Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Botter, Gianluca and Durighetto, Nicola (2020) The stream length duration curve: a tool for characterizing the time variability of the flowing stream length. [Online journal papers]

Full text disponibile come:

[img]
Preview
PDF Document (The stream length duration curve: a tool for characterizing the time variability of the flowing stream length) - Published Version
Available under License Creative Commons Attribution Non-commercial.

1708Kb

Per gentile concessione di: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020WR027282

Abstract (italian or english)

In spite of the importance of stream network dynamics for hydrology, ecology, and biogeochemistry, there is limited availability of analytical tools suitable for characterizing the temporal variability of the active fraction of river networks. To fill this gap, we introduce the concept of Stream Length Duration Curve (SLDC), the inverse of the exceedance probability of the total length of active streams. SLDCs summarize efficiently the effect of hydrological variability on the length of the flowing streams under a variety of settings. A set of stochastic network models is developed to link the features of the local hydrological status of the network nodes with the shape of the SLDC. We show that the mean network length is dictated by the mean persistency of the nodes, whereas the shape of the SLDC is driven by the spatial distribution of the local persistencies and their network‐scale spatial correlation. Ten field surveys performed in 2018 were used to estimate the empirical SLDC of the Valfredda river (Italy), which was found to be steep and regular—indicating a pronounced sensitivity of the active stream length to the underlying hydrological conditions. Available observations also suggest that the activation of temporary reaches during network expansion is hierarchical, from the most to the least persistent stretches. Under these circumstances, the SLDC corresponds to the spatial Cumulative Distribution Function of the nodes persistencies. The study provides a sound theoretical basis for the analyses of network dynamics in temporary rivers.


Statistiche Download
EPrint type:Online journal papers
Anno di Pubblicazione:17 July 2020
Key Words:stream network, network dynamics, stochastic modeling, stream length duration curve, SLDC, temporary streams
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/02 Costruzioni idrauliche e marittime e idrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:13070
Depositato il:05 Nov 2020 13:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agren, A. M., Lidberg, W., & Ring, E. (2015). Mapping temporal dynamics in a forest stream network—Implications for riparian forestmanagement.Forests,6(9), 2982–3001. https://doi.org/10.3390/f6092982 Vai! Cerca con Google

Arthington, A. H., Bernardo, J. M., & Ilhéu, M. (2014). Temporary rivers: Linking ecohydrology, ecological quality and reconciliationecology.River Research and Applications,30, 1209–1215. https://doi.org/10.1002/rra.2831 Vai! Cerca con Google

Basu, N. B., Rao, P. S. C., Thompson, S. E., Loukinova, N. V., Donner, S. D., Ye, S., & Sivapalan, M. (2011). Spatiotemporal everaging ofin‐stream solute removal dynamics.Water Resources Research,47, W00J06. https://doi.org/10.1029/2010WR010196 Vai! Cerca con Google

Bernal, S., & Sabater, F. (2008). The role of lithology, catchment size and the alluvial zone on hydrogeochemistry of two intermittentMediterranean streams.Hydrological Processes,22, 1407–1418. https://doi.org/10.1002/hyp.6693Bernier, P. Y. (1985). Variable source areas and stormflow generation: An update of the concept and a simulation effort.Journal of Hydrology,79, 195–213. https://doi.org/10.1016/0022-1694(85)90055-1 Vai! Cerca con Google

Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F., & Botter, G. (2019). Wetlandscape hydrologic dynamics driven by shallowgroundwater and landscape topography.Hydrological Processes,34, 1460–1474.Bertuzzo, E., Helton, A. M., Hall Jr, R. O., & Battin, T. J. (2017). Scaling of dissolved organic carbon removal in river networks.Advances in Water Resources,110, 136–146. https://doi.org/10.1016/j.advwatres.2017.10.009 Vai! Cerca con Google

Blyth, K., & Rodda, J. (1973). A stream length study.Water Resources Research,9(5), 1464–1461.Botter, G., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2007). Basin‐scale soil moisture dynamics and the probabilistic characteri-zation of carrier hydrologicflows: Slow, leaching‐prone components of the hydrologic response.Water Resources Research,43, W02417.https://doi.org/10.1029/2006WR005043 Vai! Cerca con Google

Butturini, A., Alvarez, M., Bernal, S., Vasquez, E., & Sabater, F. (2008). Diversity and temporal sequences of forms of DOC andNO3−discharge responses in an intermittent stream: Predictable or random succession?Journal of Geophysical Research,113, G03016.https://doi.org/10.1029/2008JG000721 Vai! Cerca con Google

Castellarin, A., Galeati, G., Brandimarte, L., Montanari, A., & Brath, A. (2004). Regionalflow‐duration curves: Reliability for ungaugedbasins.Advances in Water Resources,27, 953–965. https://doi.org/10.1016/j.advwatres.2004.05.005 Vai! Cerca con Google

Chinchor, N. (1992). Muc‐4 evaluation metrics. InProc. of the Fourth Message Understanding Conference(pp. 22–29).Convertino, M., Rigon, R., Maritan, A., Rodriguez‐Iturbe, I., & Rinaldo, A. (2007). Probabilistic structure of the distance between tributariesof given size in river networks.Water Resources Research,43, W11418. https://doi.org/10.1029/2007WR006176 Vai! Cerca con Google

Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritx, K. M., & Goebel, P. C. (2016). Understanding controls onflow permanence in intermittentrivers to aid ecological research: Integrating meteorology, geology and land cover.Ecohydrology,9(7), 1141–1153. https://doi.org/10.1002/eco.1712 Vai! Cerca con Google

Dai, B., Ding, S., & Wahba, G. (2013). Multivariate Beronulli distribution.Bernoulli,19(4), 1465–1483. https://doi.org/10.3150/12-BEJSP10 Vai! Cerca con Google

Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., et al. (2017). Flow intermittence and ecosystem services in rivers of theAntropocene.Journal of Applied Ecology,55, 353–364. https://doi.org/10.1111/1365-2664.12941 Vai! Cerca con Google

Datry, T., Larned, S. T., & Tockner, K. (2014). Intermittent rivers: A challenge for freshwater ecology.BioScience,64(3), 229–235. https://doi.org/10.1093/biosci/bit027 Vai! Cerca con Google

Datry, T., Pella, H., Leigh, C., Bonada, N., & Hugueny, B. (2016). A landscape approach to advance intermittency river ecology.FreshwaterBiology,61, 1200–1213. https://doi.org/10.1111/fwb.12645 Vai! Cerca con Google

Day, D. G. (1978). Drainage density changes during rainfall.Earth Surface Processes,3, 319–326.Doering, M., Uehlinger, U., Rotach, A., Sclaepfer, D. R., & Tockner, K. (2007). Ecosystem expansion and contraction dynamics along a largeAlpine alluvial corridor (Tagliamento River, Northeast Italy).Earth Surface Processes and Landforms,32, 1693–1704. https://doi.org/10.1002/esp.1594 Vai! Cerca con Google

Doulatyari, B., Betterle, A., Basso, S., Biswal, B., Schirmer, M., & Botter, G. (2015). Predicting streamflow distributions andflow durationcurves from landscape and climate.Advances in Water Resources,83, 285–298. https://doi.org/10.1016/j.advwatres.2015.06.013 Vai! Cerca con Google

Downing, J. J., Cole, J. J., Duarte, C. M., Middelburg, J. J., Melack, J. M., Prairie, Y. T., et al. (2012). Global abundance and size distributionof streams and rivers.Inland Waters,2(4), 229–236. https://doi.org/10.5268/IW-2.4.502 Vai! Cerca con Google

Durighetto, N., Vingiani, F., L.E., B., Camporese, M., & Botter, G. (2020). Intra‐seasonal drainage network dynamics in a headwatercatchment of the italian alps.Water Resources Research,56, e2019WR025563. https://doi.org/10.1029/2019WR025563 Vai! Cerca con Google

Garbin, S., Alessi Celegon, E., Fanton, P., & Botter, G. (2019). Hydrological controls on river network connectivity.Royal society openscience,6, 181,428. https://doi.org/10.1098/rsos.181428 Vai! Cerca con Google

Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainagedensity,flowing channels and stream order.Hydrological Processes,28, 5791–5803.Goulsbra, C., Evans, M., & Lindsay, J. (2014). Temporary streams in a peatland catchment: Pattern, timing, and controls on stream networkexpansion and contraction. Earth Surface Processes and Landforms,39,790–803. https://doi.org/10.1002/esp.3533 Vai! Cerca con Google

Gregory, K. J., & Walling, D. E. (1968). The variation of drainage density within a catchment.International Association of ScientificHydrology Bulletin,13,61–68. https://doi.org/10.1080/02626666809493583 Vai! Cerca con Google

Hewlett, J. D., & Hibbert, A. R. (1967). Factors affecting the response of small watersheds to precipitation in humid areas.Forest Hydrology,1, 275–290. Cerca con Google

Hibbert, A. R., & Troendle, C. A. (1988). Streamflow generation by variable source area.Forest hydrology and ecology at Coweeta(Vol. 1,pp. 111–127). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-3732-7_8 Vai! Cerca con Google

Jaeger, K. L., Montgomery, D. R., & Bolton, S. M. (2007). Channel and perennialflow initiation in headwater streams: Managementimplications of variability in source‐area size.Environmental Management,40,775–786. https://doi.org/10.1007/s00267-005-0311-2 Vai! Cerca con Google

Jaeger, K. L., Olden, J. D., & Pelland, N. A. (2014). Climatae change poised to threaten hydrologic connectivity and endemicfishes indryland streams.Proceedings od the National Academy of Sciences,111, 13,894–13,899. https://doi.org/10.1073/pnas.1320890111 Vai! Cerca con Google

Jensen, C. K., McGuire, K. J., McLaughlin, D. L., & Scott, D. T. (2019). Quantifying spatiotemporal variation in headwater stream lengthusingflow intermittency sensors.Environmental Monitoring and Assessment,191, 191–226. https://doi.org/10.1007/s10661-019-7373-8 Vai! Cerca con Google

Jensen, C. K., McGuire, K. J., & Prince, P. S. (2017). Headwater stream length dynamics across four physiographic provinces of theAppalachian Highlands.Hydrological Processes,31,3350–3363. https://doi.org/10.1002/hyp.11259 Vai! Cerca con Google

Jensen, C. K., McGuire, K. J., Shao, Y., & Dolloff, C. A. (2018). Modeling wet headwater stream networks across multipleflow conditions inthe Appalachian Highlands.Earth Surface Process and Landforms,43,2762–2778. https://doi.org/10.1002/esp.4431 Vai! Cerca con Google

Larned, S. T., Datry, T., Arscott, D. B., & Tockner, K. (2010). Emerging concepts in temporary‐river ecology.Freshwater Biology,55,717–738. https://doi.org/10.1111/j.1365-2427.2009.02322.x Vai! Cerca con Google

Leon Harter, H. (1983). Another look at plotting positions.Communications in Statistics‐Theory and Methods,13, 1613–1633. https://doi.org/10.1080/03610928408828781 Vai! Cerca con Google

Lovill, S. M., Hahm, W. J., & Dietrich, W. E. (2018). Drainage in the critical zone: Lithologic controls on the persistence and spatial extent ofwetted channels during the summer dry season.Water Resources Research,54, 5702–5726. https://doi.org/10.1029/2017WR021903 Vai! Cerca con Google

Malard, F., Ueglinger, U., Zah, R., & Tockner, K. (2006). Flood‐pulse and riverscape dynamics in a braided glacial river.Ecology,87(3),704–716.Marzadri, A., Dee, M. M., Tonina, D., Bellin, A., & Tank, J. (2017). Role of surface and subsurface processes in scaling N2O emissions longriverine networks. Proceedings of the National Academy of Sciences,114, 4330–4335. https://doi.org/10.1073/pnas.1617454114 Vai! Cerca con Google

McDonough, O. T., Hosen, J. D., & Palmer, M. A. (2011). Temporary streams: The hydrology, geography and ecology of non‐perenniallyflowing waters. River Ecosystems: Dynamics, Management and Conservation, 259–289.Peirce, S. E., & Lindsay, J. B. (2015). Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrological Processes,29, 103–111. https://doi.org/10.1002/hyp.10136 Vai! Cerca con Google

Peterson, B. J., Wollheim, W. W., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export fromwatersheds by headwater streams.Science,292,86–90. https://doi.org/10.1126/science.1056874 Vai! Cerca con Google

Roberts, M., & Klingeman, P. (1972). The relationship between drainage netfluctuation and discharge. In Adams & Helleiner (Eds),International Geography, Proceedings of the 22nd International Geographical Congress, Canada(189–191). University of Toronto Press.Sarremejane, R., Cañelles‐Argüelles, M., Prat, N., Mykrä, H., Muotka, T., & Bonada, N. (2017). Do metacommunities vary through time? Intermittent rivers as model systems. Journal of Biogeography, 44, 2752–2763. https://doi.org/10.1111/jbi.13077 Vai! Cerca con Google

Shaw, S. B. (2016). Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catch-ment in New York state.Hydrological Processes,30, 479–492. https://doi.org/10.1002/hyp.10626 Vai! Cerca con Google

Shaw, S. B., Bonville, D. B., & Chandler, D. G. (2017). Combining observations of channel network contraction and spatial dischargevariation to inform spatial controls on baseflow in Birch Creek, Catskill Mountains, USA.Journal of Hydrology: Regional Studies,12,1–12. https://doi.org/10.1016/j.ejrh.2017.03.003 Vai! Cerca con Google

Skoulikidis, N. T., Sabater, S., Datry, T., Morais, M. M., Buffagni, A., Drflinger, G., et al. (2017). Non‐perennial Mediterranean rivers inEurope: Status, pressures and challenges for research and management.Science of the Total Environment,577,1–18. https://doi.org/10.1016/j.scitotenv.2016.10.147 Vai! Cerca con Google

Steward, A. L., von Schiller, D., Tockner, K., Marchall, J. C., & Bunn, S. E. (2012). When the river runs dry: Human and ecological values ofdry riverbeds.Frontiers in Ecology and the Environment,10, 202–209. https://doi.org/10.1890/110136 Vai! Cerca con Google

Tooth, S. (2000). Process, form and change in dryland rivers: A review of recent research.Earth‐science reviews,51,67–107. https://doi.org/10.1016/S0012-8252(00)00014-3 Vai! Cerca con Google

van Meerveld, H. J. I., Kirchner, J. W., Vis, ARS, & Seivert, J. (2019). Expansion and contracion of theflowing network changes hillslopeflowpath lengths and the shape of the travel time distribution.Hydrological and Earth System Sciences,23, 4825–4834. https://doi.org/10.5194/hess-2019-218 Vai! Cerca con Google

Vogel, R. M., & Fennessey, N. M. (1994). Flow‐duration curves: New interpretation and confidence intervals.Journal of Water ResourcesPlanning and Management,120, 485–504. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485) Vai! Cerca con Google

Ward, A., Schmadel, N. M., & Wondzell, S. M. (2018). Simulation of dynamic expansion, contraction, and connectivity in a mountainstream network.Advances in Water Resources,114,64–82. https://doi.org/10.1016/j.advwatres.2018.01.018 Vai! Cerca con Google

Whiting, J. A., & Godsey, S. E. (2016). Discontinuous headwater stream networks with stableflowheads, Salmon River basin, Idaho.Hydrological Processes,30, 2305–2316. https://doi.org/10.1002/hyp.10790 Vai! Cerca con Google

Wiginton, P. J., Moser, T. J., & Lindeman, D. R. (2005). Stream network expansion: A riparian water quality factor.Hydrological Processes,19(8), 1715–1721. https://doi.org/10.1002/hyp.5866 Vai! Cerca con Google

Zimmer, M. A., & McGlynn, B. L. (2017). Ephemeral and intermittent runoff generation processes in a low relief, highly weatheredcatchment.Water Resources Research,53, 7055–7077. https://doi.org/10.1002/2016WR019742 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record