Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pezzani , Raffaele (2008) Studio molecolare dei difetti di glicosilazione dell'alfa distroglicano in pazienti affetti da distrofia muscolare congenita e distrofia muscolare dei cingoli. [Ph.D. thesis]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

Documento PDF

Abstract (english)

Muscular dystrophies are a group of diseases genotypically and clinically heterogeneous, characterized by progressive muscular weakness.
The histopathologic profile can vary from mild to severe myopathy, with degeneration, regeneration and adipose-fiber substitution.
Muscular dystrophy etiopathogenesis involves basal membrane elements and muscle fiber cytoskeleton alterations. A prominent role is played by the dystrophin glycoprotein complex (DGC), which provides a strong stabilization link between the intracellular cytoskeleton and extracellular matrix. The DGC is composed by dystrophin, sarcoglycans, distrobrevins, sintrophins, sarcospan and dystroglycan. Dystroglycan is a glycoprotein, encoded by one gene DAG1, that is post-translationally cleaved into 2 subunits, ?-dystroglycan and ?-dystroglycan. The dystroglycan ensure connection and stability and is expressed in a large variety of tissue, including skeletal and cardiac muscle, central and peripheral nervous system tissue and epithelia.
?-DG is a highly glycosylated peripheral membrane protein, which binds to several molecules (laminin, agrin, perlecan, neurexin, biglycan) and tightly interacts with the extracellular portion of ?-DG. ?-DG has the ability to connect to the cytoplasmic domain of dystrophin, to caveolin-3 and other proteins implicated in signal trasduction. The predicted molecular weight of ?-dystroglycan is about 72 kDa, but can vary due to glycosylation. In fact ?-dystroglycan has an apparent molecular weight of 156 kDa in skeletal muscle.
So far no pathogenic mutations have been identified in genes encoding for dystroglycan. It is clear that the pathogenesis of in muscular dystrophy involves post-translational processing events that are important for the interaction of dystroglycan with its ligands. In particular ?-dystroglycan glycosylation has a critical role in maintaining integrity of extracellurar matrix proteins.
Alterations in ?-dystroglycan glycosylation lead to a particular group of recessive autosomic muscular dystrophy called dystroglycanopathies.
The dystroglycanopathies show strong phenotypic heterogeneity: in fact at the most severe end of the clinical spectrum are Walker-Warburg Syndrome (WWS), Muscle-Eye-Brain (MEB), Fukuyama congenital muscular dystrophy (FCMD), MDC1C. At the mild end there is Limb-Girdle muscular dystrophy (LGMD). Genetically, dystroglycanopathies are caused by mutations in 6 known genes: POMT1, POMT2, POMGnT1, Fukutin, LARGE, FKRP. All these genes encode for putative or known glycosyltransferases.
This present work intends to characterize a large group of patients affected by congenital or limb-girdle muscular dystrophy with unknown etiopathogenesis, trying to extend genotype and phenotype correlations. In fact a precise molecular diagnosis will provide an essential basis for further studies leading to identification of new therapeutic strategies.

Selection criteria
Patient groups are sorted from the muscular biopsy database “Centro delle Malattie Neuromuscolari”, Department of Neuroscience, University of Padova, which comprises over 8000 samples. In order to be selected, each patient must meet one of these criteria: a) be affected by congenital muscular dystrophy or limb-girdle muscular dystrophy with unknown etiopathogenesis, b) have floating CK values, weakness during fever or steroid responsiveness. 234 patients were selected for screening.

Immunohistochemistry was performed on 234 muscular biopsies. Cryosections were incubated with an antibody directed to the ?-dystroglycan epitope (IIH6C4 - Upstate Biotechnology).

Immunoblot was performed on 94 samples, with reduced ?-dystroglycan glycosylation in immunohistochemistry. The analysis shows exact congruence between immunohistochemistry and immunoblot data.

Mutation analysis
Of 94 analyzed patients, 26 were idenfied as having pathogenic mutations. 73% of patients showed reduced ?-dystroglycan glycosylation, while 27% of patients exhibited total absence of ?-dystroglycan glycosylation (in immunohistochemistry and immunoblot). The data set obtained by mutation analysis lead to a general mutation rate of 28% (26 patients out of 94 patients with ?-dystroglycan deficit) and can be subdivided as a) 24% if mutation rate is examined inside partially deficit patient group, or in b) 46% if mutation rate is considered inside totally deficit patient group.

In conclusion, in the last few years it has become more and more evident that ?-dystroglycan play a pivotal role in the dystrophin glycoprotein complex (DGC), permitting connection and assuring stability between the intracellular cytoskeleton and extracellular matrix. Moreover a better understanding of ?-dystroglycan O-glycosylation could lead to the development of new therapeutic approaches. In fact, post-translational processes that alter dystroglycan glycosylation are the basis of muscular dystrophy pathogenesis, principally dystroglycanopathy. The mutation rate found in our patients (with ?-dystroglycan deficit) is about 26%, which an incidence of 50% in patients with total absence of ?-dystroglycan. This work confirms high genotypic and phenotypic heterogeneity of dystroglycanopathy and the wide phenotypic spectrum related to these disorders.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Pegoraro, Elena
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:02 December 2008
Anno di Pubblicazione:2008
Key Words:alfa distroglicano, distrofia muscolare dei cingoli, distrofia muscolare congenita
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:1294
Depositato il:02 Dec 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Adams RD, Victor M., Principi di Neurologia, McGraw-Hill, 2006. Cerca con Google

2. Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ, Hoffman EP. Homozygous alpha-sarcoglycan mutation in two siblings: one asymptomatic and one steroid responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve, 1998; 21:769-775; Cerca con Google

3. Aravind L, Koonin EV. The fukutin protein family--predicted enzymes modifying cell-surface molecules. Curr Biol, 1999; 9:R836-7; Cerca con Google

4. Balci B, Uyanik G, Dincer P, Gross C, Willer T, Talim B, Haliloglu G, Kale G, Hehr U, Winkler J Topaloglu H. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord, 2005; 15:271-275; Cerca con Google

5. Banker BQ, Victor M, Adams RD. Arthrogryposis multiplex due to congenital muscular dystrophy. Cerca con Google

6. Brain. 1957 Sep;80(3):319-34. Cerca con Google

7. Banks GB, Fuhrer C, Adams ME, Froehner SC. The postsynaptic submembrane machinery at the neuromuscular junction: requirement for rapsyn and the utrophin/dystrophin-associated complex. Cerca con Google

8. J Neurocytol. 2003 Jun-Sep;32(5-8):709-26. Cerca con Google

9. Bansal D, Campbell KP. Dysferlin and the plasma membrane repair in muscular dystrophy.Trends Cell Bio Trends Cell Biol, 2004; 14:206-13; Cerca con Google

10. Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell K. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med, 2004; 10:696-703; Cerca con Google

11. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease.J Cell Sci, 2005; 119:199-207; Cerca con Google

12. Bashir R, Strachan T, Keers S, Stephenson A, Mahjneh I, Marconi G, Nashef L, Bushby KM. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p.Hum Mol Genet, 1994; 3:455-7; Cerca con Google

13. Blake DJ. Dystrobrevin dynamics in muscle-cell signalling: a possible target for therapeutic intervention in Duchenne muscular dystrophy? Neuromuscul Disord. 2002 Oct;12 Suppl 1:S110-7. Cerca con Google

14. Boito CA, Melacini P, Vianello A, Prandini P, Gavassini BF, Bagattin A, Siciliano G, Angelini C, Pegoraro E. Clinical and molecular characterization in limb girdle muscular dystrophy 2I patients. Arch Neurol, 2005; 62:1894-1899; Cerca con Google

15. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K. .Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet, 1999; 21:285-8; Cerca con Google

16. Bonnemann CG, Modi R, Noguchi S, Mizuno Y, Yoshida M, Gussoni E, McNally EM, Duggan DJ, Angelini C, Hoffman EP. ?-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet, 1995; 11:266- 73; Cerca con Google

17. Bozzi M, Veglia G, Paci M, Sciandra F, Giardina B, Brancaccio A. A synthetic peptide corresponding to the 550-585 region of alpha-dystroglycan binds beta-dystroglycan as revealed by NMR spectroscopy. FEBS Lett. 2001 Jun 22;499(3):210-4. Cerca con Google

18. Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, Ponting CP, Estournet B, Romero NB, Mercuri E, Voit T, Sewry CA, Guicheney P, Muntoni F. Mutations in the fukutin-related protein (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet, 2001a; 69:1198-1209; Cerca con Google

19. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, Herrmann R, Anderson LV, Bashir R, Burgunder JM, Fallet S, Romero N, Fardeau M, Straub V, Storey G, Pollitt C, Richard I, Sewry CA; Bushby K, Voit T, Blake DJ, Muntoni F. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet, 2001b; 10:2851-2859; Cerca con Google

20. Bushby KM, Beckmann JS. The limb-girdle muscular dystrophy. Proposal for a new nomenclature. Neuromusc Disord, 1995; 5:337-343; Cerca con Google

21. Bushby KM. Towards the classification of the autosomal recessive limb-girdle muscular dystrophies. Neuromusc Disord, 1996; 6: 439-441; Cerca con Google

22. Bushby KM. The limb-girdle muscular dystrophies-multiple genes, multiple mechanisms. Hum Mol Genet, 1999b; 8:1875-82; Cerca con Google

23. Bushby KM. Making sense of the limb-girdle muscular dystrophies. Brain, 1999a.; 122:1403-20; Cerca con Google

24. Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem. 1997 Dec 12;272(50):31221-4 Cerca con Google

25. de Bernabé DB, van Bokhoven H, van Beusekom E, Van den Akker W, Kant S, Dobyns WB, Cormand B, Currier S, Hamel B, Talim B, Topaloglu H, Brunner HG. A homozygous nonsense mutation in the fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet. 2003 Nov;40(11):845-8. Cerca con Google

26. de Paula F, Vieira N, Starling A, Yamamoto LU, Lima B, de Cassia Pavanello R, Vainzof M, Nigro V, Zatz M. Asymptomatic carrier for homozygous novel mutations in the FKRP gene: the other end of the spectrum. Europ J Hum Genet, 2003; 11:923-930; Cerca con Google

27. Dolatshad NF, Brockington M, Torelli S, Skordis L, Wever U, Wells DJ, Muntoni F, Brown SC. Mutated fukutin-related protein (FKRP) localises as wild type in differentiated muscle cells. Exp Cell Res, 2005; 309:370-8; Cerca con Google

28. Driss A, Amouri R, Ben Hamida C, Souilem S, Gouider-Khouja N, Ben Hamida M, Hentati F. A new locus for autosomal recessive limb-girdle muscular dystrophy in a large consanguineous Tunisian family maps to chromosome 19q13.3. Neuromusc Disord, 2000; 10:240-246; Cerca con Google

29. Duggan DJ, Gorospe JR, Fanin M, Eric P Hoffman, Angelini C, Pegoraro E, McNally E, Bonneman CG, Kunkel LM, Noguchi S, Ozawa E, Pendlenbury W, Oechler H, Waclawik A, Duenas DA, Hutchison T, Hausmanowa-Petrusewicz I, Fidzianska A, Bean SC, Haller JS, Bodensteiner J, Greco C, Pestronk A, Berardinelli A, Gelinas DF, Abram H, Kuncl RW. Mutations in the sarcoglycan genes in patients with myopathy. N Eng J Med, 1997; 336:618-624; Cerca con Google

30. Engel J.. Laminins and other strange proteins. Biochemistry, 1992; 31:10643-51; Cerca con Google

31. Ervasti JM and Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol, 1993; 122:809-823; Cerca con Google

32. Ervasti, J. M. and Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell, 1991; 66:1121-1131; Cerca con Google

33. Esapa CT, Benson MA, Schroder JE, Martin-Rendon E, Brockington M, Brown SC, Muntoni F, Kroger S, Blake DJ. Functional requirements for fukutin-related protein in the Golgi apparatus. Hum Mol Genet, 2002; 11:3319-31; Cerca con Google

34. Esapa CT, McIlhinney RA, Blake DJ. Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells.Hum Mol Genet, 2005; 14:295-305; Cerca con Google

35. Fanin M, Nascimbeni AC, Fulizio L, Angelini C. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord, 2005; 15:218-24; Cerca con Google

36. Feit H, Silbergleit A, Schneider LB, Gutierrez JA, Fitoussi RP, Reyes C, Rouleau GA, Brais B, Jackson CE, Beckmann JS, Seboun E. Vocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31 Am J Hum Genet, 1998; 63:1732-42; Cerca con Google

37. Frosk P, Weiler T, Nylen E, Sudha T, Greenberg CR, Morgan K, Fujiwara TM, Wrogemann K. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-liagase gene. Am J Hum Genet, 2002; 70:663-672; Cerca con Google

38. Galbiati F, Razani B, Lisanti MP .Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med, 2001; 7:435-41; Cerca con Google

39. Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B, Straub V, Robb S, Quinlivan R, Feng L, Jimenez-Mallebrera C, Mercuri E, Manzur AY, Kinali M, Torelli S, Brown SC, Sewry CA, Bushby K, Topaloglu H, North K, Abbs S, Muntoni F. Refining genotype-phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007 Oct;130(Pt 10): 2725-35; Cerca con Google

40. Guglieri M, Magri F, Comi GP. Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities. Clin Chim Acta, 2005; 361:54-79; Cerca con Google

41. Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet, 2002; 7:492-500; Cerca con Google

42. Haravuori H, Makela-Bengs P, Udd B, Partanen J, Pulkkinen L, Somer H, Peltonen L. Assignment of the tibial muscular dystrophy locus to chromosome 2q31.Am J Hum Genet, 1998; 62:620-6; Cerca con Google

43. Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R, Tim RW, Taivainen A, Bartoloni L, Gilchrist JM, Stajich JM, Gaskell PC, Gilbert JR, Vance JM, Pericak-Vance MA, Carpen O, Westbrook CA, Speer MC. Hum Mol Genet, 2000; 9:2141-7; Cerca con Google

44. Hayashi YK. Membrane-repair machinery and muscular dystrophy. Lancet. 2003 Sep 13;362(9387):843-4. Cerca con Google

45. Henry MD, Campbell KP. Dystroglycan inside and out. Curr Opin Cell Biol. 1999 Oct;11(5):602-7. Cerca con Google

46. Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 1987; 51(6):919-28; Cerca con Google

47. Holt KH, Crosbie RH, Venzke DP, Campbell KP. Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett, 2000; 468:79-83; Cerca con Google

48. Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W. and Campbell, K. P. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 1992; 355:696-702; Cerca con Google

49. Ibraghimov-Beskrovnaya, O., Milatovich, A., Ozcelik, T., Yang, B., Koepnick, K., Francke, U. and Campbell, K. P. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet, 1993; 2:1651-1657; Cerca con Google

50. James M, Nuttall A, Ilsley JL, Ottersbach K, Tinsley JM, Sudol M, Winder SJ. Adhesion-dependent tyrosine phosphorylation of (beta)-dystroglycan regulates its interaction with utrophin. J Cell Sci. 2000 May;113 ( Pt 10):1717-26; Cerca con Google

51. Jurado LA, Coloma A, Cruces J. Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1. Genomics, 1999; 58:171-80; Cerca con Google

52. Kanagawa M, Michele DE, Satz JS, Barresi R, Kusano H, Sasaki T, Timpl R, Henry MD, Campbell K. Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function.FEBS Lett, 2005; 579:4792-6P; Cerca con Google

53. Kanagawa M, Saito F, Kunz S, Yoshida-Moriguchi T, Barresi R, Kobayashi YM, Muschler J, Dumanski JP, Michele DE, Oldstone MB. Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell, 2004; 117:953-964; Cerca con Google

54. Kawabe K, Goto K, Nishino I, Angelini C, Hayashi YK. Dysferlin mutation analysis in a group of Italian patients with limb-girdle muscular dystrophy and Miyoshi myopathy. Eur J Neurol, 2004; 11:657-61; Cerca con Google

55. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature, 1998; 394:388-92; Cerca con Google

56. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991 May 3;252(5006):668-74; Cerca con Google

57. Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res. 2004,94:1023-31; Cerca con Google

58. Leschziner, A., Moukhles, H., Lindenbaum, M., Gee, S. H., Butterworth, J., Campbell, K. P. and Carbonetto, S. Neural regulation of alpha-dystroglycan biosynthesis and glycosylation in skeletal muscle. J. Neurochem, 2000; 74:70-80; Cerca con Google

59. Liu CY, Kaufman RJ. The unfolded protein response. J Cell Sci, 2003; 116:1861-2; Cerca con Google

60. Liu J, Aoki M, Illa I, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb-girdle muscular dystrophy. Nature Genet, 1998; 20:31-36; Cerca con Google

61. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet, 2003; 12:2853-61; Cerca con Google

62. Louhichi N, Triki C, Quijano-Roy S, Richard P, Makri S, Meziou M, Estournet B, Mrad S, Romero NB, Ayadi H, Guicheney P, Fakhfakh F. New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics, 2004; 5:27-34; Cerca con Google

63. Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci, 2004; 101:500-5; Cerca con Google

64. Martin PT. The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin Pediatr Neurol. 2005 Sep;12(3):152-8. Cerca con Google

65. Matsumoto H, Hayashi YK, Kim DS, Ogawa M, Murakami T, Noguchi S, Nonaka I, Nakazawa T, Matsuo T, Futagami S, Campbell KP, Nishino. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan. Neuromuscul Disord, 2005; 15:342-8; Cerca con Google

66. McNally EM, Passos-Bueno MR, Bonnemann CG, Vainzof M, de Sa Moreira E, Lidov HG, Othmane KB, Denton PH, Vance JM, Zatz M, Kunkel LM. Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutations. Am J Hum Genet, 1996; 59:1040-1047; Cerca con Google

67. Mercuri E, Brockington M, Straub V, Quijano-Roy S, Yuva Y, Herrmann R, Brown SC, Torelli S, Dubowitz V, Blake DJ, Romero NB, Estournet B, Sewry CA, Guicheney P, Voit T, Muntoni F. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol, 2003; 53:537-542; Cerca con Google

68. Mercuri E, Topaloglu H, Brockington M, Berardinelli A, Pichiecchio A, Santorelli F, et al. Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol 2006; 63:251-7. Cerca con Google

69. Messina DN, Speer MC, Pericak-Vance MA, McNally EM. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am J Hum Genet, 1997; 61:909-17; Cerca con Google

70. Messina S, Mora M, Pegoraro E, Pini A, Mongini T, D'Amico A, Pane M, Aiello C, Bruno C, Biancheri R, Berardinelli A, Boito C, Farina L, Morandi L, Moroni I, Pezzani R, Pichiecchio A, Ricci E, Ruggieri A, Saredi S, Scuderi C, Tessa A, Toscano A, Tortorella G, Trevisan CP, Uggetti C, Santorelli FM, Bertini E, Mercuri E. POMT1 and POMT2 mutations in CMD patients: A multicentric Italian study. Neuromuscul Disord. 2008 May 29; Cerca con Google

71. Michele DE and Campbell KP. Dystrophin-glycoprotein complex: Post-translational processing and dystroglycan function. J Biol Chem, 2003; 278:15457-15460; Cerca con Google

72. Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI., Somer, H. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature, 2002; 418: 417-422; Cerca con Google

73. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 1988 ; 16:1215; Cerca con Google

74. Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet, 1998; 18:365-8; Cerca con Google

75. Moreira ES, Wilthire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos-Bueno MR, Jenne DE. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nature Genet, 2000; 24:163-166; Cerca con Google

76. Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet, 2000; 9:1453-9; Cerca con Google

77. Muntoni F, Brockington M, Torelli S, Brown SC. Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol, 2004; 17: 205-209; Cerca con Google

78. Miyagoe-Suzuki Y, Nakagawa M, Takeda S. Merosin and congenital muscular dystrophy. Res Tech 2000;48(3-4):181-91. Cerca con Google

79. Nigro V, Nigro V, Moreira ES, Piluso G, Vainzof M, Belsito A, Politano L, Puca AA, Passos-Bueno MR, Zatz M. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat Genet, 1996; 13:195-198; Cerca con Google

80. Noguchi S, McNally EM, Ben Othmane K Hagiwara Y, Mizuno Y, Yoshida M, Yamamoto H, Bonnemann CG, Gussoni E, Denton PH, Kyriakides T, Middleton L, Hentati F, Ben Hamida M, Nonaka I, Vance JM, Kunkel LM, Ozawa E. Mutations in the dsytrophin-associated protein ?-sarcoglycan in chromosome 13 muscular dsystrophy. Science, 1995; 270:819-822; Cerca con Google

81. Ohlendieck K, Matsumura K, Ionasescu VV, Towbin JA, Bosch EP, Weinstein SL, Sernett SW, Campbell KP. Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in the sarcolemma. Neurology, 1993; 43:795-800; Cerca con Google

82. Ohlendieck K. Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. Eur J Cell Biol, 1996; 69:1-10; Cerca con Google

83. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C. Mutations in the proteolytic calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell, 1995; 81: 27-40; Cerca con Google

84. Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD, Lim LE, Lee JC, Tome FM, Romero NB. Missense mutations in the adhalin gene linked to atuosomal recessive muscular dystrophy. Cell, 1994; 78:625-633; Cerca con Google

85. Sasaki T, Yamada H, Matsumura K, Shimizu T, Kobata A,Endo T. Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan. Biochim Biophys Acta, 1998; 1425: 599-606; Cerca con Google

86. Sciandra F, Schneider M, Giardina B, Baumgartner S, Petrucci TC, Brancaccio A. Identification of the beta-dystroglycan binding epitope within the C-terminal region of alpha-dystroglycan. Eur J Biochem. 2001 Aug;268(16):4590-7; Cerca con Google

87. Sciandra F, Bozzi M, Bianchi M, Pavoni E, Giardina B, Brancaccio A. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex. Ann Ist Super Sanita. 2003;39(2):173-81; Cerca con Google

88. Sotgia F, Lee H, Bedford MT, Petrucci T, Sudol M, Lisanti MP. Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins. Biochemistry. 2001 Dec 4;40(48):14585-92; Cerca con Google

89. Speer MC, Vance JM, Grubber JM, Lennon Graham F, Stajich JM, Viles KD, Rogala A, McMichael R, Chutkow J, Goldsmith C, Tim RW, Pericak-Vance MA. Identification of a new autosomal dominant limb-girdle muscular dystrophy locus on chromosome 7. Am J Hum Genet, 1999; 64:556-62; Cerca con Google

90. Speer MC, Yamaoka LH, Gilchrist JH, Gaskell CP, Stajich JM, Vance JM, Kazantsev A, Lastra AA, Haynes CS, Beckmann JS. Confirmation of genetic heterogeneity in limb-girdle muscular dystrophy: linkage of an autosomal dominant form to chromosome 5q. Am J Hum Genet, 1992; 50:1211-7; Cerca con Google

91. Straub V, Campbell KP. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr Opin Neurol, 1997; 10:168-75; Cerca con Google

92. Sveen ML, Schwartz M, Vissing J. High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol, 2006; 59:808-15; Cerca con Google

93. Takano A, Bonnemann CG, Honda H, Sakai M, Feener CA, Kunkel LM, Sobue G. Intrafamilial phenotypic variation in limb-girdle muscular dystrophy type 2C with compound heterozygous mutations. Muscle Nerve, 2000; 23:807-810; Cerca con Google

94. Toda T, Kobayashi K, Takeda S, Sasaki J, Kurahashi H, Kano H, Tachikawa M, Wang F, Nagai Y, Taniguchi K, Taniguchi M, Sunada Y, Terashima T, Endo T, Matsumura K. Fukuyama-type congenital muscular dystrophy (FCMD) and alpha-dystroglycanopathy. Congenit Anom (Kyoto). 2003 Jun;43(2):97-104. Cerca con Google

95. Torelli S, Brown SC, Brockington M, Dolatshad NF, Jimenez C, Skordis L, Feng LH, Merlini L, Jones DH, Romero N, Wewer U, Voit T, Sewry CA, Noguchi S, Nishino I, Muntoni F. Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I. Neuromuscul Disord, 2005; 15:836-43; Cerca con Google

96. van der Kooi AJ, van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA. Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet, 1997; 60:891-5; Cerca con Google

97. Vieira NM, Schlesinger D, de Paula F, Vainzof M. Mutation analysis in the FKRP gene provides an explanation for a rare cause of intrafamilial clinical variability in LGMD2I. Neuromuscul Disord 2006; 16: 870-3. Cerca con Google

98. von der Hagen M, Kaindl AM, Koehler K, Mitzscherling P, Hausler HJ, Stoltenburg-Didinger G, Huebner A. Limb girdle muscular dystrophy type 2I caused by a novel missense mutation in the FKRP gene presenting as acute virus-associated myositis in infancy. Eur J Pediatr, 2005; 165:62-3; Cerca con Google

99. Wagner, John., Screening Methods for Detection of Unknown Point Mutations. http://www-users.med.cornell.edu/~jawagne/screening_for_mutations.html#Single-Strand.Conformational. Polymorphism, Accessed 2003 February 17 Vai! Cerca con Google

100. Walter MC, Petersen JA, Stucka R, Fischer D, Schroeder R, Vorgerd M, Schroers A, Schreiber H, Hanemann CO, Knirsch U, Rosenbohm A, Huebner A, Barisic N, Horvath R, Komoly S, Reilich P, Muller-Felber W, Pongratz D, Muller JS, Auerswald EA, Lochmuller H. FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet 2004; 41:e50; Cerca con Google

101. Walton JN and Nattrass FJ. On the classification, natural history and treatment of the myopathies. Brain, 1954; 77:169-231; Cerca con Google

102. Weiler T, Bashir R, Anderson LV, Davison K, Moss JA, Britton S, Nylen E, Keers S, Vafiadaki E, Greenberg CR, Bushby CR, Wrogemann K. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Myoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet, 1999; 8:871-877; Cerca con Google

103. Weiler T, Greenberg CR, Zelinski T, Nylen E, Coghlan G, Crumley MJ, Fujiwara TM, Morgan K, Wrogemann K. A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another limb-girdle muscular dystrophy locus. Am J Hum Genet, 1998; 63:140-147; Cerca con Google

104. Yamada H, Shimizu T, Tanaka T, Campbell KP, Matsumura K. Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett, 1994; 352:49-53; Cerca con Google

105. Ye S, Dhillon S, Ke X, Collins AR, Day IN, An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 2001 Sep 1;29(17). Cerca con Google

106. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001; 1:717-24; Cerca con Google

107. Zatz M , Vainzof M, Passos-Bueno MR. Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes. Curr Op Neurol, 2000; 13: 511-517; Cerca con Google

108. Zhang K, Kaufman RJ. Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb Exp Pharmacol, 2006; 172:69-91; Cerca con Google

109. Xing X, Lai M, Wang Y, Xu E, Huang Q. Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta, 2006; 364:308-15; Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record