Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Muraro, Lucia (2009) Studies of Botulinum Neurotoxins Mechanism of Action. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Botulinum neurotoxins (7 serotypes of BoNTs, named from A to G) and tetanus neurotoxin (TeNT) are the most powerful clostridial toxins (CNTs). They are responsible for botulism and tetanus respectively. TeNT and BoNTs bind to peripheral nerve terminals and inhibit neurotransmitter release from presynaptic neuronal cells by proteolytic cleavage of proteins involved in the fusion of synaptic vesicles with the cell membrane. BoNTs act at the level of Peripheral Nervous System (PNS) causing flaccid paralysis whereas TeNT acts at the level of Central Nervous System (CNS) causing spastic paralysis. In particular BoNT A cleaves and disables SNAP25 (synaptosome-associated protein 25), impairing the release of acetylcholine at neuromuscular junction.
Structurally, CNTs are composed of two polypeptide chains linked by a single disulphide bond: the 50 kDa Light Chain (LC), which acts in the cytosol as a metalloprotease; and the 100 kDa Heavy chain, which includes a translocation domain (HN) and a receptor binding domain (HC). The three functional domains are structurally distinct and arranged in a linear fashion, such that there is no contact between the LC and HC domain. HC is further composed of two distinct subdomains HCN and HCC.
These neurotoxins act at femtomolar concentration and the high affinity binding is due to multiple binding sites, either for membrane ganglioside and neuronal specific membrane proteins. BoNT/A binds to SV2 (synaptic vesicle 2) and to the ganglioside GT1b. It was thought that these two binding sites were located one in HCN subdomain and the other in the HCC subdomain. HCN share some sequence homology with lectins so it was a good candidate to bind ganglioside. Recently by crystallographic analysis it has been shown that both the protein receptor and ganglioside sites of BoNT/B are in the HCC domain. Due to the high homology between all CNTs it is likely that also the SV2 and GT1b sites are in the BoNT A HCC domain. If this is the case the role of N-terminal subdomain of BoNT A is still unknown. The aim of this project is to investigate the role of HCN in the binding of BoNT A to the plasma membrane. It is important to notice that the sequence of this toxin portion is conserved among all CNTs.
The sequence of BoNT/A coding for the HCN domain (aa from 855 to 1093) has been cloned as His-Tag fusion protein, and fused to the Enhanced Green Fluorescent Protein (EGFP) and to the monomeric cherry red fluorescent protein (mCherry). By fluorescent microscopy observations we have shown that both the fluorescent chimera were able to bind to the plasma membrane of epithelial and neuronal cells. The fluorescent HCN domain remains at the plasma membrane during incubation times that allow the internalization of whole binding domain, HC. The fluorescent staining is not homogenous on the plasma membrane but is enriched in bright spots. For TeNT binding a role of lipid raft have been establish but for BoNTs the question seems to be still open. Ours data show that the sphingomyelin binding toxin lysenin, colocalized with HCN staining and treatment with sphingomyelinase diminished the HCN binding on epithelial cells. Moreover, in dot blot analysis HCN was able to directly interact with anionic lipid in particular phosphatidylinositol 5 phosphate (PI(5)P). A role for negative charged lipid in the binding of BoNTs and TeNT to lipid bilayer, it was already suggested; our hypothesis is that the N-terminal portion of the binding domain is able to bind anionic lipid in the environment of lipid raft. We suggest that these additional interactions with the membrane surface may play the role of positioning the toxin on the membrane surface ready for membrane insertion.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Montecucco, Cesare
Ph.D. course:Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:13 January 2009
Anno di Pubblicazione:31 January 2009
Key Words:Botulinum neurotoxin / botulism / sphingomyelin / PIP / membrane binding
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Biomediche Sperimentali
Codice ID:1319
Depositato il:13 Jan 2009
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agarwal, R., Binz, T., and Swaminathan, S. (2005). Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry 44, 11758-11765. Cerca con Google

Agarwal, R., Eswaramoorthy, S., Kumaran, D., Binz, T., and Swaminathan, S. (2004). Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212-->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 43, 6637-6644. Cerca con Google

Aoki, K. R. (2001). A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39, 1815-1820. Cerca con Google

Arndt, J. W., Chai, Q., Christian, T., and Stevens, R. C. (2006). Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45, 3255-3262. Cerca con Google

Arndt, J. W., Yu, W., Bi, F., and Stevens, R. C. (2005). Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. Biochemistry 44, 9574-9580. Cerca con Google

Bade, S., Rummel, A., Reisinger, C., Karnath, T., Ahnert-Hilger, G., Bigalke, H., and Binz, T. (2004). Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 91, 1461-1472. Cerca con Google

Bajjalieh, S. M., Peterson, K., Shinghal, R., and Scheller, R. H. (1992). SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257, 1271-1273. Cerca con Google

Baldwin, M. R., and Barbieri, J. T. (2007). Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. Biochemistry 46, 3200-3210. Cerca con Google

Balla, T. (2005). Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 118, 2093-2104. Cerca con Google

Billante, C. R., Zealear, D. L., Billante, M., Reyes, J. H., Sant'Anna, G., Rodriguez, R., and Stone, R. E., Jr. (2002). Comparison of neuromuscular blockade and recovery with botulinum toxins A and F. Muscle Nerve 26, 395-403. Cerca con Google

Binz, T., Bade, S., Rummel, A., Kollewe, A., and Alves, J. (2002). Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry 41, 1717-1723. Cerca con Google

Black, J. D., and Dolly, J. O. (1986). Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103, 535-544. Cerca con Google

Bleck, E. (1989). Clinical aspects of tetanus. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. . Academic Press, San Diego, CA,, pp 379–398. Cerca con Google

Bohnert, S., and Schiavo, G. (2005). Tetanus Toxin Is Transported in a Novel Neuronal Compartment Characterized by a Specialized pH Regulation. J Biol Chem 280, 42336-42344. Cerca con Google

Breidenbach, M. A., and Brunger, A. T. (2004). Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432, 925-929. Cerca con Google

Breidenbach, M. A., and Brunger, A. T. (2005). 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry 44, 7450-7457. Cerca con Google

Brin, M. F. (1997). Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6, S146-168. Cerca con Google

Brin, M. F., Lew, M. F., Adler, C. H., Comella, C. L., Factor, S. A., Jankovic, J., O'Brien, C., Murray, J. J., Wallace, J. D., Willmer-Hulme, A., and Koller, M. (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 53, 1431-1438. Cerca con Google

Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A., and Jahn, R. (1997). Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. J Neurosci 17, 1898-1910. Cerca con Google

Bullens, R. W., O'Hanlon, G. M., Wagner, E., Molenaar, P. C., Furukawa, K., Furukawa, K., Plomp, J. J., and Willison, H. J. (2002). Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22, 6876-6884. Cerca con Google

Bullough, P. A., Hughson, F. M., Treharne, A. C., Ruigrok, R. W., Skehel, J. J., and Wiley, D. C. (1994). Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. J Mol Biol 236, 1262-1265. Cerca con Google

Chaddock, J. A., Purkiss, J. R., Duggan, M. J., Quinn, C. P., Shone, C. C., and Foster, K. A. (2000). A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Factors 18, 147-155. Cerca con Google

Chai, Q., Arndt, J. W., Dong, M., Tepp, W. H., Johnson, E. A., Chapman, E. R., and Stevens, R. C. (2006). Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444, 1096-1100. Cerca con Google

Chen, R., Karp, B. I., and Hallett, M. (1998). Botulinum toxin type F for treatment of dystonia: long-term experience. Neurology 51, 1494-1496. Cerca con Google

Chen, S., and Barbieri, J. T. (2006). Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281, 10906-10911. Cerca con Google

Chen, S., Kim, J. J., and Barbieri, J. T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282, 9621-9627. Cerca con Google

Couesnon, A., Pereira, Y., and Popoff, M. R. (2008). Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10, 375-387. Cerca con Google

Cremona, O., and De Camilli, P. (2001). Phosphoinositides in membrane traffic at the synapse. J Cell Sci 114, 1041-1052. Cerca con Google

Critchley, D. R., Nelson, P. G., Habig, W. H., and Fishman, P. H. (1985). Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol 100, 1499-1507. Cerca con Google

Deinhardt, K., Berninghausen, O., Willison, H. J., Hopkins, C. R., and Schiavo, G. (2006). Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174, 459-471. Cerca con Google

Delaunay, J. L., Breton, M., Trugnan, G., and Maurice, M. (2008). Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100. Biochim Biophys Acta 1778, 105-112. Cerca con Google

Dolly, J. O., Black, J., Williams, R. S., and Melling, J. (1984). Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457-460. Cerca con Google

Dong, M., Richards, D. A., Goodnough, M. C., Tepp, W. H., Johnson, E. A., and Chapman, E. R. (2003). Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162, 1293-1303. Cerca con Google

Dong, M., Yeh, F., Tepp, W. H., Dean, C., Johnson, E. A., Janz, R., and Chapman, E. R. (2006). SV2 is the protein receptor for botulinum neurotoxin A. Science 312, 592-596. Cerca con Google

Dressler, D., and Bigalke, H. (2005). Botulinum toxin type B de novo therapy of cervical dystonia: frequency of antibody induced therapy failure. J Neurol 252, 904-907. Cerca con Google

Dressler, D., and Eleopra, R. (2006). Clinical use of non-A botulinum toxins: botulinum toxin type B. Neurotox Res 9, 121-125. Cerca con Google

Duchen, L. W. (1971). An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 14, 47-60. Cerca con Google

Eleopra, R., Tugnoli, V., Rossetto, O., De Grandis, D., and Montecucco, C. (1998). Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256, 135-138. Cerca con Google

Evans, E. R., Sutton, J. M., Gravett, A., and Shone, C. C. (2005). Analysis of the substrate recognition domain determinants of botulinum type B toxin using phage display. Toxicon 46, 446-453. Cerca con Google

Fang, H., Luo, W., Henkel, J., Barbieri, J., and Green, N. (2006). A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc Natl Acad Sci U S A 103, 6958-6963. Cerca con Google

Fernandez-Salas, E., Steward, L. E., Ho, H., Garay, P. E., Sun, S. W., Gilmore, M. A., Ordas, J. V., Wang, J., Francis, J., and Aoki, K. R. (2004). Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A 101, 3208-3213. Cerca con Google

Filatov, A. V., Shmigol, I. B., Kuzin, II, Sharonov, G. V., and Feofanov, A. V. (2003). Resistance of cellular membrane antigens to solubilization with Triton X-100 as a marker of their association with lipid rafts--analysis by flow cytometry. J Immunol Methods 278, 211-219. Cerca con Google

Fischer, A., and Montal, M. (2007). Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. PNAS 104, 10447-10452. Cerca con Google

Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A., and Dolly, J. O. (1996). Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35, 2630-2636. Cerca con Google

Galazka, A., and Gasse, F. (1995). The present status of tetanus and tetanus vaccination. Curr Top Microbiol Immunol 195, 31-53. Cerca con Google

Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., Baird, C. L., Zhu, H., Field, S. J., Lessnick, S. L., et al. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99-111. Cerca con Google

Hanna, P. A., Jankovic, J., and Vincent, A. (1999). Comparison of mouse bioassay and immunoprecipitation assay for botulinum toxin antibodies. J Neurol Neurosurg Psychiatry 66, 612-616. Cerca con Google

Hanson, M. A., and Stevens, R. C. (2000). Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nat Struct Biol 7, 687-692. Cerca con Google

Haug, G., Wilde, C., Leemhuis, J., Meyer, D. K., Aktories, K., and Barth, H. (2003). Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42, 15284-15291. Cerca con Google

Herreros, J., Lalli, G., Montecucco, C., and Schiavo, G. (2000). Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74, 1941-1950. Cerca con Google

Herreros, J., Ng, T., and Schiavo, G. (2001). Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons. Mol Biol Cell 12, 2947-2960. Cerca con Google

Hooper, N. M. (1999). Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 16, 145-156. Cerca con Google

Hughes, R., and Whaler, B. C. (1962). Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160, 221-233. Cerca con Google

Humeau, Y., Doussau, F., Grant, N. J., and Poulain, B. (2000). How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82, 427-446. Cerca con Google

Ishitsuka, R., Yamaji-Hasegawa, A., Makino, A., Hirabayashi, Y., and Kobayashi, T. (2004). A Lipid-Specific Toxin Reveals Heterogeneity of Sphingomyelin-Containing Membranes. Biophys J 86, 296-307. Cerca con Google

Jahn, R., Lang, T., and Sudhof, T. C. (2003). Membrane fusion. Cell 112, 519-533. Cerca con Google

Jankovic, J. (2006). Botulinum toxin therapy for cervical dystonia. Neurotox Res 9, 145-148. Cerca con Google

Jankovic, J., and Schwartz, K. (1995). Response and immunoresistance to botulinum toxin injections. Neurology 45, 1743-1746. Cerca con Google

Jin, R., Rummel, A., Binz, T., and Brunger, A. T. (2006). Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444, 1092-1095. Cerca con Google

Jin, Y., Mozsolits, H., Hammer, J., Zmuda, E., Zhu, F., Zhang, Y., Aguilar, M. I., and Blazyk, J. (2003). Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Biochemistry 42, 9395-9405. Cerca con Google

Jurasinski, C. V., Lieth, E., Dang Do, A. N., and Schengrund, C. L. (2001). Correlation of cleavage of SNAP-25 with muscle function in a rat model of Botulinum neurotoxin type A induced paralysis. Toxicon 39, 1309-1315. Cerca con Google

Keller, J. E., Cai, F., and Neale, E. A. (2004). Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43, 526-532. Cerca con Google

Kielian, M., and Rey, F. A. (2006). Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4, 67-76. Cerca con Google

Kinoshita, M. (2008). Intermolecular interaction of phosphatidylinositol with the lipid raft molecules sphingomyelin and cholesterol. Biophysics Vol. 4, 1-9. Cerca con Google

Kitamura, M., Igimi, S., Furukawa, K., and Furukawa, K. (2005). Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741, 1-3. Cerca con Google

Kiyokawa, E., Baba, T., Otsuka, N., Makino, A., Ohno, S., and Kobayashi, T. (2005). Spatial and Functional Heterogeneity of Sphingolipid-rich Membrane Domains. J Biol Chem 280, 24072-24084. Cerca con Google

Kurazono, H., Mochida, S., Binz, T., Eisel, U., Quanz, M., Grebenstein, O., Wernars, K., Poulain, B., Tauc, L., and Niemann, H. (1992). Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J Biol Chem 267, 14721-14729. Cerca con Google

Kutateladze, T., and Overduin, M. (2001). Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793-1796. Cerca con Google

Kwiatkowska, K., Hordejuk, R., Szymczyk, P., Kulma, M., Abdel-Shakor, A.-B., lstrok, ucienniczak, A., Do, lstrok, owy, K., et al. (2007). Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Molecular Membrane Biology 99999, 1 - 14. Cerca con Google

Lacy, D. B., and Stevens, R. C. (1999). Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291, 1091-1104. Cerca con Google

Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R., and Stevens, R. C. (1998). Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5, 898-902. Cerca con Google

Lai, E. C. (2003). Lipid rafts make for slippery platforms. J Cell Biol 162, 365-370. Cerca con Google

Lalli, G., Bohnert, S., Deinhardt, K., Verastegui, C., and Schiavo, G. (2003). The journey of tetanus and botulinum neurotoxins in neurons. Trends in Microbiology 11, 431-437. Cerca con Google

Levy, R., Forsyth, C. M., LaPorte, S. L., Geren, I. N., Smith, L. A., and Marks, J. D. (2007). Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365, 196-210. Cerca con Google

Lew, M. F., Adornato, B. T., Duane, D. D., Dykstra, D. D., Factor, S. A., Massey, J. M., Brin, M. F., Jankovic, J., Rodnitzky, R. L., Singer, C., et al. (1997). Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology 49, 701-707. Cerca con Google

Li, L., Binz, T., Niemann, H., and Singh, B. R. (2000). Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39, 2399-2405. Cerca con Google

Lin, H. H., Han, L. Y., Zhang, H. L., Zheng, C. J., Xie, B., and Chen, Y. Z. (2006). Prediction of the functional class of lipid binding proteins from sequence-derived properties irrespective of sequence similarity. J Lipid Res 47, 824-831. Cerca con Google

Maget-Dana, R. (1999). The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1462, 109-140. Cerca con Google

Mahrhold, S., Rummel, A., Bigalke, H., Davletov, B., and Binz, T. (2006). The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580, 2011-2014. Cerca con Google

Martin, T. F. (2000). Racing lipid rafts for synaptic-vesicle formation. Nat Cell Biol 2, E9-11. Cerca con Google

Maruta, T., Dolimbek, B. Z., Aoki, K. R., Steward, L. E., and Atassi, M. Z. (2004). Mapping of the Synaptosome-Binding Regions on the Heavy Chain of Botulinum Neurotoxin A By Synthetic Overlapping Peptides Encompassing the Entire Chain. The Protein Journal 23, 539-552. Cerca con Google

Matteoli, M., Verderio, C., Rossetto, O., Iezzi, N., Coco, S., Schiavo, G., and Montecucco, C. (1996). Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A 93, 13310-13315. Cerca con Google

Mezaki, T., Kaji, R., Kohara, N., Fujii, H., Katayama, M., Shimizu, T., Kimura, J., and Brin, M. F. (1995). Comparison of therapeutic efficacies of type A and F botulinum toxins for blepharospasm: a double-blind, controlled study. Neurology 45, 506-508. Cerca con Google

Montecucco, C. (1986). How do tetanus and botulinum toxins bind to neuronal membranes? . Trends in Biochemical Sciences 11(8), 314-317. Cerca con Google

Montecucco, C., and Molgo, J. (2005). Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5, 274-279. Cerca con Google

Montecucco, C., Papini, E., and Schiavo, G. (1994). Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346, 92-98. Cerca con Google

Montecucco, C., Rossetto, O., and Schiavo, G. (2004). Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12, 442-446. Cerca con Google

Montecucco, C., and Schiavo, G. (1995). Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28, 423-472. Cerca con Google

Montecucco, C., Schiavo, G., and Dasgupta, B. R. (1989). Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J 259, 47-53. Cerca con Google

Montecucco, C., Schiavo, G., Tugnoli, V., and de Grandis, D. (1996). Botulinum neurotoxins: mechanism of action and therapeutic applications. Mol Med Today 2, 418-424. Cerca con Google

Morbiato, L., Carli, L., Johnson, E. A., Montecucco, C., Molgo, J., and Rossetto, O. (2007). Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci 25, 2697-2704. Cerca con Google

Naumann, M., and Jost, W. (2004). Botulinum toxin treatment of secretory disorders. Mov Disord 19 Suppl 8, S137-141. Cerca con Google

Nishiki, T., Kamata, Y., Nemoto, Y., Omori, A., Ito, T., Takahashi, M., and Kozaki, S. (1994). Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269, 10498-10503. Cerca con Google

Nishiki, T., Tokuyama, Y., Kamata, Y., Nemoto, Y., Yoshida, A., Sato, K., Sekiguchi, M., Takahashi, M., and Kozaki, S. (1996). The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378, 253-257. Cerca con Google

Osen-Sand, A., Staple, J. K., Naldi, E., Schiavo, G., Rossetto, O., Petitpierre, S., Malgaroli, A., Montecucco, C., and Catsicas, S. (1996). Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367, 222-234. Cerca con Google

Pellizzari, R., Mason, S., Shone, C. C., and Montecucco, C. (1997). The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett 409, 339-342. Cerca con Google

Pellizzari, R., Rossetto, O., Lozzi, L., Giovedi, S., Johnson, E., Shone, C. C., and Montecucco, C. (1996). Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem 271, 20353-20358. Cerca con Google

Pike, L. J. (2004). Lipid rafts: heterogeneity on the high seas. Biochem J 378, 281-292. Cerca con Google

Puhar, A., Johnson, E. A., Rossetto, O., and Montecucco, C. (2004). Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun 319, 66-71. Cerca con Google

Raciborska, D. A., Trimble, W. S., and Charlton, M. P. (1998). Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction. Eur J Neurosci 10, 2617-2628. Cerca con Google

Ratts, R., Zeng, H., Berg, E. A., Blue, C., McComb, M. E., Costello, C. E., vanderSpek, J. C., and Murphy, J. R. (2003). The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160, 1139-1150. Cerca con Google

Rigoni, M., Caccin, P., Johnson, E. A., Montecucco, C., and Rossetto, O. (2001). Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288, 1231-1237. Cerca con Google

Rossetto, O., Caccin, P., Rigoni, M., Tonello, F., Bortoletto, N., Stevens, R. C., and Montecucco, C. (2001a). Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon 39, 1151-1159. Cerca con Google

Rossetto, O., and Montecucco, C. (2007). Peculiar binding of botulinum neurotoxins. ACS Chem Biol 2, 96-98. Cerca con Google

Rossetto, O., Morbiato, L., Caccin, P., Rigoni, M., and Montecucco, C. (2006). Presynaptic enzymatic neurotoxins. J Neurochem 97, 1534-1545. Cerca con Google

Rossetto, O., Schiavo, G., Montecucco, C., Poulain, B., Deloye, F., Lozzi, L., and Shone, C. C. (1994). SNARE motif and neurotoxins. Nature 372, 415-416. Cerca con Google

Rossetto, O., Seveso, M., Caccin, P., Schiavo, G., and Montecucco, C. (2001b). Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39, 27-41. Cerca con Google

Roux, S., Colasante, C., Saint Cloment, C., Barbier, J., Curie, T., Girard, E., Molgo, J., and Brulet, P. (2005). Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol Cell Neurosci 30, 79-89. Cerca con Google

Rummel, A., Bade, S., Alves, J., Bigalke, H., and Binz, T. (2003). Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326, 835-847. Cerca con Google

Rummel, A., Eichner, T., Weil, T., Karnath, T., Gutcaits, A., Mahrhold, S., Sandhoff, K., Proia, R. L., Acharya, K. R., Bigalke, H., and Binz, T. (2007). Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104, 359-364. Cerca con Google

Rummel, A., Karnath, T., Henke, T., Bigalke, H., and Binz, T. (2004a). Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279, 30865-30870. Cerca con Google

Rummel, A., Mahrhold, S., Bigalke, H., and Binz, T. (2004b). The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51, 631-643. Cerca con Google

Sankhla, C., Jankovic, J., and Duane, D. (1998). Variability of the immunologic and clinical response in dystonic patients immunoresistant to botulinum toxin injections. Mov Disord 13, 150-154. Cerca con Google

Schiavo, G. (2006). Structural biology: Dangerous liaisons on neurons. Nature 444, 1019-1020. Cerca con Google

Schiavo, G., Demel, R., and Montecucco, C. (1991). On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. Eur J Biochem 199, 705-711. Cerca con Google

Schiavo, G., Matteoli, M., and Montecucco, C. (2000). Neurotoxins affecting neuroexocytosis. Physiol Rev 80, 717-766. Cerca con Google

Scott, A. B., Magoon, E. H., McNeer, K. W., and Stager, D. R. (1989). Botulinum treatment of strabismus in children. Trans Am Ophthalmol Soc 87, 174-180; discussion 180-174. Cerca con Google

Segelke, B., Knapp, M., Kadkhodayan, S., Balhorn, R., and Rupp, B. (2004). Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. Proc Natl Acad Sci U S A 101, 6888-6893. Cerca con Google

Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., and Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotech 22, 1567-1572. Cerca con Google

Simpson, L. L., Coffield, J. A., and Bakry, N. (1994). Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269, 256-262. Cerca con Google

Sloop, R. R., Cole, B. A., and Escutin, R. O. (1997). Human response to botulinum toxin injection: type B compared with type A. Neurology 49, 189-194. Cerca con Google

Sudhof, T. C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547. Cerca con Google

Swaminathan, S., and Eswaramoorthy, S. (2000). Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7, 693-699. Cerca con Google

Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., and O'Kane, C. J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341-351. Cerca con Google

Tacket, C. O., Rogawski MA (1989). Botulism. In: Simpson L. L (ed) Botulinum neurotoxins and tetanus toxin. Academic Press, San Diego, CA,, pp 351–378. Cerca con Google

Thesleff, S. (1960). Supersensitivity of skeletal muscle produced by botulinum toxin. J Physiol 151, 598-607. Cerca con Google

Truong, D. D., and Jost, W. H. (2006). Botulinum toxin: clinical use. Parkinsonism Relat Disord 12, 331-355. Cerca con Google

Tsukamoto, K., Kohda, T., Mukamoto, M., Takeuchi, K., Ihara, H., Saito, M., and Kozaki, S. (2005). Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280, 35164-35171. Cerca con Google

Tsukamoto, K., Kozai, Y., Ihara, H., Kohda, T., Mukamoto, M., Tsuji, T., and Kozaki, S. (2008). Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. Microb Pathog 44, 484-493. Cerca con Google

Turton, K., Chaddock, J. A., and Acharya, K. R. (2002). Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends in Biochemical Sciences 27, 552-558. Cerca con Google

Vaidyanathan, V. V., Yoshino, K., Jahnz, M., Dorries, C., Bade, S., Nauenburg, S., Niemann, H., and Binz, T. (1999). Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72, 327-337. Cerca con Google

Vicinanza, M., D'Angelo, G., Di Campli, A., and De Matteis, M. A. (2008). Function and dysfunction of the PI system in membrane trafficking. Embo J 27, 2457-2470. Cerca con Google

Washbourne, P., Pellizzari, R., Baldini, G., Wilson, M. C., and Montecucco, C. (1997). Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett 418, 1-5. Cerca con Google

Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430. Cerca con Google

Williamson, L. C., Halpern, J. L., Montecucco, C., Brown, J. E., and Neale, E. A. (1996). Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271, 7694-7699. Cerca con Google

Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H., and Umeda, M. (1998). Lysenin, a Novel Sphingomyelin-specific Binding Protein. J Biol Chem 273, 5300-5306. Cerca con Google

Yamasaki, S., Hu, Y., Binz, T., Kalkuhl, A., Kurazono, H., Tamura, T., Jahn, R., Kandel, E., and Niemann, H. (1994). Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A 91, 4688-4692. Cerca con Google

Yowler, B. C., Kensinger, R. D., and Schengrund, C. L. (2002). Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277, 32815-32819. Cerca con Google

Zuber, M., Sebald, M., Bathien, N., de Recondo, J., and Rondot, P. (1993). Botulinum antibodies in dystonic patients treated with type A botulinum toxin: frequency and significance. Neurology 43, 1715-1718. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record