Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

[Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Introduction. Neurofibromatosis type I, the most common form of Neurofibromatosis, presents with a wide phenotypic variability, both inter- and intra-familiar; a comparative analysis between type/site of mutation and phenotype cannot identify a correlation between genotype and clinical features in affected patients. Pilocytic astrocytomas (PAs) are the tumors that occur most often in NF1 patients; they affect children and young adults and occur preferentially along the optic pathway. These tumors are defined as Grade I gliomas (low-grade) and their growth is slow, but a small number of these tumors continue to grow, behave in an aggressive fashion and cause loss of vision or hypothalamic dysfunction. It is not known which changes determine whether an NF1-associated pilocytic astrocytoma will remain stable or exhibit a clinical progression: genetic alterations associated with NF1-associated optic glioma pathogenesis have not been well characterized.
Aim of the study. The aim of the study was to analyze a group of NF1 patients affected with optic glioma and a group of patients affected with optic glioma in which the diagnosis of NF1 was excluded, in order to evaluate the presence of specific mutations in the NF1 gene and in the tumor-suppressor gene CDKN2A; to analyze polymorphisms in the tumor-suppressor genes CDKN2A and TP53, that are reported in the literature to be associated with risk and tumor progression, in the study patients and in a healthy control group; to evaluate results with statistical methods; to establish if the glioma formation is associated with some specific mutations or polymorphisms in the studied genes.
Materials and methods. A mutation/SNP screening in NF1, CDKN2A and TP53 genes was performed in 25 NF1 patients affected with optic glioma diagnosis and 21 non-NF1 patients affected with optic glioma. Blood samples were obtained after informed consent from all of the patients and a control group of 50 unrelated adult healthy individuals from the Padova Clinical Genetic Service database. Mutation analysis was done by DHPLC after amplification by PCR of all the exons of NF1 and CDKN2A genes, in all of the patients, and direct sequencing of the samples showing some alteration at the DHPLC analysis. The SNPs analysis was done in CDKN2A and TP53 genes in all the patients and in the control group by RFLP and HRMA, respectively, after amplification by PCR of the target sequences.
Results. Mutation scanning in the NF1 gene by DHPLC analysis has identified mutations in 60% of the NF1 patients with optic glioma diagnosis. A preferential type of nucleotidic alteration was not observed but the majority (67%) of them causes the formation of a truncated protein. No mutations were found in the non-NF1 patients with optic glioma diagnosis. These results confirm the lack of a genotype–phenotype (optic glioma) correlation in patients affected with NF1. Mutation scanning in the CDKN2A gene by DHPLC analysis has identified two nucleotidic alterations in three NF1 patients: the G442A polymorphism in exon 2, known in the literature, and a new substitution in 3’ UTR of the gene (C520G) that could represent a new polymorphism. SNPs analysis (C500G and C540T in 3’ UTR of CDKN2A gene and IVS 6+62 G/A and 12256 G/C, in the promoter region of the TP53 gene) was done by two different techniques: RFLP and HRMA, respectively. We have compared the two methods and define that HRMA is a better instrument for SNPs analysis because of its sensitivity and specificity and because it is a cost-effective and simple post-PCR technique. A statistical analysis of allelic and genotypic frequences of the CDKN2A and TP53 genes polymorphisms in patients and control groups was done using the ?2 test. The results seem to suggest a non-association between the presence of these SNPs and an increased risk of optic glioma growth in the studied population (P>0,05). However the number of individuals analized is not sufficient for exhaustive conclusions. Future studies should be done with more polymorphisms and a larger patients group.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Clementi, Maurizio
Data di deposito della tesi:26 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):NF1 ,Gliomi del nervo ottico, geni modificatori, polimorfismi
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/03 Genetica medica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:1348
Depositato il:26 Gen 2009
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ahuja H, Bar-Eli M, Advani SH, et al. Alterations of the p53 gene and the clonal evolution of the blast crises of chronic myelogenous leukemia. Proc Natl Acad Sci U S A 1989;86:6783-7. Cerca con Google

Aravind L, Neuwald AF, Ponting CP. Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling. Curr. Biol (1999), 9 (6): R 195-7. Cerca con Google

Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X, Làzaro C. Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 2003; 40: e82. Cerca con Google

Baker S, Fearon ER, Nigro J, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217-21. Cerca con Google

Bonnemaison E et al. Complications de la neurofibromatose de type 1 chez l’enfant : a propos d’une serie de 100 cas. Archives de pediatrie 2006, 13 :1009-1014. Cerca con Google

Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998;282:1497-501. Cerca con Google

Cannon-Albright LA, Goldgar DE, Meyer LJ, Lewis CM, Anderson DE, et al. Assignment of a locus for familiar melanoma, MLM, to chromosome 9p13-p22. Science 258: 1080-1081, 1992. Cerca con Google

Cannon-Albright LA, Goldgar DE, Meyer LJ, Lewis CM, Anderson DE, et al. Localization of the 9p melanoma suseptibility locus (MLM) to a 2-cM region between D9S736 and D9S171. Genomics, 23: 265-268, 1994. Cerca con Google

Cawthon RM, Weiss R, Xu G, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O’Connell P, White R. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990; 62(1): 193-201. Cerca con Google

Clementi M, Barbujani G, Turolla L, Tenconi R. Neurofibromatosis-1: a maximum likelihood estimation of mutation rate. Hum. Genet. 1990; 84: 116-118. Cerca con Google

Crawford LV, Pim DC, Lamb P. The cellular protein p53 in human tumors. Mol Biol Med 1984;2:261-72. Cerca con Google

Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N. The protein product of neurofibromatosis type 1 gene is expressed at the highest abundance in neurons, Schwann cells and oligodendrocytes. Neuron (1992) 8: 415-428. Cerca con Google

DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 1979;76:2420-4. Cerca con Google

De Luca A, Buccino A, Gianni D, Mangino M, Giustizi S, Richetta A, Divona L, Calvieri S, Mingarelli R, Dalla Piccola B. NF1 gene analysis based on DHPLC. Hum Mutat. (2003) 21(2): 171-2. Cerca con Google

De Luca A, Schirinzi A, Buccino A, Bottillo I, Sinibaldi L, Torrente I, Ciavarella A, Dottorini T, Porcello R, Giustizi S, Calvieri S, Dalla Piccola B. Novel and recurrent mutations in the NF1 gene in italian patients with neurofibromatosis type 1. Human Mutation Mutation in Brief #716 (2004) Online. Cerca con Google

De Raedt, Brems H, Wolkenstein P, et al. Elevated risk for MPNST in Nf1 microdeletion patients. Am J Hum Genet (2003); 72: 1288-92. Cerca con Google

el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol 1998;8:345-57. Cerca con Google

Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, et al. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 1988;3:313-21. Cerca con Google

Fashold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kücükceylan N, Abdel-Nour M, Gewies A, Peters H, Kauffman D, Buske A, Tinschert S, Nürnberg P. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet. (2000); 66: 790-818. Cerca con Google

Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis 1. Cancer Res (2002) 62:1573-1577. Cerca con Google

Foord OS, Bhattacharya P, Reich Z, Rotter V. A DNA binding domain is contained in the C-terminus of wild type p53 protein. Nucleic Acids Res (1991) 19:5191. Cerca con Google

Gutmann DH, Geist RT, Douglas E, Wright E, Snider WD. Expression of the neurofibromatosis type 1 (NF1) isoforms in developing and adult rat tissues. Cell growth and Differentiation (1995); 6:315-323. Cerca con Google

Han S, Cooper D, Upadhyaya M. Evaluation of denaturing high performance liquid cromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. (2001) 109:487-497. Cerca con Google

Hattori S, Maekawa M, Nakamura S. Identification of neurofibromatosis type 1 gene product as an insoluble GTP-ase-activating protein toward ras p21. Oncogene (1992); 7:481-5. Cerca con Google

Hollstein M, Hergenhahn M, Yang Q, et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res 1999;31:199-209. Cerca con Google

Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Skolnich MH, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 264: 436-440, 1994. Cerca con Google

Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51:6304-11. Cerca con Google

Kastan M, Zhan Q, El-Diery W, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992;71:587-98. Cerca con Google

Kleihues P, Cavanee WK, World Health Organization Classification of Tumors, International Agency for Research on Cancer (IARC) Pathology and Genetics of Tumors of the Nervous System. Lyon: IARC Press, 2000. Cerca con Google

Lakkis MM, Tennekoon GI. Neurofibromatosis type 1. I. General overview. Journal of Neuroscience Research 2000; 62: 755-763. Cerca con Google

Lane D, Crawford L. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261-3. Cerca con Google

Larsen CJ. p16INK4A: a gene with a dual capacity to encode unrelated proteins that inhibit cell cycle progression. Oncogene 12: 2041-2044, 1996. Cerca con Google

Ledbetter DH, Rich DC, O’Connell P, Leppert M, Carey JC. Precise localization of NF1 to 17q11.2 by balanced translocation. Am J Hum Genet. 1989 Jan; 44(1): 20-24. Cerca con Google

Listernick R et al. Optic pathway gliomas in chidren with neurofibromatosis 1. Consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 1997, 41: 143-149. Cerca con Google

Malmer B, Feychting M, Lonn S, Ahlbom A, Henriksson R. p53 genotypes and risk of glioma and meningioma.Cancer Epidemiol Biomarkers Prev (2005);14(9) :2220-2223. Cerca con Google

Malmer B, Feychting M, Lonn S, Lindstrom S, Gronberg H, Henriksson R et al. Genetic variation in p53 and ATM haplotype and risk of glioma and meningioma. J Neurooncol (2007) 82: 229-237. Cerca con Google

Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D. A novel p16INK4A transcript. Cancer Res, 55: 2995-2997. 1995. Cerca con Google

Masuda H, Miller C, Koeffler HP, et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci U S A 1987;84:7716-9. Cerca con Google

Mattocks C, Baralle D, Tarpey P, ffrench-Constant C, Bobrow M, Whittaker J. Automated comparative sequence analysis identifies mutations in 89% of NF1 patients and confirms a mutation cluster in exons 11-17 distinct from the GAP related domain. J Med Genet (2004); 41: e48. Cerca con Google

Mcbride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA (1986); 83:130. Cerca con Google

Meek DW, Eckhart W. Phosphorylation of p53 in normal and simian virus 40-transformed NIH 3T3 cells. Mol Cell Biol (1998); 8:461. Cerca con Google

Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, De Paepe A. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Human Mutation. (2000); 15: 541-555. Cerca con Google

Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent-kinase-4 inhibitor gene in multiple human cencers. Nature, 368: 753-756, 1994. Cerca con Google

Perrone F, Tabano S, Colombo F, Dagrada G, Birindelli S, Gronchi A, Colecchia M, Pierotti M, Pilotti S. p15, p14, and p16 inactivation in sporadic and neurofibromatosis type I-related malignant peripheral nerve sheath tumors. Clinical Cancer Research Vol 9: 4132-4138, 2003. Cerca con Google

Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature 1997;389:300-5. Cerca con Google

Puig S, Malavehy J, Badenas C, Ruiz A, Jimenez D et al. Role of CDKN2A Locus in patient with multiple primary melanomas. Journal of Clinical Oncology 23: 3043-3051, 2005. Cerca con Google

Quelle DE, Zindy F, Ashumn RA, Sherr J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell Vol 83: 993-1000, 1995. Cerca con Google

Robbins Basi patologiche delle malattie, Ed It. Piccin, 2000. Cerca con Google

Ruggieri M e Tenconi R. Le Neurofibromatosi. Associazione Linfa, Lottiamo Insieme per la Neurofibromatosi- ONLUS- (2001). Cerca con Google

Russo A. Functions of CDKs: a review. Nature, 395: 237-243, 1998. Cerca con Google

Rutter JL, Goldstein AM, Davila MR, Tucker AM, Struewing P. CDKN2A point mutation D153spl (c.457G>T) and IVS+1G>T result in aberrant splice product affecting both p16 and p14. Oncogene, 22: 4444-4448, 2003. Cerca con Google

Sakano S, Berggren P, Kumar R, Steineck G, Larsson P et al. Clinical course of bladder neoplasms and single nucleotide polymorphisms in the cdkn2a gene. Int.J Cancer (2003) 104: 98-103. Cerca con Google

Sauroja I, Smeds J, Vlaykova T, Kumar R et al. Analysis of G1/S Checkpoint Regulators in Metastatic Melanoma. Genes, Chromosomes and cancer (2000) 28:404-414. Cerca con Google

Schmidt MA, Michels VV, Dewald GW, Opitz JM, Reynolds JF. Cases of neurofibromatosis with rearrangements of chromosome 17 involving band 17q11.2. Am J Med Genet 1987; 28: 771-777. Cerca con Google

Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Faryniarz AG, Chao MV et al. Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 1987; 49(5): 589-594. Cerca con Google

Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366: 634-635, 1993. Cerca con Google

Shen MH, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet (1996); 33: 2-17. Cerca con Google

Soussi T, Caron de Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene (1990); 5:945; Cerca con Google

Stenger JE, Mayr GA, Mann K, Tegtmeyer P. Formation of stable p53 homotetramers and multiples of tetramers. Mol Carcinogen (1992); 5: 102; Cerca con Google

Stott FJ, Bates S, James MC, McConnel BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, p14, partecipates in a regulatory feedback loop with p53 and MDM2. The Embo journal Vol 17: 5001-5014, 1998. Cerca con Google

Upadhyaya M, Shaw DJ and Harper PS. .Molecular basis of neurofibromatosis type 1 (NF1): mutation analysis and polymorphisms in the NF1 gene. Human Mutation (1994) 4:83-101. Cerca con Google

Vandenbroucke I, Van Oostveldt P, Coene E, De Paepe A, Messiaen L. Neurofibromin is actively transported to the nucleus. FEBS Lett. (2004); 560 (1-3): 98-102. Cerca con Google

Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307-10. Cerca con Google

White R, Nakamura Y, O’Connel P, Leppert M, Lalouet JM, Barker D, Golgar D, Skolnick M, Carey J, Wallis CE. Tightly linked markers for the neurofibromatosis type 1 gene. Genomics (1987) 1:364-7. Cerca con Google

Wiest V, Eisenbarth I, Schmegner C, Krone W, Assum G. Somatic NF1 mutation spectra in a family with Neurofibromatosis type 1: toward a theory of genetic modifiers. Hum Mutat. (2003); 22: 423-427. Cerca con Google

Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin dependent kinases is associated with cellular transformation. Genes Dev. 7: 1572-1583, 1993. Cerca con Google

Zhu Y, Harada T, Liu L, Lush ME, Gutmann DH et al. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development (2005) Dec; 132 (24): 5577-88. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record