Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Rossignolo, Virginia (2008) Studio degli effetti del Cr(III) su piante di salice: confronto fra differenti specie e condizioni sperimentali. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The increasing numbers of chromium contaminated sites in Italy requires the adoption of low-cost and large scale clean-up technologies. As an alternative to the traditional methods, phytoremediation could be exploited, which uses herbaceous and woody plants in association with the rizosphere microorganisms to remove and/or detoxify soils, waters and sediments from environmental pollutants.
Trees have been suggested as suitable plants for the phytoremediation technologies, being high yielding biomass and genetically variable organisms. Particularly, species of the genus Salix are fast growing plants, excellent biomass producers, and their roots can explore large zones in deep.
Therefore, due to the need to identify plant species characterized by high phytoremediation potential, in the present study Salix spp. have been sceened for tolerance to and accumulation of trivalent chromium (CrIII).
At first, seven Salix species were considered: S. alba L. sub. typica, S. daphnoides Vill., S. elaeagnos Scop., S. fragilis L., S. purpurea L., S. matsudana Marsh. var. tortuosa e S. nigra Koidz. The responses of plants to CrIII were evaluated in terms of duration of treatment (since 4 hours to 1 year), growing environment (climatic chamber or green-house), growing substrate (hydroponics, soil, perlite), and metal concentration (50, 100 e 300 ?M di CrCl3 for hydroponic and agriperlite experiments; 50 ?moli Cr Kg-1 for soil trial).
Four Salix species were selected in perlite experiments (50 and 100 ?M di CrCl3) on the basis of cross-results relative to high CrIII tolerance and accumulation: Salix alba sub. typica; S. elaeagnos, S. fragilis e S. matsudana var. tortuosa. The remaining three species displayed low Cr accumulation and/or tolerance, and were not used for further experiments.
Selected plant species were in part grown in perlite with 100 and 300 ?M di CrCl3, and in part inside pots containing soil with no Cr (control) or CrIII 50 ?moli Cr Kg-1.
Plants grown in perlite showed a slight decrease of biomass production and reduced Fe and S contents in response to Cr treatment. Also, Cr accumulation in roots accounted for 1426 ?g Cr g-1 on a dry weight basis (d. wt.) after 28 days of treatment. Conversely, plants grown in CrIII contaminated soil produced more biomass and chlorophyll than the controls, while containing up to 700 ?g Cr g-1 d.wt. in roots after 45 days in plus Cr.
Among the four species, S. fragilis e S. matsudana were those accumulating high Cr amounts in both experiments. Therefore, the two species were further used in hydroponic experiments in the presence of 100 or 300 ?M CrIII for 15 days. Both plant species showed toxic effects due to CrIII exposure, such as decrease of leaf gas exchange and photosynthetic activity, reduction of growth, structural and ultrastructural alterations of root tips and leaves. Moreover, the increased activity of such enzymes as catalase and guaiacol peroxidase, involved in scavenging reactive oxygen species (ROS), was observed. Chromium accumulation in roots was significant at both short- (up to 4426 ?g Cr g-1 d.wt. after 4 hours of treatment) and long- (up to 6833 ?g Cr g-1 d.wt. after 15 days of treatment) exposure of plants to CrIII.
In conclusion, the Salix species used in this study have shown high variability in root Cr accumulation, while the translocation rate of the metal to the shoot was generally limited. The effects of chromium on plants relied on the Cr concentration applied and on the plant growing substrate. Indeed, Cr was more available in hydroponic solution than in soil and perlite and, as a consequence, it was more promptly absorbed and caused more visible phytotoxic symptoms.
Our results indicate that the employment of Salix spp., particularly of S. fragilis, may be useful in the phytoremediation of CrIII contaminated sites. In fact, S. fragilis was the species that accumulated high levels of Cr in all the experimental conditions tested. Therefore, the capacity of Cr accumulation seems to be an intrinsic species-related feature, whereas the growth medium would affect the bioavailability of Cr to plants, and therefore Cr accumulation in plant tissues.
In soil contaminated with CrIII the presence of Salix plants allowed the removal of 26% more than that measured in soil subjected to the loss of Cr for water leaching

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Malagoli, Mario
Supervisor:Ghisi, Rossella
Ph.D. course:Ciclo 19 > Corsi per il 19simo ciclo > ECOLOGIA FORESTALE
Ciclo 19 > Corsi per il 19simo ciclo > ECOLOGIA FORESTALE
Data di deposito della tesi:23 December 2008
Anno di Pubblicazione:December 2008
Key Words:salici, cromo trivalente, fitodepurazione
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:1305
Depositato il:23 Dec 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adriano D.C. 1986. Trace elements in the Terrestrial Environment, 105-123. New York: Springer Verlag. Pp. 105-123. Cerca con Google

Aebi H. 1984. Catalase in vitro. Methods in enzymology. Vol. 105, pp. 121-126. Cerca con Google

Aitio A. e Jarvisalo J. 1986. Levels of welding fume components in tissue and body fluids. In: R.M Stern, A. Berlin, A.C. Flethcher, J. Jarvisalo (eds.) Health hazards and biological effects of welding fumes and gases. Excerpta Medica, International Congress Series 676, Amsterdam. Pp. 169-179. Cerca con Google

Aiyar J., De Flora S. e Wetterhahn K.E. 1992. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved? Carcinogenesis. Vol. 13. No. 7, pp. 1159-1166. Cerca con Google

Alpi A., Pupillo P. e Rigano C. 1992. Fisiologia delle piante. EdiSES. Cerca con Google

Alscher R.G., Erturk N. e Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. Vol. 53, pp. 1331-1341. doi: 10.1093/jexbot/53.372.1331. Cerca con Google

Anderson R.A. 1989. Essentiality of Cr in humans. Science of The Total Environment. Vol. 86, pp. 75-81. Cerca con Google

ANPA, Agenzia Nazionale per la Protezione dell’Ambiente. 1999. Il rischio in Italia da sostanze inorganiche – Fondo naturale incontaminato e contaminato. A cura di Bressa G. e Cima F. pp. 123. Cerca con Google

Aravidin P. e Prasard M.N.V. 2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum deversum L.: a free floating freshwater macrophyte. Plant Physiology and Biochemistry. Vol. 41, pp. 391-397. doi: 10.1016/S0981-9428(03)00035-4. Cerca con Google

Asada K. e Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Kyle D.J. et al. Photoinhibition. Pp. 227-287. Elsever. Cerca con Google

Asada K. 1992. Ascorbato peroxidase – a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum. Vol. 85, pp. 601-639. doi: 10.1034/j.1399-3054.1992.850216.x. Cerca con Google

Asada K. 1999. The water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology. Vol. 50, pp. 601-639. doi: 10.1146/annurev.arplant.50.1.601. Cerca con Google

Bagdon R.E. e Hazen R.E. 1991. Skin permeation and cutaneous hypersensitivity as a basis for making risk assessments of chromium as a soil contaminant. Environmental Health Perspectives. Vol. 92, pp. 111-119. Cerca con Google

Bagnoli F., Danti S., Magherini V., Cozza R., Innocenti A.M. e Racchi M.L. 2004. Molecular cloning, characterization and expression of two catalase genes from peach. Functional Plant Biology. Vol. 31, pp. 349-357. doi: 10.1071/FP03203. Cerca con Google

Baker A.J.M., McGrath S.P., Reeves R.D. e Smith A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N and Bañuelos G. Phytoremediation of contaminated soil and water. Lewis Publishers. Printed in the United States of America. Pp. 85-107. Cerca con Google

Barcelo J., Poschenrieder C. e Gunse B. 1985. Effect of chromium VI on mineral element content of bush beans. Journal of Plant Nutrition. Vol. 8, N° 3, pp. 211-217. Cerca con Google

Barcelo J., Poschenrieder C. e Gunse B. 1986. Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv Contender) under both normal and water stress conditions. Journal of Experimental Botany. Vol. 37, pp. 178-187. Cerca con Google

Barcelo J. e Poschenrieder C. 1990. Plant water relations as affected by heavy metal stress. A review. Journal of Plant Nutrition. Vol. 13, pp.1-37. Cerca con Google

Barcelo J. e Poschenrieder C. 1997. Chromium in plants. In: Carati S., Tottarelli F. e Seqmi P. (eds), Chromium environmental issue, pp. 101-129. Francotangati Press, Milan. Cerca con Google

Bassi M., Corradi M.G. e Realini M. 1990. Effects of chromium (VI) on two freshwater plants, Lemna minor and Pista stratiotes. 1. Morphological observations. Cytobios. Vol. 62, pp. 27-38. Cerca con Google

Barlett R.G. e James B.R. 1988. Mobility and bioavailability of chromium in soil. In : Chromium in the natural and human environments. Eds. Jerone O. Nriagu and E. Nieboer. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. Pp. 267-304. Cerca con Google

Benton Jones J. Jr. 2005. Hydroponics, a pratical guide for the soilless grower. CRC Press. Printed in the United States of America. Pp.102. Cerca con Google

Beattie J.K. e Haight Jr. G.P. 1972. Chromium(VI) oxidations of inorganic substrates. Prog. Inorg. Chem. Vol. 17, pp. 93-145. Cerca con Google

Bueuge I.J. e Hug S.J. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science and Technology. Vol. 31, pp. 160-170. Cerca con Google

Bueuge I.J. e Hug S.J. 1998. Influence of organic ligands on chromium(VI) reduction by iron(II). Environmental Science and Technology. Vol. 32, pp. 2092-2099. Cerca con Google

Bini C., Maleci Bini L., Gabbrielli R. e Paolillo A. 2000. Biological perspectives in soil remediation with reference to chromium. Bioremediation of Contaminated Soils. Vol. 38, pp. 663-675. Cerca con Google

Bonet A., Poschenrieder C. e Barcelo J. 1991. Chromium III-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. Journal of Plant Nutrition. Vol. 14, N° 4, pp. 403-414. Cerca con Google

Borin M. 2003. Fitodepurazione. Soluzioni per il trattamento dei reflui con le piante. Edagricole. Cerca con Google

Brooks R.R. (Ed) 1998. Plants that Hyperaccumulate Heavy Metals – Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. New York: International Center for Agricolture and Bioscences. Cerca con Google

Bock M., Schmidt A., Bruckne, T. e Diepgen, T.L. 2003. Occupational skin diseas in the construction industry. Br. J. Dermatol. Vol. 149, pp. 1165-1171. Cerca con Google

Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical biochemistry. Vol. 72, pp. 248-254. Cerca con Google

Burns R.M. e Honkala B.H. 1990. Silvics of North America. Vol 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service. Pp.877. Cerca con Google

Cary E.E., Allaway W.H. e Olsen O.E. 1977a. Control of Chromium Concentration in Food Plants: 1. Absorption and Traslocation of Chromium by Plants. J. Agric. Food Chem. Vol. 25, N° 2, pp. 300-304. Cerca con Google

Cary E.E., Allaway W.H. e Olsen O.E. 1977b. Control of Chromium Concentration in Food Plants: 2. Chemistry of Chromium in Soils and Its Availability to plants. J. Agric. Food Chem. Vol. 25, N° 2, pp. 305-309. Cerca con Google

Chakir A., Bessiere J., Kacemi K.AL. e Marouf B. 2002. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials. Vol. B 95, pp.29-46. Cerca con Google

Chandra P., Sinha S. e Rai U.N. 1997. Bioremediation of Cr from water and soil by vascular acquatic plants. In: Phytoremediation of Soil and Water Contaminants, ed. E.L. Kruger, T.A. Anderson e J.R. Coats, 274-282. Washington, DC: American Chemical Society. Cerca con Google

Chaney R.L., Malik K.M., Li Y.M. Brewer E.P., Angle J.S. e Baker A. 1997. Phytoremediation of soil metals. Current opinion in Biotechnology. Vol. 8, pp. 279-284. Cerca con Google

Chatterjee J. e Chatterjee C. 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution. Vol. 109, pp. 69-74. Cerca con Google

Che-Jen Lin. 2002. The chemical transformations of chromium in natural waters – a model study. Water, Air, and Soil Pollution. Vol. 139, pp. 137-158. Cerca con Google

Chen G.X., Sano S. e Asada K. 1992. The amino acid sequence of ascorbate peroxidase from tea has high degree of homology to that of cytochrome c peroxidase from yeast. Plant & Cell Physiology. Vol. 33, pp. 109-116. Cerca con Google

Chen H. e Cutright T. 2001. EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annuus. Chemosphere. Vol. 45, pp. 21-28. Cerca con Google

Chesterman C.W. 1975. Industrial minerals and rocks. 4th edition. AIME, New York, pp. 927. Cerca con Google

Choudhury S. e Panda S.K. 2005. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium Nepalese (Schwaegr.) Broth. Under chromium and lead phytotoxicity. Water Air and Soil Pullution. Vol. 167, No. 1-4, pp. 73–90. Cerca con Google

Clemens S. 2001. Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis. Annu. Rev. Olant Biol. Vol. 53, pp. 159-182. Cerca con Google

Clijsters H. e Van Assche F. 1985. Inibition of photosynthesis by heavy metals. Photosynthesis Research. Vol. 7, pp 31-40. Cerca con Google

Cobbett C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in Plant Biology. Vol. 3, pp. 211-216. Cerca con Google

Cobbett C.S. e Goldsbrough P.B. 2000. Mechanisms of metal resistance: phytochelatins and metallothioneins. In Phytoremediation of Toxic Metals. Using Plants to Clean up the Environment, ed. I Raskin, BD Ensley, pp. 247–71. New York:Wiley Cerca con Google

Comune di Torino. 2008. Comunicazione sul procedimento di bonifica e informazioni riguardanti il caso del fiume Dora presunto inquinato da Cromo esavalente. Prot n. 14532 Tit. 06 Cl. 9 - 7 Fasc. 3 Data: 18/09/2008. Cerca con Google

Corradini F. 1988. Rame oltre i limiti di guardia. Terra trentina. Vol. 34, No. 2, pp.: 27-29. Cerca con Google

Costa M. 1991. DNA-protein complexes induced by chromate and other carcinogens. Environmental Health Perspective. Vol. 92, pp. 45-52. Cerca con Google

Costa M. 1993. Molecular targets of nickel and chromium in human and experimental systems. Scand. J. Work Environ. Health. Vol. 19, No. 1, pp. 71-74. Cerca con Google

Davis K.M. e Espenson J.H., 1970. Kinetics and mechanism of the oxidation of vanadium(III) by chromium (VI) in aqueous perchloric acid solutions. J. Am. Chem. Soc. Vol. 92, pp. 1884-1888. Cerca con Google

Dayan A.D. e Paine A.J. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of literature from 1985 to 2000. Hum. Exp. Toxicol.. Vol. 20, No. 9, pp. 439-451. Cerca con Google

De Filippis L.F e Pallaghy C.K. 1994. Heavy metals: sources and biological effecs. In: Algae and water pollution: advances in Lymnology series. Eds. Rai L.C., Caur J.P. e Soeder C.J. Vol. 42, pp. 32-77. Schweizerbart, Stuttgart. Cerca con Google

De Flora S. 2000. Threshold mechanisms and site specificity in chromium (VI) carcinogenesis. Carcinogenesis. Vol. 21, No. 4, pp.533-541. Cerca con Google

del Rio L.A., Corpus F.J., Sandalio L.M., Palma J.M., Gomez M. e Barroso J.B. 2002. Reactive oxigen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany. Vol. 53, pp. 1255-1272. doi: 10.1093/jexbot/53.372.1255. Cerca con Google

del Rio L.A., Sandalio L.M., Altomare D.A. e Zilinskas B.A. 2003. Mitochondrial and peroxisomal manganese superoxide dismutase: differential axpression durino leaf senescence. . Journal of Experimental Botany. Vol. 54, pp. 923-933. doi: 10.1093/jxb/erg091. Cerca con Google

Dickinson N.M., Turner A.P. and Lepp N.W. 1991. How do trees and other long-lived plants survive in polluted environments?. Functional Ecology. Vol. 5, No. 1, pp. 5-11. Cerca con Google

Dickinson N.M., A.P. Turner, S.A. Watmough e N.W. Lepp. 1992. Acclimatation of trees to pollution stress: cellular metal tolerance traits. Annals of Botany. Vol. 70, pp. 569-572. Cerca con Google

Dickinson N.M. 2000. Strategies for sustainable woodland on contaminated soils. Chemosphere. Vol. 41, pp. 259-263. Cerca con Google

Dionigi C.P., Mendelssohn I.A. e Sullivan V.I. 1985. Effects of soil waterlogging on the energy status and distribution of Salix nigra and S. exigua in the Atchafalaya River Basin of Louisiana. American Journal of Botany. Vol. 72, N. 1, pp. 109-119. Cerca con Google

Direttiva 2002/95/CE. Restriction of Hazardous Substances Directive. Restrizione dell'uso di determinate sostanze pericolose nelle apparecchiature elettriche ed elettroniche. Cerca con Google

Dixit V., Pandey V. and Shyam R. 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell and Environment. Vol. 25, pp. 687–693. Cerca con Google

Elstner E.F. e Heupel A. 1976. Inibition of nitrite formation from hydroxilamminiumchloride: a simple assay for superoxide dismutase. Analytical biochemistry. Vol. 70, N° 2, pp. 616-620. Cerca con Google

Ferreira R.R.; Fornazier R.F., Vitória A.P.,, Lea P.J. e Azevedo R.A. 2002.Changes in antioxidant enzyme activities in soybean under cadmium stress. Journal of Plant nutrition. Vol. 25, pp. 327-342. doi: 10.1081/PLN-100108839. Cerca con Google

Foà, V., Riboldi L., Patroni M., Zocchetti C., Sbrana C. e Mutti A. 1988. Effects derived from long-term low-level chromium exposure in ferro-alloy metallurgy. Study of absorption and renal function in workers. Sci. Tot. Environ. Vol. 71, pp. 389-396. Cerca con Google

Fridovich Irwin. 1976. Oxygen radicals, hydrogen peroxide and oxygen toxicity. Pp. 239-277. In: Free radicals in biology. Vol. 1. Ed. by William A. Pryor. Academic Press, Inc. New York. Cerca con Google

Gadd G.M. 1993. Tansley Review No. 47. Interactions of fungi with toxic metals. New Physiologist. Vol. 124, pp. 25-60. Cerca con Google

Galli U., Scuëpp H. e Brunold C. 1994. Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum. Vol. 92, pp. 364-368. Cerca con Google

Gellini R. e P. Grossoni. 1997. Botanica forestale – Vol II. Angiosperme, 215-225. Padova: CEDAM Cerca con Google

Gratão P., polle A., Lea P.J. e Azevedo R.A. 2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology. Vol. 32, pp. 481-494. Cerca con Google

Griffin R.A., Au A.K. e Frost R.R. 1977. Effect of pH [hydrogen-ion concentration] on adsorption of chromium from landfill-leachate by clay minerals. Journal of Environmental Science. Eng. Vol. 12, N° 8, pp. 431-449. Cerca con Google

Gupta S.K., Herren T., Krebs R. e Hari T.. 2000. In situ gentle remediation measures for heavy metal-polluted soils. In: Terry N and Bañuelos G. Phytoremediation of contaminated soil and water. Lewis Publishers. Printed in the United States of America. Pp. 303-322. Cerca con Google

Hall J.L., Flowers T.J. e Roberts R.M. 1984. La cellula vegetale: struttura e metabolismo. Nicola Zanichelli Editore s.p.a. Pp. 100. Cerca con Google

Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. Vol. 53, n. 366, pp. 1-11. Cerca con Google

Hanus J. e Tomas J. 1993. An investigation of chromium content and its uptake from soil in the white mustard. Acta Fytotech. Vol. 48, pp 39-47. Cerca con Google

Hayakawa T., Kanematsu S. e Asada K. 1984. Occurence of Cu-Zn-superoxide dismutase in the intrathylakoid space of spinach-chloroplasts. Plant & Cell Physiology. Vol. 25, pp. 883-889. Cerca con Google

Hegedus A., Erdei S. e Horvath G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science. Vol. 160, pp. 1085-1093. doi:10.1016/S0168-9453(01)00330-2. Cerca con Google

Hemeda H.M. e Klein B.P. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science. Vol. 55, pp. 184-185. Cerca con Google

Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology. Vol. 119, pp.471–79. Cerca con Google

Huffman Jr E.W. e Allaway W.H. 1973. Chromium in plants: distribution in tissues, organelles and extracts, and availability of bean leaf Cr to animals. J. Agric. Food Chem. Vol. 21, pp. 982-986. Cerca con Google

James B.R. e Bartlett R.J. 1988. Mobility and bioavailability of chromium in soil. In: Nriagu J.O., Nieboer E., eds. Chromium in Natural and Human Environments. Wiley Interscience, New York, pp 265-305. Cerca con Google

Jiménez A., Hernández J.A.,io L.A. e Sevilla F. 1997. Evidence for the presence of the ascorbato-glutathione cycle in mytochondria and peroxisomes of pea leaves. Plant Physiology. Vol. 114, pp. 275-284. Cerca con Google

Kabata-Pendias A. e Pendias H. 1992. Trace elements in soil and plants. 2nd edn. CRC Press, London, pp.227-233. Cerca con Google

Kahle H. 1993. Response of roots of trees to heavy metals. Environmental Experimental Botany. Vol. 33. pp. 99-119. Cerca con Google

Katz S.A. e Salem H. 1994. The biological and environmental chemistry of chromium. New York: VCH Publisher. Cerca con Google

Kömives T., Gullner G. e Rennenberg H. 2003. Roles of glutathione and glutathione-related enzymes in remediation of polluted soils by transgenic poplars. In: Davidian J.-C., Grill D., De Kok L.J., Stulen I., Hawkesford M.J., Schung E. and Rennenberg H. editors. Sulfur transport and assimilation in plants - Regulation, interaction and signalling. Backhuys Publishers, Leiden, The Netherlands. Pp. 101-109. Cerca con Google

Koppenol W.H. 2001. "The Haber-Weiss cycle – 70 years later". Redox Report. Vol. 6, No. 4, pp, 229–234. doi:10.1179/135100001101536373. Cerca con Google

Kota? J. e Stasicka Z. 2000. Chromium occurence in the environment and methods of its speciation. Environ. Pollution,. Vol. 107, pp. 263-283. Cerca con Google

Krishnamurthy S. e Wilkens M.M. 1994. Environmental chemistry of Cr. Northeastern Geology. Vol. 16, No. 1, pp. 14-17. Cerca con Google

Kukkola E., Rautio P. e Huttunen S. 2000. Stress indications in copper- and nickel-exposed Scots pine seedlings. Environmental and Experimental Botany. Vol. 43, pp. 197-210. Cerca con Google

Kumar P.B.A.N., Dushenkov V., Motto H. e Rasjin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soil. Environmental Science & Technology. Vol. 29, pp. 1232-1238. Cerca con Google

Igamberdiev A.U. e Lea P.J. 2002. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organism. Phytochemistry. Vol. 60, pp. 651-674. doi: 10.1016/S0031-9422(02)00179-6. Cerca con Google

Landberg T. e M. Greger. 1994. Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land?. In Proceedings: Willow vegetation filters for municipal wastewater and sludges. A biological purification system, ed. P. Aronsson e K. Perttu, pp. 133-144. Uppsala, Svezia, 5-10 Giugno. Cerca con Google

Landberg T. e Greger M. 2002. Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. Journal pf Plant Physiology. Vol. 159, pp. 69-75. Cerca con Google

Lasart M.M., Baker A.J.M. e Kochian L.V. 1998. Altered Zn compartmentation inthe root symplasm and stimulated Zn adsorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Journal of Experimental Botany. Vol. 118, pp. 875-883. Cerca con Google

Lasart M.M. 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality. Vol. 31, pp. 109-120. Cerca con Google

Lees P.S.J. 1991. Chromium and disease: review of epidemiologic studies with particular reference to etiologic information provided by measures of exposure. Environmental Haelth Perspective. Vol. 92, pp. 93-104. Cerca con Google

Liu D.H., Jaing W.S. e Li M.X. 1993. Effect of chromium on root growth and cell division of Allium cepa. Israel Journal of Plant Science. Vol. 42, pp. 235-243. Cerca con Google

Longo C. 1997. Biologia vegetale, forme e funzioni. UTET, Torino. Pp. 170 Cerca con Google

Lytle C.M., Lytle F.W., Yang N., Qian J.-H., Hansen D., Zayed A., e Terry N.. 1998. Reduction of Cr(VI) to Cr(III) by Wetland Plants: Potential for In Situ Heavy Metal Detoxification. Environ. Sci. Technol. Vol. 32, N° 20, pp. 3087-3093. Cerca con Google

MacFarlane G.R. e Burchett M.D. 2000. Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquatic Botany, Vol. 68, pp. 45-59. Cerca con Google

Mackay D. 1991. Multimedia environmental models: the fugacity approach. Lewis Publishers. Cerca con Google

Mangabeira P.A., Gavrilov K.L., de Almeida A.-A.F., Oliveira A.H., Severo M.I., Rosa T.S., Silva D. da C., Labejof L., Escaig F., Levi-Setti R., Mielke M.S., Loustalot F.G. e Galle P. 2006. Chromium localization in plant tissues of Lycopersicum esculentum Mill. using ICP-MS and ion microscopy (SIMS). Applied surface science. Vol. 252, pp. 3488-3501. Cerca con Google

Marchetti R. 1998. Inquinamento delle acque superficiali. In “Ecologia applicata (Nuova Edizione). Città Studi Edizioni, Torino. Cerca con Google

Marschner Horst. 1995. Mineral nutrition of higher plants. Academic press. Printed in Great Britain by The University Printing House, Cambridge. Cerca con Google

Martini F. e Paiero P. 1988. I salici d’Italia., guida al riconoscimento e all’utilizzazione pratica. Edizioni LINT Trieste. Cerca con Google

McGrath S.P. 1982. The uptake and traslocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and soil. New Phytologist. Vol. 92, pp. 381-390. Cerca con Google

McGrath S.P. 1995. Chromium and Nickel. In: Alloway B.J. (eds). Heavy metals in soil, pp. 139-155. Chapman and Hall. London, UK. Cerca con Google

Mei B., Puryear J.D. e Newton R.J. 2002. Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil. Vol. 247, pp. 223-231. Cerca con Google

Michael T.P. e McClung C.R. 2002. Phase-specific circadian clock regulatory elements in Arabidospsis. Plant Physiology. Vol. 133, pp. 443-447. doi: 10.1104/pp.103.028399. Cerca con Google

MIPAF – Ministero delle Politiche Agricole e Forestali. 2000. Metodi di analisi chimica del suolo. Coordinatore P. Violante. Milano: Franco Angeli editore. Cerca con Google

Misra S.G. e Jaiswal P.C. 1982. Absorption of Fe by spinach on chromium(VI) treated soil. Journal of Plant Nutrition. Vol. 5, pp.755-760. Cerca con Google

Mittler Ron. 2002. Oxidative stress, antioxidants and stress tolerance. TRIENDS in Plant Science. Vol. 7 No. 9. pp. 405-410. doi: 10.1016/S1360-1385(02)02312-9. Cerca con Google

Miyake C. e Asada K. 1992. Thylakoid-bound ascorbato peroxidase in spinach chloroplast and photoreduction of its primary oxidation product the monodehydroascorbate radicals in thylacoids. Plant Physiology and Plant Molecular Biology. Vol. 33, pp. 541-553. Cerca con Google

Mocquot B., Vangronsveld J., Clijsters H. e Mench M. 1996. Copper toxicity in young maize (Zea mais L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant and soil. Vol. 182, pp. 287-300. Cerca con Google

Moral R., Pedreno N.J., Gomez I. e Mataix J. 1995. Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition. Vol. 18, pp. 815-822. Cerca con Google

Moral R., Gomez I., Pedreno N.J. e Mataix J. 1996. Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum M.) Agrochimica. Vol. 40, pp. 132-138. Cerca con Google

Nakano Y. e Asada K. 1981. Hydrogen peroxide is scavenged by ascorbato-specific peroxidase in spinach chloroplasts. Plant and cell Physiology. Vol. 22, Nç 5, pp 867-880. Cerca con Google

Newman M.C. e McIntosh A.W. 1991. Metal Ecotoxicology – Concepts & Applications. Lewis Publ., Chelsea, Michigan, USA. Cerca con Google

Nieboer E. e Richardson D.H.S. 1980. The replacement of the non-descript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution. Vol. 1, pp. 3-26. Cerca con Google

Nieboer E. e Jusys A.A. 1988. Biologic chemistry of chromium. In: Nriagu, J.O. and Nieboer, E. Editors, 1988. Chromium in Natural and Human Environments Wiley Interscience, New York, pp. 21–81. Cerca con Google

Nriagu J.O. 1988. Production and uses of chromium. In: Chromium in natural and human environment, ed. J.O. Nriagu. New York: John Wiley and Son. Pp. 81-105. Cerca con Google

Olaguibel J.M. e Basomba A. 1989. Occupational asthma induced by chromium salts. Allergol. Immunopatol. Vol. 17, pp. 133-136. Cerca con Google

Õyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Analytical biochemistry. Vol. 142, pp. 290-296. Cerca con Google

Ozawa T. e Hanaki A. 1990. Spin-trapping on the reactions of Cr(III) with hydrogen peroxide in the presence of biological reductants; is Cr(III) nontoxic? Biochemistry International. Vol. 22, pp. 343-352. Cerca con Google

Panda S.K. e Patra H.K. 2000. Doees Cr(III) produces oxidative damage in excised wheat leaves. Journal of Plant Biology. Vol. 27, No. 2, pp. 105-110. Cerca con Google

Panda S.K. 2003. Heavy-metal phytotoxicity induces oxidative stress in a moss, Taxithellium sp. Current Science. Vol. 84, No. 5, pp. 631-633. Cerca con Google

Panda S.K. e Choudhury S. 2005. Chromium stress in plants. Brazilian Journal of Plant physiology. Vol. 17, No. 1, pp. 95-102. Cerca con Google

Pandey N. e Sharma C.P. 2003. Chromuim interference in iron nutrition and water relations of cabbage. Environmental and Experimental Botany. Vol. 49, pp. 195-200. Cerca con Google

Pawlisz A.V. 1997. Canadian water quality guidelines for Cr. Environ. Toxicol.Water Qual. Vol. 12, No. 2, pp. 123-161. Cerca con Google

Pearcy R.W., Ehleringer J., Mooney H.A. e Rundel B.W. 1989. Plant Phisiological Ecology: Field methods and instrumentations. London: Chapman and Hall. Cerca con Google

Pilon-Smits E.A.H. 2005. Phytoremediation. Annu. Rev. Plant Biol. Vol. 56, pp. 15-39. Cerca con Google

Poschenrieder C., M.D. Vasquez, A. Bonet e Barcelo J. 1991. Chromium-III-iron interaction in iron sufficient and iron deficient bean plants. 2. Ultra structural aspects. Journal of Plant Nutrition. Vol. 14, N° 4, pp. 415-428. Cerca con Google

Prasard M.N.V. e Strzalka K. 1999. Impact of heavy metals on photosynthesis. In: Heavy metal stress in plants: from molecules to ecosystems. Eds. M.N.V. Prasard and J. Hagemeyer, pp. 117-138. Sprinter, Berlin Cerca con Google

Prasad M.N.V., M. Greger e Landberg T. 2001. Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int. J. Phytoremed. Vol. 3, pp. 289-300. Cerca con Google

Pulford I.D. and Watson C. 2003. Phytoremediation of heavy metal-contamined land by trees-a rewiev. Envirnmental Internatinal. Vol. 29, pp. 529-540. Cerca con Google

Punshon T. e Dickinson N.M. 1997. Acclimatation of Salix to metal stress. New Phytologist. Vol. 137, pp. 303-314. Cerca con Google

Quaggiotti S., Barcaccia G., Schiavon M., Nicolé S., Gallo G., Rossignolo V., Soattin M e Malagoli M. 2007. Phytoremediation of chromium using Salix species: Cloning ESTs and candidate genes involved in the Cr response. Gene. Vol. 402, pp.68-80. Cerca con Google

Rai D., B.M. Sass e Moore D.A. 1987. Cr(III) hydrolysis constants and solubility of Cr(III) hydroxide. Inorg. Chem. Vol. 26, pp. 345-349. Cerca con Google

Riddell-Black D. 1993. A review of the potential for the use of trees in the rehabilitation of contaminated land. WRc Report CO 3467. Medemenham: Water Research Centre. Cerca con Google

Riedel G.H. 1985. The relationship between chromium(VI) uptake, sulfate uptake, and chromium(VI) toxicity in the estuarine diatom Thalassiosira pseudonana. Aquatic Toxicology. Vol. 7, N°3, pp. 191-204. Cerca con Google

Rosselli W., Keller C e Boschi K. 2003. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil. Vol. 256, pp. 265-272. Cerca con Google

Sagner S., Kneer R., Wanner G., Cosson J-P., Deus-Neumann B. e Zenk M.H.. 1998. Hyperaccumulation complexation and distribution of nichel in Sebertia acuminata. Phytochem. Vol. 47, pp. 339-347. Cerca con Google

Salt D.E., Blaylock M., Kumar P.B.A., Dushenkov V., Ensley B.D., Chet I.e Raskin I.. 1995. Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Bio/Technology. Vol. 13, pp. 468-474 Cerca con Google

Satofuka H., Fukui T., Takagi M., Atomi H. e Imanaka T. 2001. Metal-binding properties of phytochelatin-related peptides. Journal of Inorganic Biochemistry. Vol. 86, pp. 595-602. Cerca con Google

Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiology. Vol 101, pp.7-12. Cerca con Google

Scandalios J.G., Acevedo A e Ruzsa S. 2000. Catalase gene expression in response to chronic high temperature stress in maize. Plant Science. Vol. 156, pp. 103-110. doi: 10.1016/S0168-9452(00)00235-1. Cerca con Google

Scandalios J.G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research. Vol. 38, pp 995-1014. Cerca con Google

Schiavon M., Pilon-Smits E.A., Wirtz M., Hell R. e Malagoli M. 2008 Interactions between chromium and sulfur metabolism in Brassica juncea. Journal of Environmental Quality. Vol. 37, No. 4, pp.1536-1545. Cerca con Google

Schmidt W. 1996. Influence of chromium(lll) on root-associated Fe(lll) reductase in Plantago lanceolata L.. Journal of Experimental Botany, Vol. 47, N° 299, pp. 805-810. Cerca con Google

Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld H.R. Godbold D.L. e Polle A. 2001. Cadmium-induced changes in antioxidant systems, hydrogen peroxide content and differentiation of Scots pine roots. Plant Physiology. Vol. 127, pp. 887-989. doi: 10.1104/pp.127.3.887. Cerca con Google

Schützendübel A., Nikolova P., Rudolf C. e Polle A. 2002. Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiology and Biochemistry. Vol. 40, pp. 577–584. doi: 10.1016/S0981-9428(02)01411-0. Cerca con Google

Shewry P.R. e Peterson P.J. 1974. The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). Journal of Experimental Botany. Vol. 25, pp. 785-797. Cerca con Google

Scoccianti V., Crinelli R., Tirillini B., Mancinelli V. e Speranza A. 2006. Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere. 64, 1695-1703. Cerca con Google

Seigneur C. e Costantinou E., 1995. Chemical kinetic mechanism for atmospheric chromium. Environmental Science and Technology. Vol. 29, pp. 2039-2044. Cerca con Google

Shahandheh H. e Hossner L.R. 2000. Plant screeneing for chromium phytoremediation. International Journal of Phytoremediation. Vol. 2, pp. 31-51. Cerca con Google

Shanker A.K., Djanaguiraman M., Sudhagar R., Chandrashekar C.N. e Pathmanabhan G. 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. Cv CO 4) roots. Plant Science. Vol. 166, pp. 1035-1043. Cerca con Google

Shanker A.K. 2004. Plasm membrane H+ ATPase and Fe(III) reductase: key enzymes when engineering tolerance to chromium speciation stress in plants. Paper in BIOHORIZON 2004, 6th National Symposium on Biochemical engineering and biotechnology Held at Indian Institute of Technology. New Delhi 12th-13th march 2004. Cerca con Google

Shanker A.K., Cervantes C., Loza-Tavera H. e Avudainayagam S. 2005. Chromium toxicity in plants. Environmental International. Vol. 31, pp. 739-753. Cerca con Google

Sharma D.C., Chatterjee C. e Sharma C.P. 1995. Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD2204) metabolism. Plant Science. Vol. 111. 145-151. Cerca con Google

Sharma D.C., Sharma C.P. e Tripathi R.D. 2003. Phytotoxic lesions of chromium in maize. Chemosphere. Vol. 51, pp. 63-68. Cerca con Google

Skeffington R.A., Shewry P.R. e Petersen P.J. 1976. Chromium uptake and transport in barley seedlings Hordeum vulgare. Planta. Vol. 132, pp. 209-214. Cerca con Google

Shi X. L., Dalal N. S. e Kasprzak K. S. 1993. Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III). Archives of Biochemistry and Biophysics. Vol. 302, No. 1, pp. 294-299. Cerca con Google

Shupack S.L. 1991. The chemistry of chromium and some resulting analytical problems. Environmental Health Perspectives. Vol. 92, pp. 7-11. Cerca con Google

Sinha S., Saxena R. e Singh S. 2005. Chromium induced lipid peroxidation in the plants fo Pistia stratiotes L: role of antioxidants and antioxidant enzymes. Chemosphere. Vol. 58, pp. 595-604. Cerca con Google

Solomon L.P. e Barber M.J. 1990. Assimilatory nitrate reductase: functional properties and regulation. Ann. Rev. Plant Physiol. And Plant Mol. Biol. Vol. 41, pp. 225-253. Cerca con Google

Snow E.T. 1991. A possible role for Chromium(III) in genotoxicity. Environmental Health Perspectives. Vol. 92, pp. 75-81. Cerca con Google

Srivastava S., Tripathi R.D. e Dwivedi U.N. 2004. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa – an angiospermic parasite. Journal of Plant Physiology. Vol. 161, pp. 665-674. Cerca con Google

Stephan U.W., Schmidke I., Stephan V.W. e Scholz G. 1996. The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals. Vol. 9, pp. 84–90. Cerca con Google

Stohs S. J. e Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, Vol. 18, N° 2, pp. 321-336. Cerca con Google

Stoltz E. e Greger M. 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submergent mine tailings. Environmentasl and Experimental Botany. Vol. 47, pp. 271-280. Cerca con Google

Terry N. 1981. An analysis of the growth responses of Beta vulgaris L. to phototoxic trace elements. II. Chromium. Final report to the Kearney Foundation of Soil Science. July, 1975 – June, 1980. Cerca con Google

Turner A.P. 1994. The responses of plants to heavy metals. In: Toxic metals in soil-plant systems, ed. E.M. Ross, 153-187. Chichester: Wiley. Cerca con Google

Vajpayee P., Sharma S.C., Tripathi R.D., Rai U.N. e Yunus M. 1999. Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere. Vol 39, No 12: 2159-2169. Cerca con Google

Vajpayee P., Tripati R.D., Rai U.N.,Ali M.B. e Singh S.N. 2000. Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content of Nymphaea alba. Chemosphere. Vol. 41, pp. 1075-1082. Cerca con Google

Vandecasteele B., Meers E., Vervaeke P., De Vos B., Quataert P. e Tack F.M.G. 2005. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere. Vol. 58, pp. 995-1002. Cerca con Google

Vasquez M.D., C.H. Poschenrieder e J. Barcelo. 1987. Chromium (VI) induced structural and ultrastructural changes in bushbean plants (Phaseolus vulgaris L.). Annals Bot. Vol. 59, pp. 427-438. Cerca con Google

Verkleij J.A. e Schat H. 1990. Mechanisms of metal tolerance in plants. In: Heavy metals tolerance in plants – Evolutionary Aspects. Ed. A.J. Shaw. CRC Press, Boca Rator, FL. Pp. 179-193. Cerca con Google

Vighi M. e Bacci E. 1998. Ecotossicologia. Ed. UTET. Cerca con Google

Violante P. 1989a. I fattori di formazione del suolo. In “Chimica del suolo”. Patron Editore, Bologna. Cerca con Google

Violante P. 1989b. I processi di alterazione. In “Chimica del suolo”. Patron Editore, Bologna. Cerca con Google

Violante. 2005. Chimica del suolo e della nutrizione delle piante. Bologna: ed agricole. Pp. 309-318. Cerca con Google

Vitória A.P., Lea P.J. e Azevedo R.A. 2001. Antioxidant enzimes responces to cadmium in radish tissues. Phytochemistry. Vol. 57, pp. 701-710. doi 10.1016/S0031-9422(01)00130-3. Cerca con Google

Von Wiren N., Klair S., Bansal S., Briat J.F., Khodr H., Shiori T. et al. 1999. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology. Vol. 119, pp. 1107–1114. Cerca con Google

Xue T.L., Hartikainen H. e Piironen V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil. Vol. 237. pp. 55-61. doi: 10.1023/A:1013369804867. Cerca con Google

Yu X.Z., Trapp S., Zhou P.H., Peng X.Y. e Cao X. 2006. Response of weeping willows to linear alkylbenzenesulfonate, Chemosphere. Vol. 64, pp. 43–48. Cerca con Google

Yu X.Z., Gu J.D. and Huang S.Z. 2007. Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology. DOI 10.1007/s10646-006-0129-6. Cerca con Google

Zaccheo P., Genevini P.L. e Cocucci S. 1982. Chromium ions toxicity on the membrane transport mechanism in segments of maize seedling roots. Journal of Plants Nutrition. Vol. 5., pp. 1217-1227. Cerca con Google

Zaccheo P., Cocucci M. e Cocucci S. 1985. Effects of Cr on proton extrusion, potassium uptake and trasmembrane electric potential in maize root segments. Plant. Cell. Environ. Vol. 8, pp. 721-726. Cerca con Google

Zhang H. e Balett R.J. 1999. Light-induced oxidation of aqueous chromium(III) in the presence of iron(III). Environmental Science and Technology. Vol.33, pp. 588-594. Cerca con Google

Zhang H. 2000. Light and iron(III)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water. Atmos. Environ. Vol. 34, pp. 1633-1640. Cerca con Google

Zayed A.M., Lytle C.M., Qian J.H. e Terry N. 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta. Vol. 206, pp. 293-299. Cerca con Google

Zayed A.M. e Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant and soil. Vol. 249: 139-156. Cerca con Google

Zeid I.M. 2001. Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum. Vol. 44, pp. 111-115. Cerca con Google

Zenk M.H. 1996. Heavy metal detoxification in higher plants – a review. Gene. Vol. 179, pp. 21-30. Cerca con Google

Zerbi G. e Marchiol L. 2004. Fitoestrazione di metalli pesanti – contenimento del rischio ambientale e relazioni suolo-microrganismi-pianta. Forum. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record