Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bollini, Sveva (2008) Cardiomyogenic Potential of Amniotic Fluid Stem Cells As A New Tool For Cell Based Cardiac Tissue Engineering. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

In the last years tissue engineering for cardiac pathologies has been broadly developed with the aim to restore or improve the diseased or damaged heart. Novel cardiac tissue engineering approaches combine the use of biocompatible scaffolds with stem cells to conjugate material science, surgery and cell therapy techniques. So far, different kinds of stem cells have been described and their potential for cardiac regeneration broadly investigated. We have previously described that it is possible to derive lines of broadly multipotent cells from the amniotic fluid (Amniotic Fluid Stem cells; AFS cells). The aim of this study was to characterize more in detail the AFS cells cardiomyogenic potential both in vitro and in vivo.
Neonatal rat cardiomyocyte (rCM) cells were obtained by enzymatic digestion of 2-3-days old rat hearts. GFP-positive rat AFS (gfp+rAFS) cells were obtained from amniotic fluid samples from GFP-positive transgenic pregnant rats. Human AFS (hAFS) cells were obtained from healthy amniotic fluid back up samples from prenatal diagnosis, following informed consent. AFS cells were isolated by immunosorting for the stem marker c-kit.
Before applying a tissue engineering approach, using biocompatible scaffolds, to the AFS and rCM cells coculture, the AFS cells “cardiomyocyte-like” phenotype, acquired in cocolture, had been functionally evaluated by patch-clamp analysis.
In this work two different kinds of bidimensional micropatterned scaffolds were used: hydrogel films and PDMS (silicon) membranes. The scaffolds were obtained by microcontact printing technique and using a mold scratched with the desidered micropattern and their viability was tested using, at first, the rat neonatal primary culture. AFS and rCM cells were seeded together on the micropatterned PDMS membranes and analyzed for the expression of troponin T by immunostaining after 6 and 10 days of culture.
For the in vivo study, immunodeficient nude male rats underwent a cryoinjury on the heart left ventricle with a 3D collagen scaffold implantation and 5x10e6 hAFS cells/animal local or systemic injection after 15 days. hAFS cells were previously labelled with the red intracellular fluorescent dye CMTMR. Animals were sacrificed at 24 hours, 15 and 30 days after cells injection and hearts stained for cardiac and inflammatory markers. For the acute myocardial infarct model, male Wistar rats underwent an ischemic injury by left anterior descendent coronary artery ligation for 30 minutes and then they were reperfused injecting via the external jugular vein 10e7 or 10e6 gfp+rAFS and 10e7 or 5x10e6 hAFS cells/animal for 2 hours; rats were sacrificed afterwards and hearts analyzed for infarct size measurement by Evans blue staining, by 2,3,5-triphenolltetrazolium chloride (TTC) staining and planimetry with the software Image J. Heart, lungs, spleen and liver were analyzed as well by immunostaining for evaluating hAFS cells content. hAFS cells were also analyzed for the presence of a subpopulation of cardiac progenitors, by RT-PCR analysis, for the expression of early cardiac commitment genes as Isl1 and Kdr. The cells were then studied by ELISA essay to speculate if they can secrete in the culture medium the protein thymosin beta 4, paracrine and cardioprotector factor.
Results and Conclusions.
Regarding the in vitro results, AFS cells were demonstrated to express a “pace maker cell-like” action potential, when cocultured with rat neonatal cardiomyocyte cells. Moreover, when cultured on the bidimensional scaffold, AFS cells showed to follow the longitudinal orientation of the microstruttured membrane, expressing beating activity and the cardiac protein troponin T.
Our in vivo data revealed that hAFS cells, injected into the cryoinjured rat heart, survived in the host up to 30 days, moved from the injection site to the lesioned area in the heart and gave rise to new chimeric capillaries in the patch and cryoinjury area. In the acute myocardial infarct model the results obtained suggested that hAFS cells could exert a paracrine effect in vivo, decreasing the infarct size (measured as the ratio between the infarct area and the ischemic area at risk of necrosis) from a 53,9 ± 2,3% (obtained in control animals receiving PBS injection) to 40,0 ± 3,0% of the ischemic area. Furthermore, hAFS cells were also demonstrated to have a subpopulation of cardiac progenitors, positive for the expression of the early cardiac commitment genes Isl1 and Kdr and to to secrete in the culture medium thymosin beta 4, a paracrine factor previously shown to act as cardioprotector and angiogenic agent.
In conclusions, our results are very encouraging and challenging, suggesting that AFS cells can show cardiomyogenic potential and cardioprotective therapeutic application in cell based therapy tissue engineering.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Messina, Chiara
Data di deposito della tesi:02 Gennaio 2009
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Cardiac Tissue Engineering, Stem Cells, Amniotic Fluid Stem Cells, Cardiovascular Differentiation, Ingegneria Tissutale Cardiaca, Cellule Staminali del Liquido Amniotico, Differenziamento in senso Cardiovascolare
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Area 06 - Scienze mediche > MED/20 Chirurgia pediatrica e infantile
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Pediatria
Codice ID:1311
Depositato il:02 Gen 2009
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Kaihara S, Vacanti JP. Tissue engineering: toward new solutions for transplantation and reconstructive surgery. Arch Surg. 1999;134:1184-8. Cerca con Google

2. Atala A. Engineering tissues, organs and cells. J Tissue Eng Regen Med 2007; 1:83–96. Cerca con Google

3. Wu KH, Mo XM, Liu YL, Zhang YS, Han ZC. Stem cells for tissue engineering of myocardial constructs. Ageing Res Rev. 2007;6:289-301. Cerca con Google

4. Shinoka T, Ma PX, Shum-Tim D, et al. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation. 1996;94:II164-8. Cerca con Google

5. Zimmermann WH, Fink C, Kralisch D, et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 2000;68:106-14. Cerca con Google

6. Jawad H, Ali NN, Lyon AR, et al. Myocardial tissue engineering: a review. J Tissue Eng Regen Med. 2007;1:327-42. Cerca con Google

7. Mirensky TL, Breuer CK. The development of tissue-engineered grafts for reconstructive cardiothoracic surgical applications. Pediatr Res. 2008;63:559-68. Cerca con Google

8. Di Eusanio M, Schepens MA. Left atrial thrombus on a Teflon patch for ASD closure. Eur J Cardiothorac Surg. 2002; 21(3):542. Cerca con Google

9. Zimmermann WH, Melnychenko I, Wasmeier G, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12:452-8. Cerca con Google

10. Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol. 1988;24(3):166-74. Cerca con Google

11. Eschenhagen T, Fink C, Remmers U, Scholz H, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11(8):683-94. Cerca con Google

12. Li RK, Jia ZQ, Weisel RD, et al. Survival and function of bioengineered cardiac grafts.Circulation. 1999;100(19 Suppl):II63-9. Cerca con Google

13. Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90(2):223-30. Cerca con Google

14. Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90(3):e40. Cerca con Google

15. Hobo K, Shimizu T, Sekine H, et al. Therapeutic angiogenesis using tissue engineered human smooth muscle cell sheets. Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):637-43. Cerca con Google

16. Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 2004;101:18129-34. Cerca con Google

17. Polak JM, Mantalaris S. Stem cells bioprocessing: an important milestone to move regenerative medicine research into the clinical arena. Pediatr Res. 2008;63:461-6. Cerca con Google

18. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005;23:845-56. Cerca con Google

19. Cebotari S, Lichtenberg A, Tudorache I, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114(1 Suppl):I132-7. Cerca con Google

20. Flanagan TC, Cornelissen C, Koch S, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007;28(23):3388-97. Cerca con Google

21. Hahn MS, McHale MK, Wang E, Schmedlen RH, West JL. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng. 2007;35(2):190-200. Cerca con Google

22. Gonen-Wadmany M, Gepstein L, Seliktar D. Controlling the cellular organization of tissue-engineered cardiac constructs.N Y Acad Sci. 2004;1015:299-311. Cerca con Google

23. Yang C, Sodian R, Fu P, et al. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery. Ann Thorac Surg. 2006;81(1):57-63. Cerca con Google

24. Fromstein JD, Zandstra PW, Alperin C et al. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A. 2008;14(3):369-78. Cerca con Google

25. Zimmermann WH, Didié M, Döker S, et al. Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res. 2006;71:419-29. Cerca con Google

26. Shimizu T, Sekine H, Isoi Y, et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006;12:499-507. Cerca con Google

27. Wu KH, Mo XM, Liu YL, Zhang YS, Han ZC. Stem cells for tissue engineering of myocardial constructs. Ageing Res Rev. 2007;6:289-301. Cerca con Google

28. Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044-54. Cerca con Google

29. Harada M, Itoh H, Nakagawa O, et al. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation. 1997;96:3737-44. Cerca con Google

30. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. 2002 Nov;12(11):502-8. Cerca con Google

31. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937-42. Cerca con Google

32. Nakanishi C, Yamagishi M, Yamahara K, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 2008; 374:11-6. Cerca con Google

33. Beeres SL, Atsma DE, van Ramshorst J, Schalij MJ, Bax JJ. Cell therapy for ischaemic heart disease. Heart. 2008; 94(9):1214-26. Cerca con Google

34. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634-8. Cerca con Google

35. Mummery C, Ward D, van den Brink CE, Bird SD, Doevendans PA, Opthof T, Brutel de la Riviere A, Tertoolen L, van der Heyden M, Pera M. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat. 2002;200:233-42. Cerca con Google

36. Kofidis T, de Bruin JL, Hoyt G, et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant. 2005;24:737-44. Cerca con Google

37. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007;100:263-72. Cerca con Google

38. Gepstein L. Experimental molecular and stem cell therapies in cardiac electrophysiology. Ann N Y Acad Sci. 2008 Mar;1123:224-31. Cerca con Google

39. De Coppi P, Pozzobon M, Piccoli M et al. Isolation of mesenchymal stem cells from human vermiform appendix. J Surg Res. 2006 Sep;135(1):85-91. Cerca con Google

40. Mathur A., Martin JF. Stem Cell And Repair Of The Heart. Lancet. 364, 183, 2004. Cerca con Google

41. Fukuda K. Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant. 2003;32 Suppl 1:S25-7. Cerca con Google

42. Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003;75(3):775-9. Cerca con Google

43. Takahashi T, Lord B, Schulze PC, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003; 107(14):1912-6. Cerca con Google

44. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733-40. Cerca con Google

45. Condorelli G, Borello U, DeAngelis L, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA. 2001; 98(19):10733-8. Cerca con Google

46. Muller-Borer BJ, Cascio WE, Anderson PA et al. Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotype ex vivo. Am J Pathol. 2004; 165(1):135-45. Cerca con Google

47. Muller-Borer BJ, Cascio WE, Esch GL et al. Acquired Cell-to-Cell Coupling and "Cardiac-Like" Calcium Oscillations in Adult Stem Cells in a Cardiomyocyte Microenvironment. Conf Proc IEEE Eng Med Biol Soc. 2006; 1:576-9. Cerca con Google

48. Nishiyama N, Miyoshi S, Hida N et al The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007; (8):2017-24. Cerca con Google

49. Liao R, Pfister O, Jain M, Mouquet F. The bone marrow-cardiac axis of myocardial regeneration. Prog Cardiovasc Dis. 2007;50(1):18-30. Cerca con Google

50. Knight RL, Booth C, Wilcox HE, Fisher J, Ingham E.J Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells.Heart Valve Dis. 2005;14:806-13. Cerca con Google

51. Bin F, Yinglong L, Nin X, et al. Construction of tissue-engineered homograft bioprosthetic heart valves in vitro. ASAIO J. 2006;52:303-9. Cerca con Google

52. Xiang Z, Liao R, Kelly MS, Spector M. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 2006 ;12:2467-78. Cerca con Google

53. Vincentelli A, Wautot F, Juthier F, et al. In vivo autologous recellularization of a tissue-engineered heart valve: are bone marrow mesenchymal stem cells the best candidates? J Thorac Cardiovasc Surg. 2007;134:424-32. Cerca con Google

54. Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol. 2007;42:88-97. Cerca con Google

55. Dawn B, Tiwari S, Kucia MJ, et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells. 2008;26:1646-55. Cerca con Google

56. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008;22:1635-48. Cerca con Google

57. Eisen HJ. Skeletal myoblast transplantation: no MAGIC bullet for ischemic cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008 . [Epub ahead of print] Cerca con Google

58. Memon IA, Sawa Y, Fukushima N, Matsumiya G, et al. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg. 2005;130:1333-41. Cerca con Google

59. Siepe M, Giraud MN, Pavlovic M, et al. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg. 2006;132:124-31. Cerca con Google

60. Siepe M, Giraud MN, Liljensten E, et al. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs. 2007;31:425-33. Cerca con Google

61. Ye L, Haider HK, Tan R, et al. Angiomyogenesis using liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials. 2008;29:2125-37. Cerca con Google

62. De Coppi P, Delo D, Farrugia L, et al. Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Eng. 2005 Jul-Aug;11(7-8):1034-44. Cerca con Google

63. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180-92. Cerca con Google

64. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143-7. Cerca con Google

65. Guan K, Wagner S, Undold B, et al. Generation of Functional Cardiomyocytes From Adult Mouse Spermatogonial Stem Cells. Circ Res 2007; 100:1615-25. Cerca con Google

66. Mardanpour P, Guan K, Nolte J, et al. Potency of germ cells and its relevance for regenerative medicine. J Anat. 2008;213(1):26-9. Cerca con Google

67. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2:3081-9. Cerca con Google

68. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-7. Cerca con Google

69. Wernig M et al. In Vitro reprogramming of fibroblasts into pluripotent ES-cell-like state. Nature 2007; 448: 318-324. Cerca con Google

70. Maherali N. et al. Directly reprogrammed fibroblasts show epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 2007; 1: 55-70. Cerca con Google

71. Lowry WE et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. PNAS 2008; 105:2883-2888. Cerca con Google

72. Narazaki G, Uosaki H, Teranishi M et al. Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells. Circulation 2008; 118: 498-506. Cerca con Google

73. Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells.Circulation. 2008;118:507-17. Cerca con Google

74. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 2008. [Epub ahead of print] Cerca con Google

75. Kadner A, Hoerstrup SP, Tracy J, et al. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg. 2002;74:S1422-8. Cerca con Google

76. Schmidt D, Breymann C, Weber A, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78(6):2094-8. Cerca con Google

77. Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23:3-9. Cerca con Google

78. Miao Z, Jin J, Chen L, Zhu J, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006; 30: 681-7. Cerca con Google

79. Chan J, Kennea NL, Fisk NM. Placental mesenchymal stem cells. Am J Obstet Gynecol. 2007;196(2):e18. Cerca con Google

80. Moise KJ Jr. Umbilical cord stem cells. Obstet Gynecol. 2005;106:1393-407. Cerca con Google

81. Kadner A, Hoerstrup SP, Tracy J, et al. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg. 2002;74:S1422-8. Cerca con Google

82. Schmidt D, Breymann C, Weber A, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78(6):2094-8. Cerca con Google

83. Schmidt D, Mol A, Neuenschwander S, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27(5):795-800. Cerca con Google

84. Fang NT, Xie SZ, Wang SM, et al. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J (Engl). 2007;120(8):696-702. Cerca con Google

85. Ventura C, Cantoni S, Bianchi F, et al. Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem. 2007;282:14243-52. Cerca con Google

86. Okamoto K, Miyoshi S, Toyoda M, et al. 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res. 2007; 313: 2550-62. Cerca con Google

87. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548-9. Cerca con Google

88. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod. 2003;18(7):1489-93. Cerca con Google

89. Kaviani A, Perry TE, Dzakovic A, et al. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662-5. Cerca con Google

90. Kaviani A, Guleserian K, Perry TE,et al. Foetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196:592-7. Cerca con Google

91. De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007;177(1):369-76. Cerca con Google

92. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100-6. Cerca con Google

93. Trounson A. A fluid means of stem cell generation. Nat Biotechnol. 2007; 25(1):62-3. Cerca con Google

94. Chiavegato A, Bollini S, Pozzobon M, et al. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 2007;42(4):746-59. Cerca con Google

95. Zhao P, Ise H, Hongo M, et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005;79(5):528-35. Cerca con Google

96. Schmidt D, Achermann J, Odermatt B, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):I64-70. Cerca con Google

97. Shmelkov SV, Meeus S, Moussazadeh N, et al. Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation 2005; 111(9):1175-83. Cerca con Google

98. Perin L, Sedrakyan S, Da Sacco S, De Filippo R. Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol. 2008;86:85-99. Cerca con Google

99. Perin L, Giuliani S, Sedrakyan S, DA Sacco S, De Filippo RE. Stem cell and regenerative science applications in the development of bioengineering of renal tissue. Pediatr Res. 2008 May;63(5):467-71. Cerca con Google

100. Simantov R. Amniotic stem cell international. Reprod Biomed Online. 2008 Apr;16(4):597-8. Cerca con Google

101. Delo D, Olson J, Baptista P, et al. Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells Dev. 2008. [Epub ahead of print] Cerca con Google

102. Sessarego N, Parodi A, Podestà M, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica. 2008;93:339-46. Cerca con Google

103. Steigman SA, Armant M, Bayer-Zwirello L, et al .Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164-9. Cerca con Google

104. Kunisaki SM, Armant M, Kao GS, et al. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974-9. Cerca con Google

105. Fauza D.O. Amniotic fluid and placental stem cells. Best Practice and Research Clinical Obstet and Gynaecol. 2004; 18(6): 877-891. Cerca con Google

106. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7(9):1035-40. Cerca con Google

107. Wilcox HE, Korossis SA, Booth C, et al Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J Heart Valve Dis. 2005;14(2):228-36. Cerca con Google

108. Mol A, Rutten MC, Driessen NJ, et al. Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation. 2006;114(1 Suppl):I152-8. Cerca con Google

109. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213-21. Cerca con Google

110. Landa N, Miller L, Feinberg MS, et al. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation. 2008;117:1388-96. Cerca con Google

111. Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast-based fetal tissue engineering. Surgery. 2006 ;140:100-7. Cerca con Google

112. Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008 May 1;111(9):4551-8. Cerca con Google

113. Callegari A, Bollini S, Iop L, et al. Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials. 2007;28:5449-6. Cerca con Google

114. Cimetta E, Pizzato S, Bollini S, et al. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Cerca con Google

Biomed Microdevices. 2008. [Epub ahead of print] Cerca con Google

115. Au HT, Cheng I, Chowdhury MF et al. Interactive effects of surface topography and pulsate electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials. 2007;28(29):4277-93. Cerca con Google

116. Motlagh D, Hartman TJ, Desai TA, Russell B. Micro fabricated grooves recapitulate neonatal myocyte connexion 43 and N-cadherin expression and localization. J Biomed Mater Res A. 2003;67(1):148-57. Cerca con Google

117. Motlagh D, Senyo SE, Desai TA, Russell B. Micro textured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials. 2003;24(14):2463-76. Cerca con Google

118. Potapova IA., Doronin SV., Kelly DJ., Rosen AB., et al. Replacing damaged myocardium. J Electrocardiol. 2007;40(6 Suppl):S199-201. Cerca con Google

119. Cohen IS, Rosen AB, Gaudette GR. A caveat emptor for myocardial regeneration: mechanical without electrical recovery will not suffice. J Mol Cell Cardiol. 2007;42(2):285-8. Cerca con Google

120. Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007;25(9):2350-7. Cerca con Google

121. Suuronen EJ, Veinot JP, Wong S, et al. Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation. 2006;114(1 Suppl):I138-44. Cerca con Google

122. Fishbein MC, Meerbaum S, Rit J, et al. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J. 1981;101(5):593-600. Cerca con Google

123. Prockop DJ. "Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007;82(3):241-3. Cerca con Google

124. Cheng AS, Yau TM. Paracrine effects of cell transplantation: strategies to augment the efficacy of cell therapies. Semin Thorac Cardiovasc Surg. 2008; 20(2):94-101. Cerca con Google

125. Nakanishi C, Yamagishi M, Yamahara K, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 2008 12;374(1):11-6. Cerca con Google

126. Li L, Zhang S, Zhang Y, et al. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep. 2008. Cerca con Google

127. Schwarting S, Litwak S, Hao W, et al. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867-75. Cerca con Google

128. Smart N, Risebro CA, Melville AA, et al. Thymosin ?4 induces adult epicardial progenitor mobilization and neovascularization. Nature 2007 11;445(7124):177-82. Cerca con Google

129. Srivastava D, Saxena A, Michael Dimaio J and Bock-Marquette I. Thymosin beta4 is cardioprotective after myocardial infarction. Ann N Y Acad Sci. 2007;1112:161-70. Cerca con Google

130. Hinkel R, El-Aouni C, Olson T, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation. 2008; 29;117(17):2232-40. Cerca con Google

131. Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008;135(2):193-205. Cerca con Google

132. Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524-8. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record