca con Google

[37] Ferry, A.; Jacobsson, P. "Curve Fitting and Deconvolution of Instrumental Broadening: A Simulated Annealing Approach", Appl. Spectrosc. (2005), Volume 49, pp.273–278. Cerca con Google

[38] Ungár, T. "Microstructural parameters from X-ray diffraction peak broadening", Scr. Mater. (2004), Volume 51, pp.777–781. Cerca con Google

[39] Scardi, P.; Leoni, M. "Whole powder pattern modelling", Acta Crystallogr. Sect. A Found. Crystallogr. (2002), Volume 58, pp.190–200. Cerca con Google

[40] Williamson, G..; Hall, W.. "X-ray line broadening from filed aluminium and wolfram", Acta Metall. (1953), Volume 1, pp.22–31. Cerca con Google

[41] Williamson, G.K.; Smallman, R.E. "III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum", Philos. Mag. (1956), Volume 1, pp.34–46. Cerca con Google

[42] Gunn, R. Duplex Stainless Steels; (1997); ISBN 9781884207617. Cerca con Google

[43] Nilsson, J.O. "Super Duplex Stainless-Steels", Mater. Sci. Technol. (1992), Volume 8, pp.685–700. Cerca con Google

[44] Nilsson, J.O. "The physical metallurgy of duplex stainless steels", In Proceedings of the Duplex stainless steels; Nilsson, J.O., Ed.; KCI Publishing: Maastricht,Netherlands, (1997); pp. 73–82. Cerca con Google

[45] Lippold, J.C.; Savage, W.F. "Solidification of Austenitic Stainless Steel Weldments : Part I — A Proposed Mechanism The distribution and morphology of delta ferrite is dependent", Weld. Res. Suppl. (1979), pp.362s-374s. Cerca con Google

[46] Knyazeva, M.; Pohl, M. "Duplex Steels: Part I: Genesis, Formation, Structure", Metallogr. Microstruct. Anal. (2013), Volume 2, pp.113–121. Cerca con Google

[47] Gunn, R.N. Duplex Stainless Steels: Microstructure, Properties and Applications; Gunn, R.N., Ed.; 1st ed.; Woodhead: Sawston, United Kingdom, Cambridge, United Kingdom, (1997); ISBN 9781855733183. Cerca con Google

[48] Nilsson, J.O.O. "Super duplex stainless steels", Mater. Sci. Technol. (1992), Volume 8, pp.685–700. Cerca con Google

[49] Calliari, I.; Zanesco, M.; Ramous, E. "Precipitazione di fasi secondarie in un acciaio duplex 2205 trattato isotermicamente", Metall. Ital. (2004), Volume 96, pp.41–45. Cerca con Google

[50] Pérez, A.F.M.; Breda, M.; Calliari, I.; Medina, G.Y.P.; Sandström, R. "Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment", Soldag. Inspeção (2016), Volume 21, pp.165–171. Cerca con Google

[51] Breda, M.; Brunelli, K.; Grazzi, F.; Scherillo, A.; Calliari, I. "Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel", Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2015), Volume 46, pp.577–586. Cerca con Google

[52] Taylor, G.I.; Quinney, H. "The Latent Energy Remaining in a Metal after Cold Working", Proc. R. Soc. A Math. Phys. Eng. Sci. (1934), Volume 143, pp.307–326. Cerca con Google

[53] Herenu, S.; Alvarez-Armas, I.; Armas, A.; Degallaix, S.; Condo, A.; Lovey, F. "Microstructural changes in a Duplex stainless steel during low cycle fatigue", Mater. Test. (2009), Volume 51, pp.359–364. Cerca con Google

[54] Herenu, S.; Alvarez-Armas, I.; Armas, A.F. "The influence of dynamic strain aging on the low cycle fatigue of duplex stainless steel", Scr. Mater. (2001), Volume 45, pp.739–745. Cerca con Google

[55] Fang, Y.L.; Liu, Z.Y.; Song, H.M.; Jiang, L.Z. "Hot deformation behavior of a new austenite-ferrite duplex stainless steel containing high content of nitrogen", Mater. Sci. Eng. A (2009), Volume 526, pp.128–133. Cerca con Google

[56] Bannister, A.C.; Ruiz Ocejo, J.; Gutierrez-Solana, F. "Implications of the yield stress/tensile stress ratio to the SINTAP failure assessment diagrams for homogeneous materials", Eng. Fract. Mech. (2000), Volume 67, pp.547–562. Cerca con Google

[57] Ma, B.; Shuai, J. "Influence of Plastic Deformation Capacity on Failure Behavior of Pipelines", J. Fail. Anal. Prev. (2018), Volume 18, pp.508–518. Cerca con Google

[58] Zhao, J.; Wang, G.X.; Dong, Y.; Ye, C. "Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing", J. Appl. Phys. (2017), Volume 122. Cerca con Google

[59] Sánchez Egea, A.; Peiró, J.J.; Signorelli, J.W.; González Rojas, H.A.; Celentano, D.J. "On the microstructure effects when using electropulsing versus furnace treatments while drawing inox 308L", J. Mater. Res. Technol. (2019), Volume 8, pp.2269–2279. Cerca con Google

[60] Bohnenkamp, U.; Sandström, R.; Grimvall, G. "Electrical resistivity of steels and face-centered-cubic iron", J. Appl. Phys. (2002), Volume 92, pp.4402–4407. Cerca con Google

[61] Peng, R.L.; Gibmeier, J.; Eulert, S.; Johansson, S.; Chai, G.C. "In Situ X-Ray Diffraction Study of Load Partitioning and Microyielding for the Super Duplex Stainless Steel SAF2507 (UNS S32750)", Mater. Sci. Forum (2006), Volume 524–525, pp.847–852. Cerca con Google

[62] Ruszkiewicz, B.J.; Mears, L.; Roth, J.T. "Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum", J. Manuf. Sci. Eng. (2018), Volume 140, pp.091014. Cerca con Google

[63] Rahnama, A.; Qin, R. "Room temperature texturing of austenite/ferrite steel by electropulsing", Sci. Rep. (2017), Volume 7, pp.1–6. Cerca con Google

[64] Zheng, Y.S.; Tang, G.Y.; Kuang, J.; Zheng, X.P. "Effect of electropulse on solid solution treatment of 6061 aluminum alloy", J. Alloys Compd. (2014), Volume 615, pp.849–853. Cerca con Google

[65] Molotskii, M.I. "Theoretical basis for electro- and magnetoplasticity", Mater. Sci. Eng. A (2000), Volume 287, pp.248–258. Cerca con Google

[66] Molotskii, M.I.; Fleurov, V. "Magnetic effect in electroplasticity of metals", Phys. Rev. (1995), Volume 52, pp.829–834. Cerca con Google

[67] Breda, M.; Michieletto, F.; Beridze, E.E.E.; Gennari, C. "Experimental Study on Electroplastic Effect in AISI 316L Austenitic Stainless Steel", Appl. Mech. Mater. (2015), Volume 792, pp.568–571. Cerca con Google

CHAPTER 5 Cerca con Google

[1] Ye, X.; Wang, L.; Tse, Z.T.H.; Tang, G.; Song, G. "Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti–6Al–4V alloy", Mater. Sci. Eng. C (2015), Volume 49, pp.851–860. Cerca con Google

[2] Jeong, H.J.; Park, J. won; Jeong, K.J.; Hwang, N.M.; Hong, S.T.; Han, H.N. "Effect of Pulsed Electric Current on TRIP-Aided Steel", Int. J. Precis. Eng. Manuf. - Green Technol. (2019), Volume 6, pp.315–327. Cerca con Google

[3] Sánchez Egea, A.; González Rojas, H.A.; Celentano, D.J.; Travieso-Rodríguez, J.A.; Llumà i Fuentes, J. "Electroplasticity-assisted bottom bending process", J. Mater. Process. Technol. (2014), Volume 214, pp.2261–2267. Cerca con Google

[4] Ma, B.; Zhao, Y.; Ma, J.; Guo, H.; Yang, Q. "Formation of local nanocrystalline structure in a boron steel induced by electropulsing", J. Alloys Compd. (2013), Volume 549, pp.77–81. Cerca con Google

[5] Ben, D.D.; Yang, H.J.; Ma, Y.R.; Shao, X.H.; Pang, J.C.; Zhang, Z.F. "Rapid hardening of AISI 4340 steel induced by electropulsing treatment", Mater. Sci. Eng. A (2018), Volume 725, pp.28–32. Cerca con Google

[6] Conrad, H. "Influence of an electric or magnetic field on the liquid–solid transformation in materials and on the microstructure of the solid", Mater. Sci. Eng. A (2000), Volume 287, pp.205–212. Cerca con Google

[7] Rahnama, A.; Qin, R.S. "Effect of electric current pulses on the microstructure and niobium carbide precipitates in a ferritic-pearlitic steel at an elevated temperature", J. Mater. Res. (2015), Volume 30, pp.3049–3055. Cerca con Google

[8] Jeong, H.J.; Kim, M.J.; Park, J.W.; Yim, C.D.; Kim, J.J.; Kwon, O.D.; Madakashira, P.P.; Han, H.N. "Effect of pulsed electric current on dissolution of Mg 17 Al 12 phases in as-extruded AZ91 magnesium alloy", Mater. Sci. Eng. A (2017), Volume 684, pp.668–676. Cerca con Google

[9] Xiao, H.; Zhang, K.; Shi, C.; Lu, Z.; Jiang, J. "Influence of electropulsing treatment combined with pre-deformation on ageing behavior and mechanical properties of 5A90 Al-Li alloy", J. Alloys Compd. (2019), Volume 784, pp.1234–1247. Cerca con Google

[10] Hosoi, A.; Nagahama, T.; Ju, Y. "Fatigue crack healing by a controlled high density electric current field", Mater. Sci. Eng. A (2012), Volume 533, pp.38–42. Cerca con Google

[11] Rahnama, A.; Qin, R. "Room temperature texturing of austenite/ferrite steel by electropulsing", Sci. Rep. (2017), Volume 7, pp.1–6. Cerca con Google

[12] Conrad, H. "Effects of electric current on solid state phase transformations in metals", Mater. Sci. Eng. A (2000), Volume 287, pp.227–237. Cerca con Google

[13] Xu, X.; Zhao, Y.; Wang, X.; Zhang, Y.; Ning, Y. "Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy", Mater. Sci. Eng. A (2016), Volume 654, pp.278–281. Cerca con Google

[14] Gallo, F.; Satapathy, S.; Ravi-Chandar, K. "Plastic deformation in electrical conductors subjected to short-duration current pulses", Mech. Mater. (2012), Volume 55, pp.146–162. Cerca con Google

[15] Du, X.N.N.; Yin, S.M.M.; Liu, S.C.C.; Wang, B.Q.Q.; Guo, J.D.D. "Effect of the electropulsing on mechanical properties and microstructure of an ECAPed AZ31 Mg alloy", J. Mater. Res. (2008), Volume 23, pp.1570–1577. Cerca con Google

[16] Zhu, R.; Jiang, Y.; Guan, L.; Li, H.; Tang, G. "Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy", J. Alloys Compd. (2016), Volume 658, pp.548–554. Cerca con Google

[17] Guo, J.D.; Wang, X.L.; Dai, W.B. "Microstructure evolution in metals induced by high density electric current pulses", Mater. Sci. Technol. (2015), Volume 31, pp.1545–1554. Cerca con Google

[18] Qin, R.S.; Samuel, E.I.; Bhowmik, A. "Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels", J. Mater. Sci. (2011), Volume 46, pp.2838–2842. Cerca con Google

[19] Luu, V.; Nguyen, T.; Hong, S.-T.; Jeong, H.-J.; Han, H. "Feasibility of a Two-Stage Forming Process of 316L Austenitic Stainless Steels with Rapid Electrically Assisted Annealing", Metals (Basel). (2018), Volume 8, pp.815. Cerca con Google

[20] Lund, K.; Delblanc, A.; Iversen, A. "Comparing critical pitting temperatures of stainless steels measured electrochemically in NaCl and MgCl2 solutions", Eur. Corros. Congr. EUROCORR 2016 (2016), Volume 3, pp.1934–1942. Cerca con Google

[21] Pezzato, L.; Lago, M.; Brunelli, K.; Breda, M.; Calliari, I. "Effect of the Heat Treatment on the Corrosion Resistance of Duplex Stainless Steels", J. Mater. Eng. Perform. (2018), Volume 27, pp.3859–3868. Cerca con Google

[22] Nilsson, J.-O. "Super duplex stainless steels", Mater. Sci. Technol. (1992), Volume 8, pp.685–700. Cerca con Google

[23] Gennari, C.; Breda, M.; Brunelli, K.; Ramous, E.; Calliari, I. "Influence of small amount of secondary phases on impact toughness of UNS S32205 and Zeron® 100 Duplex Stainless Steel", In Proceedings of the ESSC and DUPLEX 2017 - 9th European Stainless Steel Conference - Science and Market and 5th European Duplex Stainless Steel Conference and Exhibition; (2018). Cerca con Google

[24] Breda, M.; Calliari, I.; Ramous, E.; Pizzo, M.; Corain, L.; Straffelini, G. "Ductile-to-brittle transition in a Zeron© 100 SDSS in wrought and aged conditions", Mater. Sci. Eng. A (2013), Volume 585, pp.57–65. Cerca con Google

[25] Gennari, C.; Pezzato, L.; Piva, E.; Gobbo, R.; Calliari, I. "Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless Steel", Mater. Sci. Eng. A (2018), Volume 729, pp.149–156. Cerca con Google

[26] Reick, W.; Pohl, M.; Padilha, A.F. "Determination of stacking fault energy of austenite in a duplex stainless steel", Steel Res. (1996), Volume 67, pp.253–256. Cerca con Google

[27] Chiu, P.K.; Wang, S.H.; Yang, J.R.; Weng, K.L.; Fang, J. "The effect of strain ratio on morphology of dislocation in low cycle fatigued SAF 2205 DSS", Mater. Chem. Phys. (2006), Volume 98, pp.103–110. Cerca con Google

[28] Breda, M.; Brunelli, K.; Grazzi, F.; Scherillo, A.; Calliari, I. "Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel", Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2015), Volume 46, pp.577–586. Cerca con Google

[29] Williamson, G.K.; Smallman, R.E. "III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum", Philos. Mag. (1956), Volume 1, pp.34–46. Cerca con Google

[30] Scardi, P.; Leoni, M. "Whole powder pattern modelling", Acta Crystallogr. Sect. A Found. Crystallogr. (2002), Volume 58, pp.190–200. Cerca con Google

[31] Ungár, T. "Microstructural parameters from X-ray diffraction peak broadening", Scr. Mater. (2004), Volume 51, pp.777–781. Cerca con Google

[32] Williamson, G.K.; Smallman, R.E. "X-ray extinction and the effect of cold work on integrated intensities", Proc. Phys. Soc. Sect. B (1955), Volume 68, pp.577–585. Cerca con Google

[33] Lutterotti, L. "Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction", Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (2010), Volume 268, pp.334–340. Cerca con Google

[34] Balzar, D. "X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors.", J. Res. Natl. Inst. Stand. Technol. (1993), Volume 98, pp.321–353. Cerca con Google

[35] Williamson, G..; Hall, W.. "X-ray line broadening from filed aluminium and wolfram", Acta Metall. (1953), Volume 1, pp.22–31. Cerca con Google

[36] Johansson, J.; Odén, M.; Zeng, X.-H. "Evolution of the residual stress state in a duplex stainless steel during loading", Acta Mater. (1999), Volume 47, pp.2669–2684. Cerca con Google

[37] Pan, L.; He, W.; Gu, B. "Non-uniform carbon segregation induced by electric current pulse under residual stresses", J. Mater. Process. Technol. (2015), Volume 226, pp.247–254. Cerca con Google

[38] Xiang, S.; Zhang, X. "Residual Stress Removal Under Pulsed Electric Current", Acta Metall. Sin. (English Lett. (2019). Cerca con Google

[39] Park, G.D.; Tran, V.L.; Hong, S.T.; Jeong, Y.H.; Yeo, T.S.; Nam, M.J.; Kim, M.J.; Jin, S.W.; Han, H.N. "Electrically assisted stress relief annealing of automotive springs", J. Mech. Sci. Technol. (2017), Volume 31, pp.3943–3948. Cerca con Google

[40] Sheng, Y.; Hua, Y.; Wang, X.; Zhao, X.; Chen, L.; Zhou, H.; Wang, J.; Berndt, C.C.; Li, W. "Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties", Materials (Basel). (2018), Volume 11, pp.185. Cerca con Google

[41] Bargel, H.-J.; Schulze, G. Werkstoffkunde; Springer-Verlag, (2008); ISBN 354079297X. Cerca con Google

[42] Serre, I.; Salazar, D.; Vogt, J.B. "Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel", Mater. Sci. Eng. A (2008), Volume 492, pp.428–433. Cerca con Google

[43] Haghdadi, N.; Cizek, P.; Hodgson, P.D.; Tari, V.; Rohrer, G.S.; Beladi, H. "Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel", Acta Mater. (2018), Volume 145, pp.196–209. Cerca con Google

[44] Haghdadi, N.; Cizek, P.; Hodgson, P.D.; Beladi, H. "Microstructure dependence of impact toughness in duplex stainless steels", Mater. Sci. Eng. A (2019), Volume 745, pp.369–378. Cerca con Google

[45] Gunn, R.N. Duplex Stainless Steels: Microstructure, Properties and Applications; Gunn, R.N., Ed.; 1st ed.; Woodhead: Sawston, United Kingdom, Cambridge, United Kingdom, (1997); ISBN 9781855733183. Cerca con Google

[46] Zhao, J.; Wang, G.X.; Dong, Y.; Ye, C. "Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing", J. Appl. Phys. (2017), Volume 122. Cerca con Google

[47] Ruszkiewicz, B.J.; Mears, L.; Roth, J.T. "Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum", J. Manuf. Sci. Eng. (2018), Volume 140, pp.091014. Cerca con Google

[48] Ho, P.S. "Solute Effects on Electromigration", Phys. Rev. B (1973), Volume 8, pp.4534–4539. Cerca con Google

[49] Ho, P.S.; Kwok, T. "Electromigration in metals", Reports Prog. Phys. (1989), Volume 52, pp.301–348. Cerca con Google

[50] Lin, S.K.; Liu, Y.C.; Chiu, S.J.; Liu, Y.T.; Lee, H.Y. "The electromigration effect revisited: Non-uniform local tensile stress-driven diffusion", Sci. Rep. (2017), Volume 7, pp.1–10. Cerca con Google

APPENDIX A Cerca con Google

[1] Iris Alvarez Armas, S.D.M. Duplex Stainless Steels; Iris Alvarez-Armas, S.D.M., Ed.; Wiley, (2009); ISBN 978-1-848-21137-7. Cerca con Google

[2] Gunn, R.N. Duplex Stainless Steels: Microstructure, Properties and Applications; Gunn, R.N., Ed.; 1st ed.; Woodhead: Sawston, United Kingdom, Cambridge, United Kingdom, (1997); ISBN 9781855733183. Cerca con Google

[3] Nilsson, J.O. "The physical metallurgy of duplex stainless steels", In Proceedings of the Duplex stainless steels; Nilsson, J.O., Ed.; KCI Publishing: Maastricht,Netherlands, (1997); pp. 73–82. Cerca con Google

[4] Nilsson, J.-O. "Super duplex stainless steels", Mater. Sci. Technol. (1992), Volume 8, pp.685–700. Cerca con Google

[5] Po, G.; Cui, Y.; Rivera, D.; Cereceda, D.; Swinburne, T.D.; Marian, J.; Ghoniem, N. "A phenomenological dislocation mobility law for bcc metals", Acta Mater. (2016), Volume 119, pp.123–135. Cerca con Google

[6] Breda, M.; Calliari, I.; Ramous, E.; Pizzo, M.; Corain, L.; Straffelini, G. "Ductile-to-brittle transition in a Zeron© 100 SDSS in wrought and aged conditions", Mater. Sci. Eng. A (2013), Volume 585, pp.57–65. Cerca con Google

[7] Calliari, I.; Ramous, E.; Rebuffi, G.; Straffelini, G. "Investigation of secondary phases effect on 2205 DSS fracture toughness", Metall. Ital. (2008), Volume 100, pp.5–8. Cerca con Google

[8] Pathak, C.S.; Navale, L.G.; Sahasrabudhe, A.D.; Rathod, M.J. Analysis of HAZ Fracture Toughness of Duplex Stainless Steel Weldment (2009), 427–435. Cerca con Google

[9] Chen, T.H.; Weng, K.L.; Yang, J.R. "The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel", Mater. Sci. Eng. A (2002), Volume 338, pp.259–270. Cerca con Google

[10] Marques, I.J.; Vicente, A. de A.; Tenório, J.A.S.; Santos, T.F. de A. "Double Kinetics of Intermetallic Phase Precipitation in UNS S32205 Duplex Stainless Steels Submitted to Isothermal Heat Treatment", Mater. Res. (2017), Volume ahead, pp.1–7. Cerca con Google

[11] Hsieh, C.-C.; Wu, W. "Overview of Intermetallic Sigma Phase Precipitation in Stainless Steels", ISRN Metall. (2012), Volume 2012, pp.1–16. Cerca con Google

[12] Magnabosco, R. "Kinetics of Sigma Phase Formation In a Duplex Stainless Steel 2 . Experimental Procedure", Mater. Res. (2009), Volume 12, pp.321–327. Cerca con Google

[13] Breda, M.; Pezzato, L.; Pizzo, M.; Calliari, I. "Effect of cold rolling on pitting resistance in duplex stainless steels", La Metall. Ital. (2014), Volume 6, pp.15–19. Cerca con Google

[14] Calliari, I.; Zanesco, M.; Ramous, E. "Precipitazione di fasi secondarie in un acciaio duplex 2205 trattato isotermicamente", Metall. Ital. (2004), Volume 96, pp.41–45. Cerca con Google

[15] Calliari, I.; Pellizzari, M.; Zanellato, M.; Ramous, E. "The phase stability in Cr-Ni and Cr-Mn duplex stainless steels", J. Mater. Sci. (2011), Volume 46, pp.6916–6924. Cerca con Google

[16] Ginsztler, J.; Mészáros, I.; Dévényi, L.; Hidasi, B.; Potgieter, J.H. "Magnetic investigations of stainless steels", Int. J. Press. Vessel. Pip. (1995). Cerca con Google

[17] Oldfield, W. "Fitting curves to Toughness data", J. Test. Eval. ASTM Int. (1979), Volume 7, pp.326–333. Cerca con Google

[18] Erauzkin, E.; Irisarri, A.M. "Influence of microstructure on the fracture toughness and fracture topography of a duplex stainless steel", Fatigue Fract. Eng. Mater. Struct. (1992), Volume 15, pp.129–137. Cerca con Google

[19] Scharnweber, M.; Tirschler, W.; Oertel, C.G.; Skrotzki, W. "Initiation and propagation of short cracks in austenitic-ferritic duplex steel", Mater. Sci. Eng. A (2013), Volume 583, pp.52–60. Cerca con Google

APPENDIX B Cerca con Google

[1] Iris Alvarez Armas, S.D.M. Duplex Stainless Steels; Iris Alvarez-Armas, S.D.M., Ed.; Wiley, (2009); ISBN 978-1-848-21137-7. Cerca con Google

[2] Gunn, R.N. Duplex Stainless Steels: Microstructure, Properties and Applications; Gunn, R.N., Ed.; 1st ed.; Woodhead: Sawston, United Kingdom, Cambridge, United Kingdom, (1997); ISBN 9781855733183. Cerca con Google

[3] Nilsson, J.O. "The physical metallurgy of duplex stainless steels", In Proceedings of the Duplex stainless steels; Nilsson, J.O., Ed.; KCI Publishing: Maastricht,Netherlands, (1997); pp. 73–82. Cerca con Google

[4] Nilsson, J.-O. "Super duplex stainless steels", Mater. Sci. Technol. (1992), Volume 8, pp.685–700. Cerca con Google

[5] Li, S.L.; Wang, Y.L.; Wang, X.T. "Effects of long term thermal aging on high temperature tensile deformation behaviours of duplex stainless steels", Mater. High Temp. (2015), Volume 32, pp.524–529. Cerca con Google

[6] Gennari, C.; Pezzato, L.; Piva, E.; Gobbo, R.; Calliari, I. "Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless Steel", Mater. Sci. Eng. A (2018), Volume 729, pp.149–156. Cerca con Google

[7] Calliari, I.; Pellizzari, M.; Zanellato, M.; Ramous, E. "The phase stability in Cr-Ni and Cr-Mn duplex stainless steels", J. Mater. Sci. (2011), Volume 46, pp.6916–6924. Cerca con Google

[8] Bolut, M.; Kong, C.Y.; Blackburn, J.; Cashell, K.A.; Hobson, P.R. "Yb-fibre laser welding of 6 mm duplex stainless steel 2205", Phys. Procedia (2016), Volume 83, pp.417–425. Cerca con Google

[9] El-Batahgy, A.-M.; Khourshid, A.-F.; Sharef, T. "Effect of Laser Beam Welding Parameters on Microstructure and Properties of Duplex Stainless Steel", Mater. Sci. Appl. (2011), Volume 02, pp.1443–1451. Cerca con Google

[10] Calliari, I.; Ramous, E.; Rebuffi, G.; Straffelini, G. "Investigation of secondary phases effect on 2205 DSS fracture toughness", Metall. Ital. (2008), Volume 100, pp.5–8. Cerca con Google

[11] Gennari, C.; Breda, M.; Brunelli, K.; Ramous, E.; Calliari, I. "Influence of small amount of secondary phases on impact toughness of UNS S32205 and Zeron® 100 Duplex Stainless Steel", In Proceedings of the ESSC and DUPLEX 2017 - 9th European Stainless Steel Conference - Science and Market and 5th European Duplex Stainless Steel Conference and Exhibition; (2018). Cerca con Google

[12] Breda, M.; Calliari, I.; Ramous, E.; Pizzo, M.; Corain, L.; Straffelini, G. "Ductile-to-brittle transition in a Zeron© 100 SDSS in wrought and aged conditions", Mater. Sci. Eng. A (2013), Volume 585, pp.57–65. Cerca con Google

[13] Chen, T.H.; Weng, K.L.; Yang, J.R. "The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel", Mater. Sci. Eng. A (2002), Volume 338, pp.259–270. Cerca con Google

[14] Breda, M.; Pezzato, L.; Pizzo, M.; Calliari, I. "Effect of cold rolling on pitting resistance in duplex stainless steels", La Metall. Ital. (2014), Volume 6, pp.15–19. Cerca con Google

[15] Pezzato, L.; Lago, M.; Brunelli, K.; Breda, M.; Calliari, I. "Effect of the Heat Treatment on the Corrosion Resistance of Duplex Stainless Steels", J. Mater. Eng. Perform. (2018), Volume 27, pp.3859–3868. Cerca con Google

[16] Marques, I.J.; Vicente, A. de A.; Tenório, J.A.S.; Santos, T.F. de A. "Double Kinetics of Intermetallic Phase Precipitation in UNS S32205 Duplex Stainless Steels Submitted to Isothermal Heat Treatment", Mater. Res. (2017), Volume ahead, pp.1–7. Cerca con Google

[17] Luo, J.; Dong, Y.; Li, L.; Wang, X. "Microstructure of 2205 duplex stainless steel joint in submerged arc welding by post weld heat treatment", J. Manuf. Process. (2014), Volume 16, pp.144–148. Cerca con Google

[18] Nowacki, J.; Rybicki, P.P. "The influence of welding heat input on submerged arc welded duplex steel joints imperfections", J. Mater. Process. Technol. (2005), Volume 164–165, pp.1082–1088. Cerca con Google

[19] Sorrentino, S.; Fersini, M.; Zilli, G. "Comparison between submerged arc (SAW) and laser welding applied to duplex stainless steel structures for bridges", Riv. Ital. della Saldatura (2008), Volume 60, pp.487–498. Cerca con Google

[20] Taban, E.; Kaluc, E. "Welding behaviour of duplex and superduplex stainless steels using laser and plasma arc welding processes", Weld. World (2011), Volume 55, pp.48–57. Cerca con Google

[21] Bharathi, R.S.; Shanmugam, N.S.; Kannan, R.M.; Vendan, S.A. "Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel", High Temp. Mater. Process. (2018), Volume 37, pp.219–232. Cerca con Google

[22] Šimeková, B.; Kovaříková, I.; Ulrich, K. "Microstructure and Properties of Plasma Arc Welding with Depth Penetration Keyhole SAF 2205 Duplex Stainless Steel", Adv. Mater. Res. (2013), Volume 664, pp.578–583. Cerca con Google

[23] Eghlimi, A.; Shamanian, M.; Raeissi, K. "Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process", Surf. Coatings Technol. (2014), Volume 244, pp.45–51. Cerca con Google

[24] Neissi, R.; Shamanian, M.; Hajihashemi, M. "The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel", J. Mater. Eng. Perform. (2016), Volume 25, pp.2017–2028. Cerca con Google

[25] Mourad, A.-H.I.; Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record