Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bietresato, Marco (2008) Sviluppo di un ambiente per la prototipazione virtuale del processo di stampaggio ad iniezione di materie plastiche. [Ph.D. thesis]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

Documento PDF

Abstract (english)

In this thesis a new approach for the Robust Design of the injection moulding process has been developed and successfully applied to two industrial cases. This approach makes use of several tools (numerical simulations, heuristic and stochastic methods: FEM, DoE, RSM, Monte Carlo) integrated together in a sort of environment, the Virtual Prototyping Environment (VPE), able to overcome the limitations of the traditional numeric approach, which is, on the contrary, based on the intensive but exclusive use of FE models.
In fact, the FE simulation presents the main advantage that the experimentation and the optimization activities require neither the manufacturing of the tooling system nor the utilization of the production system but it suffers the presence of important limitations due to the simplification of reality made in the virtual transposition of a system and to the deterministic nature of solving algorithms. The consequences of these limitations are respectively: (i) the need to adjust some parameters of the model in order to fit prediction with experimentation, and (ii) the impossibility to take in account fluctuations of process conditions.
On the contrary, the Virtual Prototyping Environment manages to perform an optimal product and process design, considering also the stochastic variability present in all the manufacturing processes and thus integrating Concurrent Engineering with Robust Design.
As an effective use of this Environment presupposes a realistic model of the process, the activity of
model calibration is fundamental. The tuning procedure here presented limits the experimental activity on the injection moulding machine to a short utilization without any die (discharging tests).
The numerical simulation of the evacuation of polymer from the cylinder through the nozzle leads to the definition of the junction losses coefficients of Bagley’s correction. The discharging test thus completes the VPE by releasing it from the need to have specific dies for the identification of an
optimal and robust combination of process parameters.
In this work the following points are analysed:
· The injection moulding process of filled polymers, the injection machine and its subsystems (plasticizing unit, feeding system, moulds);
· The problem of variability in the manufacturing processes, with special reference to the plastic injection moulding process (in particular: real values of process parameters,
· The actual approaches for the experimentation and optimization of the injection process (“physical” and “virtual” approaches) and the proposed solutions for the search of a robust process set-up.
The collection, study and critical analysis (advantages, disadvantages) of the solutions outlined in the Literature have led to:
· identify the possible tools to work with FEM, necessary for a virtual transposition of the injection process which keeps in account its variability too;
· define the architecture of the Virtual Prototyping environment for the injection process in which the different tools necessary for its implementation are integrated (FEM – Moldflow Plastic Insight 6.1, DoE, RSM – Minitab 14 e Design Expert 7, Monte Carlo Method – Crystal Ball 7);
· implement a new FEM tuning procedure that limits the experimental activity on the injection moulding machine to a short utilization without any die (it is based on the use of
machine pressure profiles obtained during some air-injected shots: the “machine discharging tests”).
Having formalized an application procedure for this VPE, divided into six steps, the proposed Environment has been applied and validated in two industrial cases, different for product complexity, moulded material and, above of all, aims of the study:
· evaluating the robustness of a production set up on fixed nominal values and, in case, identifying a more precise adjustment (part in production: tub rear cover for a washing
machine - PP 20% glass fibre filled);
· exploring different process settings through a simulation plan with the aim of locating a robust optimum (new part to be produced as a substitute for a previous one, aluminium diecast: motor cover – PA66 20% glass fibre filled).
This Virtual Environment demonstrates to fit to both the presented cases,
· giving forecasts of the output lined with production surveys about non-conformity percentages and placement compared with the acceptability limits,
· permitting to find the settings able to produce the parts with near 0% scraps, in the former case, or to reduce non-conformities on the basis of the estimated response distributions, in the latter case.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Berti, Guido A.
Data di deposito della tesi:05 December 2008
Anno di Pubblicazione:July 2008
Key Words:Ambiente per la prototipazione virtuale, processo di iniezione di polimeri, finite element method, response surface methodology, robust design, simulazioni stocastiche
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:1296
Depositato il:05 Dec 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. AA.VV., Injection moulding of Polypropylene, Borealis internet download Cerca con Google

2. AA.VV., Process Simulation – Practical Course – Injection Moulding Simulations, Universität Erlangen-Nürnberg Cerca con Google

3. AA.VV., Ultramid®/Capron® Polyamide (PA) (Europe), BASF Plastics, in www.basfkorea.co.kr/02_products/01_thermoplastics/etc/brochure/pdf/Ultramid-Br_e.pdf Vai! Cerca con Google

4. AISA J., JAVIERRE C., DE LA SERNA J.A., An example of simulation tools use for large injection moulds design The CONTENUR 2400 ? solid waste container, Journal of Materials Processing Technology 175 (2006) 15–19 Cerca con Google

5. ALAM K., KAMAL M.R., A robust optimization of injection moulding runner balancing, Computers and Chemical Engineering 29 (2005) 1934–1944 Cerca con Google

6. ALLEN R.D., NEWMAN S.T., MITCHELL S.R., TEMPLE R.I., JONES C.L., BOER C.R., DULIO S., Design of experiments for the qualification of EVA expansion characteristics, Robotics and Computer-Integrated Manufacturing 21 (2005) 412–420 Cerca con Google

7. AU C.K., A geometric approach for injection mould filling simulation, International Journal of Machine Tools & Manufacture 45 (2005) 115–124 Cerca con Google

8. BAESSO R., LUCCHETTA G., SALVADOR M., Calibration of the filling simulation of an injection moulding process by artificial neural networks, Esaform 2006 proceedings 35-38 Cerca con Google

9. BARIANI P.F., SALVADOR M., LUCCHETTA G., Development of a test method for the rheological characterization of polymers under the injection moulding process conditions, Journal of Materials Processing Technology 191 (2007) 119–122 Cerca con Google

10. BERNASCONI A., DAVOLI P., Progettare con i compositi rinforzati con fibra corta, il Progettista Industriale 8 (2007), 78-83 Cerca con Google

11. BERNASCONI A., DAVOLI P., ROSSIN D., Effetto del riciclo meccanico sulla resistenza a fatica di una poliammide rinforzata con fibre di vetro, 35° convegno AIAS 13-16 settembre 2006, Ancona Cerca con Google

12. BERNASCONI A., DAVOLI P., ROSSIN D., I materiali nella progettazione eco compatibile esempi del settore automotive, 34° convegno AIAS 14-17 settembre 2005, Milano Cerca con Google

13. BERNI R., Il disegno dei parametri di Taguchi, Università degli Studi di Firenze, Dipartimento di Statistica, 1998 Cerca con Google

14. BERTI G. A., MONTI M., BIETRESATO M., A new approach for robust design of injection moulding process based on the integration of FEM, RSM and stochastic simulations, 8th A.I.Te.M. Conference - Enhancing the Science of Manufacturing – Proceedings, Montecatini Terme (PT), 10-12 settembre 2007, 53-54 Cerca con Google

15. BERTI G. A., MONTI M., BIETRESATO M., Robust design by virtual prototyping of injection moulding process, CIRP ICME Conference – Proceedings, Napoli, 22-25 luglio 2008 Cerca con Google

16. BIKAS A., PANTELELIS N., KANARACHOS A., Computational tools for the optimal design of the injection moulding process, Journal of Materials Processing Technology 122 (2002) 112–126 Cerca con Google

17. CASTRO J., Comparison of Moldflow with Analytical Solutions, Ohio Cerca con Google

18. CAVANNA T., FRANZESE E., LIMITI E., PELOSI G., SELLERI S., SURIANI A., Valutazione tramite il metodo degli elementi finiti dell’effetto delle tolleranze di lavorazione sul comportamento elettromagnetico di una transizione a onde millimetriche, Quaderni della Società Italiana di Elettromagnetismo - vol. 1, 2 (luglio 2005), 48-52 Cerca con Google

19. CHAN F.T.S., LAU H.C.W., JIANG B., In-line process conditions monitoring expert system for injection molding, Journal of Materials Processing Technology 101 (2000) 268-274 Cerca con Google

20. CHANG R.-Y., HUANG S.-H., YANG W.-L., CHEN I.-Y., LAI C.-C., A novel computer simulation technology for the cooling analysis of complex injection moulded parts, Society of Plastics Engineers, ANTEC Proceedings, Joanne Drinan, (2000) 449-452 Cerca con Google

21. CHANG S.-H., HWANG J.-R., DOONG J.-L., Optimization of the injection moulding process of short glass fiber reinforced polycarbonate composites using grey relational analysis, Journal of Materials Processing Technology 97 (2000) 186–193 Cerca con Google

22. CHANG T.C., Teaching design for manufacturing using computer–aided techniques, The Journal of Technology Studies 101-108 Cerca con Google

23. CHANGYU S., LIXIA W., QIAN L., Optimization of injection moulding process parameters using combination of artificial neural network and genetic algorithm method, Journal of Materials Processing Technology 183 (2007) 412–418 Cerca con Google

24. CHEN X., GAO F., A study of packing profile on injection moulded part quality, Materials Science and Engineering A358 (2003) 205-213 Cerca con Google

25. CHIANG K.-T., CHANG F.-P., Application of grey-fuzzy logic on the optimal process design of an injection-molded part with a thin shell feature, International Communications in Heat and Mass Transfer 33 (2006) 94– 101 Cerca con Google

26. CHIANG K.-T., The optimal process conditions of an injection-moulded thermoplastic part with a thin shell feature using grey-fuzzy logic: a case study on machining the PC/ABS cell phone shell, Materials and Design 28 (2007) 1851–1860 Cerca con Google

27. CHUN D.H., Cavity filling analysis of injection moulding simulation: bubble and weld line formation, Journal of Materials Processing Technology 89-90 (1999) 177–181 Cerca con Google

28. CHUNG T.N., PLICHTA C., MENNIG G., Flow disturbance in polymer melt behind an obstacle, Rheol. Acta 37:299–305 (1998) Cerca con Google

29. COLTON J.S., CRAWFORD J., PHAM G., RODET V., Failure of Rapid Prototype Moulds during Injection Moulding, CIRP Annals - Manufacturing Technology, Volume 50, Issue 1 (2001) 129-132 Cerca con Google

30. DAWSON A., RIDES M., NOTTAY J., The effect of pressure on the thermal conductivity of polymer melts, Polymer Testing 25 (2006) 268–275 Cerca con Google

31. DAWSON A., RIDES M., URQUHART J., BROWN C. S., Thermal conductivity of polymer melts and implications of uncertainties in data for process simulation, Cerca con Google

32. DEMIRER A., SOYDAN Y., KAPTI A.O., An experimental investigation of the effects of hot runner system on injection moulding process in comparison with conventional runner system, Materials and Design 28 (2007) 1467–1476 Cerca con Google

33. DIMLA D.E., CAMILOTTO M., MIANI F., Design and optimisation of conformal cooling channels in injection moulding tools, Journal of Materials Processing Technology 164–165 (2005) 1294–1300 Cerca con Google

34. DIMLA D.E., CAMILOTTO M., MIANI F., Design and optimisation of conformal cooling channels in injection moulding tools, Journal of Materials Processing Technology 164–165 (2005) 1294–1300 Cerca con Google

35. ERZURUMLU T., OZCELIK B., Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method, Materials and Design 27 (2006) 853–861 Cerca con Google

36. FERREIRA J.C., MATEUS A., Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, Journal of Materials Processing Technology 142 (2003) 508–516 Cerca con Google

37. FOX C.W., POSLINSKI A.J., KAZMER D.O., Correlation of spiral and radial flow lengths for injection-molded thermoplastic parts, Society of Plastics Engineers, ANTEC (1998) Cerca con Google

38. GABOR J., KOVACS J., Analyzing the warpage in the injection moulding using SLS tool inserts, Advenced manufacturing Systems and Technologies, CISM Courses and Lectures Springer Wien New York, 437 (2002) 449-456 Cerca con Google

39. GALANTUCCI L.M., PERCOCO G., SPINA R., TRICARICO L., Evaluation of warpage of injection moulded parts using RE and FEM approaches, CISM Courses and Lectures 437 (2002), Springer Wien New York, 441-448 Cerca con Google

40. GALANTUCCI L.M., SPINA R., Evaluation of filling conditions of injection moulding by integrating numerical simulations and experimental tests, Journal of Materials Processing Technology 141 (2003) 266–275 Cerca con Google

41. GAO D.M., NGUYEN K.T., HETU J.-F., LAROCHE D., GARCIA-REJON A., Modelling of Industrial Polymer Processes Injection moulding and blow moulding, Advanced Performance Materials 5 (1998) 43–64 Cerca con Google

42. GARCIA N., GONZÁLEZ E., BASELGA J., BRAVO J., Critical thickness estimation in ISO-MC cards injection using CAE tools, Journal of Materials Processing Technology 143–144 (2003) 491–494 Cerca con Google

43. GEBELIN J.-C., JOLLY M.R., CENDROWICZ A.M., CIRRE J. AND BLACKBURN S., Simulation of die filling for the wax injection process Part 2, Vol. 35, No. 4 (2004) 761-768 Cerca con Google

44. GHIDINI F., CROPELLI S., Simulazione dello stampaggio ad iniezione uno dei filoni di attività del progetto NUMA, Brescia Ricerche 57 (2006) 37-46 Cerca con Google

45. HUANG M.-S., Cavity pressure based grey prediction of the filling-to-packing switchover point for injection moulding, Journal of Materials Processing Technology 183 (2007) 419–424 Cerca con Google

46. HUANG M.-S., LIN T.-Y., An innovative regression-model based searching method for setting the robust injection moulding parameters, Journal of Materials Processing Technology 198 (2008), 436-444 Cerca con Google

47. JAVIERRE C., FERNANDEZ A., AISA J., CLAVERIA I., Criteria on feeding system design: conventional and sequential injection moulding, Journal of Materials Processing Technology 171 (2006) 373–384 Cerca con Google

48. JAWORSKI M., A mesh by any other name - is it still the same? How choice of mesh type affects analysis outcomes, Flowfront, vol.4 issue 1 (aprile 2004), 11-14 Cerca con Google

49. JIN S., LAM Y.C., 2.5 D Cavity Balancing, Cerca con Google

50. KALLIEN L., Optimization of the injection moulding process for thermoplastics with 3D simulation, Sigma Engineering GmbH internal document Cerca con Google

51. KAPOOR D., KAZMER D., Comparison of sequential valve gate moulding to multi-cavity melt control injection moulding, (1998) in http://kazmer.uml.edu/Staff/papers.htm Vai! Cerca con Google

52. KARATAS C., SOZEN A., ARCAKLIOGLU E., ERGUNEY S., Modelling of yield length in the mould of commercial plastics using artificial neural networks, Materials and Design 28 (2007) 278–286 Cerca con Google

53. KAZMER D, “Computer flow simulation”, SPE conference, 2001, (in http://kazmer.uml.edu/Staff/Archive/2001SPE_Flow_Simulation.pdf) Vai! Cerca con Google

54. KAZMER D., DANAI K., Control of polymer processing, The Control Handbook, CRC & IEEE Press, 1999 Cerca con Google

55. KENIG S., BEN-DAVID A., OMERA M., SADEH A., Control of properties in injection moulding by neural networks, Engineering Applications of Artificial Intelligence 14 (2001) 819–823 Cerca con Google

56. KIM C.H., YOUN J.R., Determination of residual stresses in injection-moulded flat plate Simulation and experiments, Polymer Testing 26 (2007) 862-868 Cerca con Google

57. KIM H.S., SON J.S., IM Y.T., Gate location design in injection moulding of an automobile junction box with integral hinges, Journal of Materials Processing Technology 140 (2003) 110–115 Cerca con Google

58. KINI S., SHIVPURI R., A response surface based fem approach for improving quality of forging processes, 8th ICTP conference proceedings, Verona, (2005) 107-108 Cerca con Google

59. KINI S.D., An approach to integrating numerical and response surface models for robust design of production systems, Ph.D thesis, Ohio State University, Industrial and Systems Engineering, 2004 Cerca con Google

60. KOSZKUL J., NABIALEK J., Viscosity models in simulation of the filling stage of the injection molding process, Journal of Materials Processing Technology 157–158 (2004) 183–187 Cerca con Google

61. KURTARAN H., OZCELIK B., ERZURUMLU T., Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm, Journal of Materials Processing Technology 169 (2005) 314–319 Cerca con Google

62. KUZMAN K., NARDIN B., KOVAC M., JURKOSEK B., The integration of rapid prototyping and CAE in mould manufacturing, Journal of Materials Processing Technology 111 (2001) 279–285 Cerca con Google

63. KWAK T.S., SUZUKI T., BAE W.B., UEHARA Y., OHMORI H., Application of neural network and computer simulation to improve surface profile of injection moulding optic lens, Journal of Materials Processing Technology 170 (2005) 24–31 Cerca con Google

64. LAM Y.C., BRITTON G.A., LIU D.S., Optimisation of gate location with design constraints, International Journal of Advanced Manufacturing Technologies (2004) 24: 560–566 Cerca con Google

65. LAU H.C.W., NING A., PUN K.F., CHIN K.S., Neural networks for the dimensional control of molded parts based on a reverse process model, Journal of Materials Processing Technology 117 (2001) 89–96 Cerca con Google

66. LERKE N.D., Use of advanced structural simulation software to supplement MPI 3D, NAFEMS seminar, 23-24 novembre 2005, Gothemburg, Sweden Cerca con Google

67. LI C.C., A feature-based approach to injection mould cooling system design, Computer Aided design 33 (2001), 1073-1090 Cerca con Google

68. LIAO X.P., XIE H.M., ZHOU Y.J., XIA W., Adaptive adjustment of plastic injection processes based on neural network, Journal of Materials Processing Technology 187–188 (2007) 676–679 Cerca con Google

70. LIKSONOV D., BARRIERE T., BOUDEAU N., GELIN J.C., MASLOV L., Experimental study and simulation of the manufacturing of composite femoral implant stems by injection moulding, ESAFORM 2004 proceedings, 291-294 Cerca con Google

71. LU X., KHIM L.S., A statistical experimental study of the injection moulding of optical lenses, Journal of Materials Processing Technology 113 (2001) 189–195 Cerca con Google

72. LUCCHETTA G., BARIANI P.F., KNIGHT W.A., A New Approach to the Optimization of Blends Composition in Injection Moulding of Recycled Polymers, Annals of the CIRP Vol. 55/1/2006 Cerca con Google

73. MATH M., Simulation and virtual reality – a key factor in future development of metal forming processes, 9th International Scientific Conference on Production Engineering, Lumbarda, Kor?ula, 2003 Cerca con Google

74. MIKI T., TAKAKURA N., IIZUKA T., YAMAGUCHI K., KANAYAMA K., Effects of forming conditions on injection moulding of wood powders, ESAFORM 2004 proceedings, 295-298 Cerca con Google

75. MIN B.H., A study on quality monitoring of injection-moulded parts, Journal of Materials Processing Technology 136 (2003) 1–6 Cerca con Google

76. NAITOVE M.H., Mold Analysis Gets Faster, Easier, Smarter, March 2006 (www.ptonline.com) Vai! Cerca con Google

77. NARDIN B., KUZMAN K., KAMPUS Z., Injection moulding simulation results as an input to the injection moulding process, Journal of Materials Processing Technology 130–131 (2002) 310–314 Cerca con Google

78. NARDIN B., ZAGAR B., GLOJEK A., KRIZAJ D., Adaptive system for electrically driven thermoregulation of moulds for injection moulding, Journal of Materials Processing Technology 187–188 (2007) 690–693 Cerca con Google

79. NARDIN B., ZAGAR B., GLOJEK A., KRIZAJ D., Adaptive system for electrically driven thermoregulation of moulds for injection moulding, Journal of Materials Processing Technology 187–188 (2007) 690–693 Cerca con Google

80. NEVES N.M., PONTES A.J., POUZADA A.S., Experimental validation of morphology simulation in glass fibre reinforced polycarbonate discs, Journal of Reinforced Plastics and Composites, Vol. 20, No. 06 (2001) 452-465 Cerca con Google

81. OKTEM H., ERZURUMLU T., UZMAN I., Application of Taguchi optimization technique in determining plastic injection moulding process parameters for a thin-shell part, Materials and Design 28 (2007) 1271–1278 Cerca con Google

82. OZCELIK B., ERZURUMLU T., Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm, Journal of Materials Processing Technology 171 (2005) 437–445 Cerca con Google

83. OZCELIK B., ERZURUMLU T., Determination of effecting dimensional parameters on warpage of thin shell plastic parts using integrated response surface method and genetic algorithm, International Communications in Heat and Mass Transfer 32 (2005) 1085–1094 Cerca con Google

84. OZDEMIR A., ULUER O., GULDAS A., Flow front advancement of molten thermoplastic materials during filling stage of a mold cavity, Polymer Testing 23 (2004) 957–966 Cerca con Google

85. PANTANI R., COCCORULLO I., SPERANZA V., TITOMANLIO G., Morphology evolution during injection moulding: Effect of packing pressure, Polymer 48 (2007) 2778-2790 Cerca con Google

86. PARK K., AHN J.-H., Design of experiment considering two-way interactions and its application to injection moulding processes with numerical analysis, Journal of Materials Processing Technology 146 (2004) 221–227 Cerca con Google

87. PAZOS M., BASELGA J., BRAVO J., Limiting thickness estimation in polycarbonate lenses injection using CAE tools, Journal of Materials Processing Technology 143–144 (2003) 438–441 Cerca con Google

88. POSTAWA P., KOSZKUL J., Change in injection moulded parts shrinkage and weight as a function of processing conditions, Journal of Materials Processing Technology 162–163 (2005) 109–115 Cerca con Google

89. QIAO H., A systematic computer-aided approach to cooling system optimal design in plastic injection moulding, International Journal of Mechanical Sciences 48 (2006) 430–439 Cerca con Google

90. QIAO H., Transient mould cooling analysis using BEM with the time-dependent fundamental solution, International Communications in Heat and Mass Transfer 32 (2005) 315–322 Cerca con Google

91. RAHMAN W.A.W.A., SIN L.T., RAHMAT A.R., Injection moulding simulation analysis of natural fiber composite window frame, Journal of Materials Processing Technology 197 (2008) 22–30 Cerca con Google

92. RIDES M., ALLEN C., Slip Flow Behaviour of Filled Polymers Cerca con Google

93. SASAKI T., KOGA N., SHIRAI K., KOBAYASHI Y., TOYOSHIMA A., An experimental study on ejection forces of injection moulding, Journal of the International Societies for Precision Engineering and Nanotechnology 24 (2000) 270–273 Cerca con Google

94. SHAHARUDDIN S.I.S., SALIT M.S., ZAINUDIN E.S., A review of the effect of moulding parameters on the performance of polymeric Composite injection moulding, Turkish Journal of Engineering Environment Science 30 (2006), 23-34. Cerca con Google

95. SHELESH-NEZHAD K., SIORES E., An intelligent system for plastic injection moulding process design, Journal of Materials Processing Technology 63 (1997) 458-462 Cerca con Google

96. SHEN Y.K., CHIEN H.W., LIN Y., Optimization of the Micro-Injection Moulding Process using Grey Relational Analysis and Moldflow Analysis, Journal of reinforced plastics and composites, Vol. 23, No. 17 (2004) 1799-1814 Cerca con Google

97. SIEVERS R.M., TATARA R.A., HIERZER V., Simulating the polypropylene filling of a dispensing closure mould with injection moulding software, American Society for Engineering Education April 1-2, 2005 - Northern Illinois University, DeKalb, Illinois 2005 IL/IN Sectional Conference Cerca con Google

98. SMITH A.G., WROBEL L.C., MCCALLA B.A., ALLAN P.S., HORNSBY P.R., A computational model for the cooling phase of injection moulding, Journal of Materials Processing Technology 195 (2008) 305–313 Cerca con Google

99. SOMBATSOMPOP N., CHAIWATTANPIPAT W., Temperature profiles of glass fibre-filled polypropylene melts in injection moulding, Polymer Testing 19 (2000) 713–724 Cerca con Google

100. SPINA R., A neuro computing system to optimize the pressure profile for injection moulded parts, AITEM 2001 proceedings 767-791 Cerca con Google

101. SPINA R., Injection moulding of automotive components: comparison between hot runner systems for a case study, Journal of Materials Processing Technology 155–156 (2004) 1497–1504 Cerca con Google

102. SRIDHAR L., NARH K.A., The effect of temperature dependent thermal properties on process parameter prediction in injection moulding, International Conference on Heat Mass Transfer, Vol. 27, No. 3 (2000) 325-332 Cerca con Google

103. TANG S.H., KONG Y.M., SAPUAN S.M., SAMIN R., SULAIMAN S., Design and thermal analysis of plastic injection mould, Journal of Materials Processing Technology 171 (2006) 259–267 Cerca con Google

104. TANG S.H., TAN Y.J., SAPUAN S.M., SULAIMAN S., ISMAIL N., SAMIN R., The use of Taguchi method in the design of plastic injection mould for reducing warpage, Journal of Materials Processing Technology 182 (2007) 418–426 Cerca con Google

105. TATARA R.A., SIEVERS R.M., HIERZER V., Modelling the injection moulding processing of a polypropylene closure having an integral hinge, Journal of Materials Processing Technology 176 (2006) 200–204 Cerca con Google

106. Thermal and Mechanical Characterization of ViaLux 81 A Novel Epoxy Photo-Dielectric Dry Film (PDDF) for Microvia Applications, IEEE (2001) in http://hdl.handle.net/1853/11659 Vai! Cerca con Google

107. TOLGA BOZDANA A., EYERCIOGLU O., Development of an expert system for the determination of injection moulding parameters of thermoplastic materials EX-PIMM, Journal of Materials Processing Technology 128 (2002) 113–122 Cerca con Google

108. TOR S.B., LEE S.G., HIAN S.H. C.Y., A two-stage collapsible core for injection moulded plastic parts with internal undercuts, International Journal of Machine Tools & Manufacture 40 (2000) 1215–1233 Cerca con Google

109. TSENG W.J., Statistical analysis of process parameters influencing dimensional control in ceramic injection moulding, Journal of Materials Processing Technology 79 (1998) 242–250 Cerca con Google

110. VILELA PONTES A.J., Shrinkage and ejection forces in injection moulded products, Universidad Do Minho, 2002 Cerca con Google

111. WANG K.K., ZHOU J., A Concurrent-Engineering Approach Toward the Online Adaptive Control of Injection Molding Process, Annals of the CIRP Vol. 49/1/2000 Cerca con Google

112. WEIDENFELLER B., HOFER M., SCHILLING F.R., Cooling behaviour of particle filled polypropylene during injection moulding process, Composites: Part A 36 (2005) 345–351 Cerca con Google

113. WILL J., BALDAUF H., Integration of computational robustness evaluations in virtual dimensioning of passive passengers safety at the BMW AG, Berechnung und Simulation im Fahrzeugbau, VDI-Berichte Nr.1976 (2006), 851-873 Cerca con Google

114. WILL J., BUCHER C., GANSER M., GROSSENBACHER K., Computation and visualization of statistical measures on FE structures for forming simulations, Weimarer Optimierungs und Stochastiktage 2.0, 1-2 dicembre 2005 Cerca con Google

115. WU C.-H., SU Y.-L., Optimization of wedge-shaped parts for injection molding and injection compression moulding, Int. Comm. Heat Mass Transfer 30 (2003) 215-224 Cerca con Google

116. YAMAKAWA S., SHAW C., SHIMADA K., Layered tetrahedral meshing of thin-walled solids for plastic injection moulding FEM, Computer-Aided Design 38 (2006) 315–326 Cerca con Google

117. YARLAGADDA P.K.D.V., Development of an integrated neural network system for prediction of process parameters in metal injection moulding, Journal of Materials Processing Technology 130–131 (2002) 315–320 Cerca con Google

118. YARLAGADDA P.K.D.W., KONG C.A.T., Development of a hybrid neural network system for prediction of process parameters in injection moulding, Journal of Materials Processing Technology 118 (2001) 110–116 Cerca con Google

119. YEN C., LIN J.C., LI W., HUANG M.F., An adductive neural network approach to the design of runner dimensions for the minimization of warpage in injection mouldings, Journal of Materials Processing Technology 174 (2006) 22–28 Cerca con Google

120. ZHENG R., KENNEDY P., PHAN-THIEN N., FAN X-J., Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics, Journal of Non-Newtonian Fluid Mech. 84 (1999) 159-190 Cerca con Google

121. ZHOU H., GENG T., LI D., Numerical filling simulation of injection moulding based on 3D finite element model, Journal of reinforced plastics and composites, Vol. 24, No. 8 (2005) 823-830 Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record