Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Alfonsi, Jessica (2008) Small crystal models for the electronic properties of carbon nanotubes. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3980Kb

Abstract (inglese)

This thesis develops the basic theoretical aspects of the electronic properties of carbon nanotubes which are necessary for a detailed understanding of optical characterization measurements by photoluminescence and Raman spectroscopy. Starting from a wisely chosen finite portion of the real lattice with proper boundary conditions, the small crystal approach allows to find the minimal set of Brillouin zone points, which are sufficient for computing the essential features of the optical spectra of periodic systems, such as single-walled nanotubes. The real space vision embedded in small crystal approach allows to overcome some limitations inherent to reciprocal space based methods,when dealing with local symmetry breaking effects in the electronic structure of carbon nanotubes, such as electron-electron interactions, point-defects and orientationdependent intertube interactions, the last one in the particular case of double-walled nanotubes. The thesis shows the application of small crystal approach to these issues
and discuss the obtained results with respect to the currently available experimental and theoretical findings.

Abstract (italiano)

Questa tesi sviluppa gli aspetti teorici basilari delle proprietà elettroniche dei nanotubi di carbonio che sono necessari per una comprensione dettagliata delle misure di caratterizzazione
ottica tramite fotoluminescenza e spettroscopia Raman. Partendo da una porzione finita del reticolo reale opportunamente scelta con condizioni periodiche al contorno appropriate, l’approccio del cristallo piccolo consente di trovare l’insieme più piccolo di punti della zona di Brillouin che sono sufficienti per calcolare il profilo essenziale degli spettri ottici di sistemi periodici, come i nanotubi a parete singola. La visione in spazio reale presente nell’approccio del cristallo piccolo consente di superare le limitazioni inerenti ai metodi in spazio reciproco, quando si debbano considerare effetti di rottura locale di simmetria nella struttura elettronica dei nanotubi di carbonio, come interazioni elettrone-elettrone, difetti puntuali e interazioni intertubo dipendenti dall’orientazione dei tubi costituenti, quest’ultimo
nel caso particolare dei nanotubi a parete doppia. La tesi mostra l’applicazione dell’approccio del cristallo piccolo a questi problemi e i risultati ottenuti vengono discussi in relazione alle attuali conoscenze sperimentali e teoriche.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Meneghetti, Moreno
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZA E INGEGNERIA DEI MATERIALI
Data di deposito della tesi:21 Gennaio 2009
Anno di Pubblicazione:31 Dicembre 2008
Parole chiave (italiano / inglese):carbon nanotubes electronic properties small crystal exact diagonalization Hubbard model exciton
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:1353
Depositato il:21 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] H. W. Kroto, J. R. Heath, S. C. O’ Brien, R. F. Curl, and R. E. Smalley. Cerca con Google

C60: Buckminsterfullerene. Nature 318, 162 (1985). Cerca con Google

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Cerca con Google

Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically Cerca con Google

thin carbon films. Science 306, 666 (2004). Cerca con Google

[3] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Cerca con Google

Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proc. Natl. Cerca con Google

Acad. Sci. 102, 10451 (2005). Cerca con Google

[4] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, Cerca con Google

and S. Roth. The structure of suspended graphene sheets. Nature 446, 60 Cerca con Google

(2007). Cerca con Google

[5] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials Cerca con Google

6, 183 (2007). Cerca con Google

[6] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Cerca con Google

Ruoff. Stable aqueous dispersions of graphitic nanoplatelets via the reduction Cerca con Google

of exfoliated graphite oxide in the presence of poly(sodium 4- Cerca con Google

styrenesulfonate). J. Mater. Chem. 16, 155 (2006). Cerca con Google

[7] A. E. Karu and M. Beer. Pyrolytic formation of highly crystalline graphite Cerca con Google

films. J. Appl. Phys. 37, 2179 (1966). Cerca con Google

[8] C. Oshima and A. Nagashima. Ultra-thin epitaxial films of graphite and Cerca con Google

hexagonal boron nitride on solid surfaces. J. Phys.: Cond. Matter 9,1 Cerca con Google

(1997). Cerca con Google

[9] L. C. Isett and J. M. Blakely. Segregation isosteres for carbon at the (100) Cerca con Google

surface of nickel. Surf. Sci. 58, 397 (1976). Cerca con Google

[10] J. C. Hamilton and J. M. Blakely. Carbon segregation to single crystal Cerca con Google

surfaces of Pt, Pd and Co. Surf. Sci. 91, 199 (1980). Cerca con Google

151 Cerca con Google

152 BIBLIOGRAPHY Cerca con Google

[11] S. Iijima. Helical microtubules of graphitic carbon. Nature 354, 56 (1991). Cerca con Google

[12] S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Cerca con Google

Nature 363, 603 (1993). Cerca con Google

[13] M. Monthioux and V. L. Kuznetsov. Who should be given the credit for the Cerca con Google

discovery of carbon nanotubes? Carbon 44, 1621 (2006). Cerca con Google

[14] L. V. Radushkevich and V. M. Lukyanovich. O strukture ugleroda, obrazujucegosja Cerca con Google

pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Cerca con Google

Zurn. Fisic. Chim. 26, 88 (1952). Cerca con Google

[15] A. Oberlin, M. Endo, and T. Koyama. Filamentous growth of carbon Cerca con Google

through benzene decomposition. J. Cryst. Growth 32, 335 (1976). Cerca con Google

[16] D. Bethune, C. Klang, M. de Vries, G. Gorman, R. Savoy, J. Vazquez, Cerca con Google

and R. Beyers. Cobalt-catalysed growth of carbon nanotubes with singleatomic- Cerca con Google

layer walls. Nature 363, 605 (1993). Cerca con Google

[17] P. M. Ajayan and S. Iijima. Smallest carbon nanotube. Nature 358, 23 Cerca con Google

(1992). Cerca con Google

[18] L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima. The Cerca con Google

smallest carbon nanotube. Nature 408, 50 (2000). Cerca con Google

[19] L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, Z. Q. Liu, D. S. Tang, G. Wang, Cerca con Google

and L. X. Qian. Creating the narrowest carbon nanotubes. Nature 403, 384 Cerca con Google

(2000). Cerca con Google

[20] N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen. Materials science: Singlewalled Cerca con Google

4 °A carbon nanotube arrays. Nature 408, 50 (2000). Cerca con Google

[21] C.-H. Kiang. Growth of large-diameter single-walled carbon nanotubes. J. Cerca con Google

Phys. Chem. A 104, 2454 (2000). Cerca con Google

[22] M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Ptzke, and D. C. Cerca con Google

Meyer. Materials: Carbon nanotubes in an ancient Damascus sabre. Nature Cerca con Google

444, 286 (2006). Cerca con Google

[23] T. W. Ebbesen and P. M. Ajayan. Large-scale synthesis of carbon nanotubes. Cerca con Google

Nature 358, 220 (1992). Cerca con Google

[24] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley. Catalytic Cerca con Google

growth of single-walled manotubes by laser vaporization. Chem. Phys. Cerca con Google

Lett. 243, 49 (1995). Cerca con Google

BIBLIOGRAPHY 153 Cerca con Google

[25] Y. Li,W. Kim, Y. Zhang, M. Rolandi, D.Wang, and H. Dai. Growth of Cerca con Google

single-walled carbon nanotubes from discrete catalytic nanoparticles of Cerca con Google

various sizes. J. Phys. Chem. B 105, 11424 (2001). Cerca con Google

[26] L. Ci, Z. Zhou, X. Yan, D. Liu, H. Yuan, L. Song, J.Wang, Y. Gao, J. Cerca con Google

Zhou,W. Zhou, G.Wang, and S. Xie. Raman characterization and tunable Cerca con Google

growth of double-wall carbon nanotubes. J. Phys. Chem. B 107, 8760 Cerca con Google

(2003). Cerca con Google

[27] A. M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, and H. Cerca con Google

Dai. Directed growth of free-standing single-walled carbon nanotubes. J. Cerca con Google

Am. Chem. Soc. 121, 7975 (1999). Cerca con Google

[28] W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, Cerca con Google

L. Forro, and D. Ugarte. Aligned carbon nanotube films: production and Cerca con Google

optical and electronic properties. Science 268, 845 (1995). Cerca con Google

[29] T. Tanaka, A. Tajima, R. Moriizumi, M. Hosoda, R. Ohno, E. Rokuta, C. Cerca con Google

Oshima, and S. Otani. Carbon nano-ribbons and their edge phonons. Solid Cerca con Google

State Comm. 123, 33 (2002). Cerca con Google

[30] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state Cerca con Google

in graphene ribbons: nanometer size effect and edge shape dependence. Cerca con Google

Phys. Rev. B 54, 17954 (1996). Cerca con Google

[31] Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo. Comparison of performance Cerca con Google

limits for carbon nanoribbon and carbon nanotube transistors.Appl. Phys. Cerca con Google

Lett. 89, 203107 (2006). Cerca con Google

[32] B. W. Smith, M. Monthioux, and D. E. Luzzi. Encapsulated C60 in carbon Cerca con Google

nanotubes. Nature 396, 323 (1998). Cerca con Google

[33] S. Okada, S. Saito, and A. Oshiyama. Energetics and electronics structures Cerca con Google

of encapsulated C60 in a carbon nanotube. Phys. Rev. Lett. 86, 3835 Cerca con Google

(2001). Cerca con Google

[34] S. Berber, Y.-K. Kwon, and David Tom´anek. Microscopic Formation Cerca con Google

Mechanism of Nanotube Peapods. Phys. Rev. Lett. 88, 185502 (2002). Cerca con Google

[35] D. Tom´anek. Mesoscopic origami with graphite: scrolls, nanotube, Cerca con Google

peapods. Physica B 323, 86 (2002). Cerca con Google

[36] B. W. Smith, M. Monthioux, and D. E. Luzzi. Carbon nanotube encapsulated Cerca con Google

fullerenes: a unique class of hybrid materials. Chemical Physics Cerca con Google

Letters 315, 31 (1999). Cerca con Google

154 BIBLIOGRAPHY Cerca con Google

[37] S. Bandow, K. Hirahara, T. Hiraoka, G. Chen, P. C. Eklund, and S. Cerca con Google

Iijima. Turning peapods into double-walled carbon nanotubes. MRS Bullettin/ Cerca con Google

April 2004, 260 (2004). Cerca con Google

[38] J. G. Lavin, S. Subramoney, R. S. Ruoff, S. Berber, and D. Tom´anek. Cerca con Google

Scrolls and nested tubes in multiwall carbon nanotubes. Carbon 40, 1123 Cerca con Google

(2002). Cerca con Google

[39] S. Berber and D. Tom´anek. Stability differences and conversion mechanism Cerca con Google

between nanotube and scrolls. Phys. Rev. B 69, 233404 (2004). Cerca con Google

[40] H. Shioyama and T. Akita. A new route to carbon nanotubes. Carbon 41, Cerca con Google

179 (2003). Cerca con Google

[41] J. L. Li, Q. S. Peng, G. Z. Bai, and W. Jiang. Carbon scrolls produced by Cerca con Google

high energy ball milling of graphite. Carbon 43, 2817 (2005). Cerca con Google

[42] D. Tom´anek. Carbon-based nanotechnology on a supercomputer. J. Phys.: Cerca con Google

Condens. Matter 17, R413-R459 (2005). Cerca con Google

[43] H. Terrones and M. Terrones. Curved nanostructured materials. New Cerca con Google

Journ. Phys. 5, 126 (2003). Cerca con Google

[44] M. P. Anantram and F. L´eonard. Physics of carbon nanotube electronic Cerca con Google

devices. Rep. Prog. Phys. 69, 507 (2006). Cerca con Google

[45] A. W. Hull. A new method of X-Ray crystal analysis. Phys. Rev. 10, 661 Cerca con Google

(1917). Cerca con Google

[46] J. D. Bernal. The structure of graphite. Proc. R. Soc. London, Ser. A 106, Cerca con Google

749 (1924). Cerca con Google

[47] R. E. Peierls. Bemerkungen ¨uber Umwandlungstemperaturen. Helv. Phys. Cerca con Google

Acta 7, 81 (1934). Cerca con Google

[48] N. D. Mermin. Crystalline order in two dimensions. Phys. Rev. 176, 250 Cerca con Google

(1968). Cerca con Google

[49] J.-C. Charlier, X. Blase, and S. Roche. Electronic and transport properties Cerca con Google

of nanotubes. Rev. Mod. Phys. 79, 677 (2007). Cerca con Google

[50] A. A. Lucas, V. Bruyninckx, and P. Lambin. Calculating the diffraction of Cerca con Google

electrons or X-rays by carbon nanotubes. Europhys. Lett. 35, 355 (1996). Cerca con Google

BIBLIOGRAPHY 155 Cerca con Google

[51] M. Kociak, K. Hirahara, K. Suenaga, and S. Iijima. How accurate can the Cerca con Google

determination of chiral indices of carbon nanotubes be ? Eur. Phys. J. B Cerca con Google

32, 457 (2003). Cerca con Google

[52] Lu-Chang Qin. Electron diffraction from carbon nanotubes. Rep. Prog. Cerca con Google

Phys. 69, 2761 (2006). Cerca con Google

[53] S. G. Lemay, J.W. Janssen,M. van den Hout,M.Mooij,M. J. Bronikowski, Cerca con Google

P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker. Twodimensional Cerca con Google

imaging of electronic wavefunctions in carbon nanotubes. Nature Cerca con Google

412, 617 (2001) Cerca con Google

[54] P. Lambin, G. I. M´ark, V. Meunier, and L. P. Bir´o. Computation of STM Cerca con Google

images of carbon nanotubes. Int. Journ. Qua. Chem. 95, 493 (2003). Cerca con Google

[55] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber. Atomic structure and Cerca con Google

electronic properties of single-walled carbon nanotubes. Nature 391, 62 Cerca con Google

(1998). Cerca con Google

[56] M. O’Connell, S. M. Bachilo, X. B. Huffman, V. C. Moore, M. S. Strano, Cerca con Google

E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. Cerca con Google

H. Hauge, R. B. Weisman, and R. E. Smalley. Band gap fluorescence from Cerca con Google

individual single-walled nanotubes, Science 297, 593 (2002). Cerca con Google

[57] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and Cerca con Google

R. B.Weisman. Structure-assigned optical spectra of single-walled carbon Cerca con Google

nanotubes, Science 298, 2361 (2002). Cerca con Google

[58] X. Liu, T. Pichler, M. Knupfer, M. S. Golden, J. Fink, H. Kataura, and Y. Cerca con Google

Achiba. Detailed analysis of the mean diameter and diameter distribution Cerca con Google

of single-wall carbon nanotubes from their optical response. Phys. Rev. B Cerca con Google

66, 45411 (2002). Cerca con Google

[59] T. Belin and F. Epron. Characterization methods of carbon nanotubes: a Cerca con Google

review. Mat. Sci. Eng. B 119, 105 (2005). Cerca con Google

[60] S. Goedecker and G. E. Scuseria. Linear scaling electronic structure methods Cerca con Google

in chemistry and physics. Computing in Science and Engineering 5, Cerca con Google

July/August 2003, 14 (2003). Cerca con Google

[61] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, Cerca con Google

B864 (1964). Cerca con Google

[62] W. Kohn and L. J. Sham. Self-consistent equations including exchange and Cerca con Google

correlation effects. Phys. Rev. 140, A1133 (1965). Cerca con Google

156 BIBLIOGRAPHY Cerca con Google

[63] J. M. Soler, E. Artacho, J. D. Gale, A. Garc´ıa, J. Junquera, P. Ordej´on, Cerca con Google

and D. S´anchez-Portal. The SIESTA method for ab initio order-N materials Cerca con Google

simulation. J. Phys.: Cond. Matter 14, 2475 (2002). Cerca con Google

[64] J. W. Mintmire, B. I. Dunlap, and C. T.White. Are fullerene tubules metallic Cerca con Google

? Phys. Rev. Lett. 68, 631 (1992). Cerca con Google

[65] J. W. Mintmire and C. T. White. First-principles band structures of armchair Cerca con Google

nanotubes. Appl. Phys. A 67, 65 (1998). Cerca con Google

[66] X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie. Hybridization Cerca con Google

effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. Cerca con Google

72, 1878 (1994). Cerca con Google

[67] D. ¨Ostling, D. Tom´anek, and A. Ros´en. Electronic structure of single-wall, Cerca con Google

multiwall, and filled carbon nanotubes. Phys. Rev. B 55, 13980 (1997). Cerca con Google

[68] Y.-K. Kwon and D. Tom´anek. Electronic and structural properties of multiwall Cerca con Google

carbon nanotubes. Phys. Rev. B 58, R16001 (1998). Cerca con Google

[69] O. Dubay and G. Kresse. Density functional calculations for C60 peapods. Cerca con Google

Phys. Rev. B 70, 165424 (2004). Cerca con Google

[70] D. Porezag, Th. Frauenheim, Th. K¨ohler, G. Seifert, and R. Kaschner. Construction Cerca con Google

of tight-binding-like potentials on the basis of density functional Cerca con Google

theory:application to carbon. Phys. Rev. B 51, 12947 (1995). Cerca con Google

[71] T. Frauenheim, G. Seifert,M. Elstner, T. Niehaus, C. K¨ohler,M. Amkreutz, Cerca con Google

M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai. Atomistic simulations Cerca con Google

of complex materials: ground-state and excited-state properties. J. Phys.: Cerca con Google

Condens. Matter 14, 3015 (2002). Cerca con Google

[72] M. Born and K. Huang. Dynamical Theory of Crystal Lattices (Oxford Cerca con Google

University Press, Oxford, 1954). Cerca con Google

[73] B. S. Kandemir and M. Keskin. Analytical approach to phonons and Cerca con Google

electron-phonon interactions in single-walled zigzag carbon nanotubes. J. Cerca con Google

Phys.: Condens. Matter 20, 325222 (2008). Cerca con Google

[74] J. C. Slater and G. F. Koster. Simplified LCAO Method for the Periodic Cerca con Google

Potential Problem. Phys. Rev. 94, 1498 (1954). Cerca con Google

[75] C. M. Goringe, D. R. Bowler, and E. Hern´andez. Tight-binding modelling Cerca con Google

of materials. Rep. Prog. Phys. 60, 1447 (1997). Cerca con Google

BIBLIOGRAPHY 157 Cerca con Google

[76] R. Haydock, V. Heine, and M. J. Kelly. Electronic structure based on the Cerca con Google

local atomic environment for tight-binding bands. J. Phys. C: Solid State Cerca con Google

Phys. 5, 2845 (1972). Cerca con Google

[77] J. C. Slonczewski and P. R. Weiss. Band structure of graphite. Phys. Rev. Cerca con Google

109, 272 (1958). Cerca con Google

[78] J. W. McClure. Band structure of graphite and de Haas-van Alphen Effect. Cerca con Google

Phys. Rev. 108, 612 (1957). Cerca con Google

[79] J.-C. Charlier, J. P.Michenaud, X. Gonze, and J.-P. Vigneron. Tight-binding Cerca con Google

model for the electronic properties of simple hexagonal graphite. Phys. Cerca con Google

Rev. B 44, 13237 (1991). Cerca con Google

[80] J.-C. Charlier, J. P. Michenaud, and Ph. Lambin. Tight-binding density of Cerca con Google

electronic states of pregraphitic carbon. Phys. Rev. B 46, 4540 (1992). Cerca con Google

[81] N. Hamada, S. Sawada, and A. Oshiyama. New one-dimensional conductors: Cerca con Google

graphitic microtubules. Phys. Rev. Lett. 68, 1579 (1992). Cerca con Google

[82] C. T. White, D. H. Robertson, and J. W. Mintmire. Helical and rotational Cerca con Google

symmetries of nanoscale graphitic tubules. Phys. Rev. B 47, 5485 (1993). Cerca con Google

[83] J. W. Mintmire and C. T. White. Electronic and structural properties of Cerca con Google

carbon nanotubes. Carbon 33, 893 (1995). Cerca con Google

[84] V. N. Popov. Curvature effects on the structural, electronic and optical Cerca con Google

properties of isolated single-walled carbon nanotubes within a symmetryadapted Cerca con Google

non-orthogonal tight-binding model. New J. Phys. 6 1 (2004). Cerca con Google

[85] M. Damnjanovi´c, T. Vukovi´c, and I. Milosevi´c. Modified group projectors: Cerca con Google

tight-binding method. J. Phys. A: Math. and Gen. 33 6561 (2000). Cerca con Google

[86] T. Ando. Theory of electronic states and transport in carbon nanotubes. J. Cerca con Google

Phys. Soc. Jpn. 74, No.3 (2001). Cerca con Google

[87] D. Tom´anek, W. Zhong, and E. Krastev. Stability of multishell fullerene. Cerca con Google

Phys. Rev. B 48, 15461 (1993). Cerca con Google

[88] D. Kahn, K. W. Kim, and M. A. Stroscio. Quantized vibrational modes of Cerca con Google

nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. Cerca con Google

89, 5107 (2001). Cerca con Google

[89] R. Saito, G. Dresselhaus and M. S. Dresselhaus. Physical Properties of Cerca con Google

Carbon Nanotubes (Imperial College Press, London, 1998). Cerca con Google

158 BIBLIOGRAPHY Cerca con Google

[90] S. Reich, C. Thomsen and J.Maultzsch. Carbon nanotubes: basic concepts Cerca con Google

and physical properties (Wiley, 2004). Cerca con Google

[91] L. M. Falicov. Recent Progress in Many-Body Theories,1, 275, (Plenum, Cerca con Google

New York, 1988) and references therein. Cerca con Google

[92] G. D. Mahan. Many-Particle Physics (Plenum Press, New York, 1990). Cerca con Google

[93] F. Jensen. Introduction to Computational Chemistry (John Wiley & Sons, Cerca con Google

1999) Cerca con Google

[94] E. Kaxiras. Atomic and Electronic Structure of Solids (Cambridge University Cerca con Google

Press, 2003). Cerca con Google

[95] E. N. Economou. Green’s Functions in Quantum Physics (Springer-Verlag Cerca con Google

Berlin Heidelberg New York 1979). Cerca con Google

[96] L. I. Schiff. Quantum Mechanics, 3rd edition, (McGraw-Hill, New York, Cerca con Google

1968). Cerca con Google

[97] R. F. Wallis and M. Balkanski. Many-Body Aspects of Solid State Spectroscopy Cerca con Google

(North-Holland Amsterdam Oxford NewYork Tokyo, 1986). Cerca con Google

[98] R.M.Martin and L.M. Falicov. Resonant Raman Scattering, in Light Scattering Cerca con Google

in Solids I: edited by M. Cardona, 70-145, (Springer-Verlag, Berlin, Cerca con Google

1983), Vol. 8. Chapter 3, Topics in Applied Physics. Cerca con Google

[99] D. J. Chadi and M. L. Cohen. Special points in the Brillouin zone. Phys. Cerca con Google

Rev. B 8, 5747 (1973). Cerca con Google

[100] S. L. Cunningham. Special points in the two-dimensional Brillouin zone. Cerca con Google

Phys. Rev. B 10, 4988 (1974). Cerca con Google

[101] L. Brey and C. Tejedor. Raman tensor of covalent semiconductors. Solid Cerca con Google

State Commun. 48, 403 (1983). Cerca con Google

[102] L. C. Lew Yan Voon and L. R. Ram-Mohan. Tight-binding representation Cerca con Google

of the optical matrix elements: Theory and applications. Phys. Rev. B 47, Cerca con Google

15500 (1993). Cerca con Google

[103] J. Yepez. A symbolic solution of the Hubbard model for small clusters. Advanced Cerca con Google

Exam in Physics, PhD program, (Brandeis University, Massachussets, Cerca con Google

1991). Available at: http://xyz.plh.af.mil/Papers/pdf/ae91.pdf Vai! Cerca con Google

BIBLIOGRAPHY 159 Cerca con Google

[104] J. Callaway, D. P. Chen, and R. Tang. Ground state and thermodynamic Cerca con Google

properties of the Hubbard model applied to small custers. Phys. Rev. B 35, Cerca con Google

3705 (1987). Cerca con Google

[105] L. Milans del Bosch and L. M. Falicov. Extended one-dimensional Hubbard Cerca con Google

model: A small-cluster approach. Phys. Rev. B 37, 6073 (1988). Cerca con Google

[106] C. R. Proetto and L. M. Falicov. Exact solution of a quantum electronphonon Cerca con Google

system for a two-site periodic cluster. Phys. Rev. B 39, 7545 Cerca con Google

(1989). Cerca con Google

[107] B. Koiller,M. A.M. Davidovich and L.M. Falicov. Small-crystal approach Cerca con Google

to ordered semiconductor compounds. Phys. Rev. B 41, 3670 (1990). Cerca con Google

[108] M. Meneghetti and C. Pecile. Vibrational and electronic spectra of onedimensional Cerca con Google

organic charge-transfer crystals: Model for a tetramerized Cerca con Google

cluster structure. Phys. Rev. B 40, 12187 (1989). Cerca con Google

[109] M. Meneghetti and C. Pecile. Periodic-dimer-cluster models for the study Cerca con Google

of the optical properties of dimerized half-filled organic charge-transfer Cerca con Google

crystals. Phys. Rev. B 42, 1605 (1990). Cerca con Google

[110] M. Meneghetti. Optical properties of organic conductor and semiconductor Cerca con Google

crystals: Model for a half-filled dimerized chain. Phys. Rev. B 44, 8554 Cerca con Google

(1991). Cerca con Google

[111] M. Meneghetti. Model for the linear and nonlinear optical properties Cerca con Google

of one-dimensional organic π-conjugated compounds. Phys. Rev. B 47, Cerca con Google

13151 (1993). Cerca con Google

[112] M. Meneghetti. Optical properties of one-dimensional π-conjugated Cerca con Google

compounds: Study of the pressure-dependent linear properties of Ktetracyanoquinodimethane. Cerca con Google

Phys. Rev. B 50, 16899 (1994). Cerca con Google

[113] M. Meneghetti and L. Feltre. Electronic and vibronic excitations of Cerca con Google

quarter-filled periodic octamer. Synthetic Metals 85, 1629 (1997). Cerca con Google

[114] M.Meneghetti. Dynamic modulation of electron correlation by intramolecular Cerca con Google

modes in charge-transfer compounds. Phys. Rev. B 60, 15472 (1999). Cerca con Google

[115] B. Koiller, R. Os´o rio and L. M. Falicov. Gap properties of AlnGa8−nAs8. Cerca con Google

Phys. Rev. B 43, 4170 (1991). Cerca con Google

[116] G. G. Samsonidze, R. Saito, A. Jorio,M. A. Pimenta, A. G. Souza Filho, A. Cerca con Google

Grueneis, G. Dresselhaus, and M. S. Dresselhaus. The concept of cutting Cerca con Google

lines in carbon nanotube science. J. Nanosci. Nanotech. 3, (2003). Cerca con Google

160 BIBLIOGRAPHY Cerca con Google

[117] R.Saito, K. Sato, Y. Oyama, J. Jiang, Ge. G. Samsonidze, G. Dresselhaus, Cerca con Google

and M. S. Dresselhaus. Cutting-lines near the Fermi energy of single-wall Cerca con Google

carbon nanotubes, Phys. Rev. B 72, 153413 (2005). Cerca con Google

[118] E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. Souza Filho, Cerca con Google

J. Mendez Filho, G. Dresselhaus, and M. S. Dresselhaus. Review on the Cerca con Google

symmetry-related properties of carbon nanotubes. Phys. Reports, 431, 261, Cerca con Google

(2006). Cerca con Google

[119] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio. Raman spectroscopy Cerca con Google

of carbon nanotubes. Phys. Reports, 409, 47 (2005). Cerca con Google

[120] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio. Raman spectroscopy of Cerca con Google

carbon nanotubes in 1997 and 2007. J. Phys. Chem. C, 111, 17887 (2007). Cerca con Google

[121] A. Grueneis. Resonance Raman spectroscopy of single wall carbon nanotubes. Cerca con Google

Ph.D. Thesis, (University of Tokyo, 2004). Cerca con Google

[122] Ge. G. Samsonidze. Photophysics of carbon nanotubes. Ph.D. Thesis (MIT, Cerca con Google

Boston, 2007). Cerca con Google

[123] N. Nemec. Quantum transport in carbon-based nanostructures. Ph.D. Thesis Cerca con Google

(University of Regensburg, 2007). Cerca con Google

[124] M. Damnjanovi´c, I.Miloˇsevi´c, T. Vukovi´c and R. Sredanovi´c. Full symmetry, Cerca con Google

optical activity, and potentials of single-wall and multiwall nanotubes. Cerca con Google

Phys. Rev. B, 60, 2728 (1999) and references therein. Cerca con Google

[125] R. Saito, K. Sato, Y. Oyama, J. Jiang, G. G. Samsonidze, G. Dresselhaus, Cerca con Google

and M. S. Dresselhaus. Cutting-lines near the Fermi-energy of single-wall Cerca con Google

carbon nanotubes. Phys. Rev. B 72, 153413, (2005). Cerca con Google

[126] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K.W.Williams, Cerca con Google

S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, Cerca con Google

and M. S. Dresselhaus. Diameter-selective Raman scattering from Cerca con Google

vibrational modes in carbon nanotubes. Science 275, 187 (1997). Cerca con Google

[127] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Cerca con Google

and Y. Achiba. Optical properties of single-wall carbon nanotubes. Synth. Cerca con Google

Metals, 103, 2555 (1999). Cerca con Google

[128] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, Cerca con Google

G. Dresselhaus, and M. S. Dresselhaus. Structural (n,m) determination of Cerca con Google

isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Cerca con Google

Rev. Lett. 86, 1181 (2001). Cerca con Google

BIBLIOGRAPHY 161 Cerca con Google

[129] R. B. Weisman and S. M. Bachilo. Dependence of optical transition energies Cerca con Google

on structure for single-walled carbon nanotubes in acqueous suspension: Cerca con Google

an empirical Kataura plot. Nanoletters 3, 1235 (2003). Cerca con Google

[130] A. Jorio, M. A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, and Cerca con Google

M. S. Dresselhaus. Characterizing carbon nanotube samples with resonance Cerca con Google

Raman scattering. New J. Phys. 5, 1 (2003). Cerca con Google

[131] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Cerca con Google

Pimenta. Optical transition energies for carbon nanotubes from Resonant Cerca con Google

Raman Spectroscopy: Environment and Temperature Effects. Phys. Rev. Cerca con Google

Lett. 93, 147406 (2004). Cerca con Google

[132] G. G. Samsonidze, R. Saito, N. Kobayashi, A. Gr¨uneis, J. Jiang, A. Jorio, Cerca con Google

S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus. Family behaviour of Cerca con Google

the optical transition energies in single-wall carbon nanotubes of smaller Cerca con Google

diameters. Appl. Phys. Lett. 85, 5703 (2004). Cerca con Google

[133] J. Maultzsch, H. Telg, S. Reich, and C. Thomsen. Radial breathing mode Cerca con Google

of single-walled carbon nanotubes: optical transition energies and chiralindex Cerca con Google

assignment. Phys. Rev. B 72, 205438 (2005). Cerca con Google

[134] L. G. Bulusheva, A. V. Okotrub, D. A. Romanov, and D. Tom´anek. Electronic Cerca con Google

structure of (n,0) zigzag carbon nanotubes: cluster and crystal approach. Cerca con Google

J. Phys. Chem. A 102, 975 (1997). Cerca con Google

[135] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Trigonal warping effect Cerca con Google

of carbon nanotubes. Phys. Rev. B 61, 2981 (2000). Cerca con Google

[136] J. W. Mintmire and C. T. White. Universal density of states for carbon Cerca con Google

nanotubes. Phys. Rev. Letter 81, 2506 (1998). Cerca con Google

[137] C. T. White and J. W. Mintmire. Density of states reflects diameter in nanotubes. Cerca con Google

Nature 394, 29 (1998). Cerca con Google

[138] S. Reich and C. Thomsen. Chirality dependence of the density-of-states Cerca con Google

singularities in carbon nanotubes. Phys. Rev. B 62, 4273 (2000). Cerca con Google

[139] H. Ajiki and T. Ando. Aharonov-Bohm effect in carbon nanotubes. Physica Cerca con Google

B Condensed Matter 201, 349 (1994). Cerca con Google

[140] S. Tasaki, K. Maekawa and T. Yamabe. π-band contribution to the optical Cerca con Google

properties of carbon nanotubes: effects of chirality. Phys. Rev. B 57, 9301 Cerca con Google

(1998). Cerca con Google

162 BIBLIOGRAPHY Cerca con Google

[141] Ge. G. Samsonidze, A. Gr¨uneis, R. Saito, A. Jorio, A. G. Souza Filho, G. Cerca con Google

Dresselhaus, and M. S. Dresselhaus. Interband optical transitions in leftand Cerca con Google

righthanded single-wall carbon nanotubes. Phys. Rev. B 69, 205402 Cerca con Google

(2004). Cerca con Google

[142] A. Gr¨uneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Cerca con Google

Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus. Inhomogeneous Cerca con Google

optical absorption around the K point in graphite and carbon Cerca con Google

nanotubes. Phys. Rev. B 67, 165402 (2003). Cerca con Google

[143] R. Saito, A. Grueneis, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, Cerca con Google

A. Jorio, L. G. Cancado, M. A. Pimenta, and A. G. Souza. Optical Cerca con Google

absorption of graphite and single-wall carbon nanotubes. Appl. Phys. A Cerca con Google

78, 1099 (2004). Cerca con Google

[144] J. Jiang, R. Saito, A. Grueneis, G. Dresselhaus, and M. S. Dresselhaus. Optical Cerca con Google

absorption matrix elements in single-wall carbon nanotubes. Carbon Cerca con Google

42, 3169 (2004). Cerca con Google

[145] E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich. Analytical approach Cerca con Google

to optical absorption in carbon nanotubes. Phys. Rev. B 74, 195431 Cerca con Google

(2006). Cerca con Google

[146] J. Jiang, R. Saito, A. Gr¨uneis, S. G. Chou, Ge. G. Samsonidze, A. Jorio, G. Cerca con Google

Dresselhaus, and M. S. Dresselhaus. Intensity of the resonance Raman excitation Cerca con Google

spectra of single-wall carbon nanotubes. Phys. Rev. B 71, 205420 Cerca con Google

(2005). Cerca con Google

[147] L. G. Johnson and G. Dresselhaus. Optical properties of graphite. Phys. Cerca con Google

Rev. B 7, 2275 (1973). Cerca con Google

[148] A. Zarifi and T. G. Pedersen. Analytic approach to the linear susceptibility Cerca con Google

of zigzag carbon nanotubes. Phys. Rev. B 74, 155434 (2006). Cerca con Google

[149] J. C. Charlier, T. W. Ebbesen, and Ph. Lambin. Structural and electronic Cerca con Google

properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Cerca con Google

Rev. B 53, 11108, (1996). Cerca con Google

[150] N. Nemec and G. Cuniberti. Hofstadter butterflies of carbon nanotubes: Cerca con Google

pseudofractality of the magnetoelectronic spectrum. Phys. Rev. B 74, Cerca con Google

165411 (2006). Cerca con Google

[151] H. Hsu and L. E. Reichl. Selection rule for the optical absorption of Cerca con Google

graphene nanoribbons. Phys. Rev. B 76, 045418 (2007). Cerca con Google

BIBLIOGRAPHY 163 Cerca con Google

[152] A. K. Gupta, O. Alon, and N. Moiseyev. Generation and control of highorder Cerca con Google

harmonics by the interaction of an infrared laser with a thin graphite Cerca con Google

layer. Phys. Rev. B 68, 205101 (2003). Cerca con Google

[153] A. Jorio, M. A. Pimenta, A. G. Souza Filho, Ge. G. Samsonidze, A. K. Cerca con Google

Swan, M. S. ¨Unl¨u, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. Cerca con Google

S. Dresselhaus. Resonance Raman spectra of carbon nanotubes by crosspolarized Cerca con Google

light. Phys. Rev. Lett. 90, 107403 (2003). Cerca con Google

[154] X. P. Yang, J. W. Chen, H. Jiang, and J. M. Dong. Chiral symmetry of Cerca con Google

double-walled carbon nanotubes detected in first-principles optical absorption Cerca con Google

spectra. Phys. Rev. B 69, 193401 (2004). Cerca con Google

[155] R. Saito, G. Dresselhaus, and M. Dresselhaus. Electronic structure of Cerca con Google

double-layer graphene tubules. J. Appl. Phys. 73, 494 (1993). Cerca con Google

[156] Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. Cerca con Google

S. Dresselhaus. Thermal stability and structural changes of double-walled Cerca con Google

carbon nanotubes by heat treatment. Chem. Phys. Lett. 398, 87 (2004). Cerca con Google

[157] Y. E. Lozovik and A. M. Popov. Properties and nanotechnological applications Cerca con Google

of nanotubes. Physics-Uspekhi 50, 749 (2007) Cerca con Google

[158] Z. C. Tu and Z. C. Ou-Yang. A molecular motor constructed from Cerca con Google

a double-walled carbon nanotube driven by temperature variation. J. Cerca con Google

Phys.:Condens. Matter 16, 1287 (2004). Cerca con Google

[159] S. W. D. Bailey, I. Amanatidis, and C. J. Lambert. Carbon nanotube electron Cerca con Google

windmills: a novel design for nanomotors. Phys. Rev. Lett. 100, Cerca con Google

256802 (2008). Cerca con Google

[160] G. Marcolongo, G. Ruaro, M. Gobbo, and M. Meneghetti. Amino acid Cerca con Google

functionalization of double-wall carbon nanotubes studied by Raman spectroscopy. Cerca con Google

Chem. Comm. 46, 4925 (2007). Cerca con Google

[161] S. Bandow, G. Chen, G. U. Sumanasekera, R. Gupta, M. Yudasaka, S. Cerca con Google

Iijima, and P. C. Eklund. Diameter-selective resonant Raman scattering in Cerca con Google

double-wall carbon nanotubes. Phys. Rev. B 66, 075416 (2002). Cerca con Google

[162] W. Ren, F. Li, P. Tan, and H.-M. Cheng. Raman evidence for atomic correlation Cerca con Google

between the constituent tubes in double-walled carbon nanotubes. Cerca con Google

Phys. Rev. B 73, 115430 (2006). Cerca con Google

164 BIBLIOGRAPHY Cerca con Google

[163] A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S. Bandow, H. Cerca con Google

Shinohara, and S. Iijima. Atomic correlation between adjacent graphene Cerca con Google

layers in double-walled carbon nanotubes. Phys. Rev. Lett. 94, 045504 Cerca con Google

(2005). Cerca con Google

[164] T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Cerca con Google

Rosenthal, and J.McBride. Spectroscopy of single- and double-wall carbon Cerca con Google

nanotubes in different environments. NanoLett. 5, 511 (2005). Cerca con Google

[165] R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov. Fine structure of the Cerca con Google

radial breathing mode of double-wall carbon nanotubes, Phys. Rev. B 72, Cerca con Google

161404(R) (2005). Cerca con Google

[166] E. B. Barros, H. Son, Ge. G. Samsonidze, A. G. Souza Filho, R. Saito, Y. Cerca con Google

A. Kim, H. Muramatsu, T. Hayashi, M. Endo, J. Kong, and M.S. Dresselhaus. Cerca con Google

Raman spectroscopy of double-walled carbon nanotubes treated with Cerca con Google

H2SO4. Phys. Rev. B 76, 045425 (2007). Cerca con Google

[167] F. Li, S. G. Chou,W. Ren, J. A. Gardecki, A. K. Swan, B. B. Goldberg, and Cerca con Google

M. S. Dresselhaus. Identification of the constituents of double-walled carbon Cerca con Google

nanotubes using Raman spectra taken with different laser-excitation Cerca con Google

energies. J. Mater. Res. 18, 1251 (2003). Cerca con Google

[168] Shi-Dong Liang. Intrinsic properties of electronic structure in commensurate Cerca con Google

double-wall carbon nanotubes. Physica B 352, 305 (2004). Cerca con Google

[169] Ph. Lambin, L. Philippe, J. C. Charlier, and J. Michenaud. Electronic band Cerca con Google

structure of multilayered carbon tubules. Comput. Mat. Sci. 2, 350 (1994). Cerca con Google

[170] Ph. Lambin, V. Meunier, and A. Rubio. Electronic structure of polychiral Cerca con Google

carbon nanotubes. Phys. Rev. B 62, 5129 (2000). Cerca con Google

[171] S. Roche, F. Triozon, A. Rubio, and D. Mayou. Conduction mechanisms Cerca con Google

and magnetotransport in multiwalled carbon nanotubes. Phys. Rev. B 64, Cerca con Google

121401(R) (2001). Cerca con Google

[172] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Cerca con Google

Lin. Electronic and optical properties of double-walled armchair carbon Cerca con Google

nanotubes. Carbon 42, 3159 (2004). Cerca con Google

[173] Y. H. Ho, G. W. Ho, S. J. Wu, and M. F. Lin. Band structures of doublewalled Cerca con Google

carbon nanotubes. J. Vac. Sci. Technol. B 24, 1098 (2006). Cerca con Google

BIBLIOGRAPHY 165 Cerca con Google

[174] Y. H. Ho, G. W. Ho, S. C. Chen, J. H. Ho, and M. F. Lin. Low-frequency Cerca con Google

excitation spectra in double-walled armchair carbon nanotubes. Phys. Rev. Cerca con Google

B 76, 115422 (2007). Cerca con Google

[175] S. Uryu and T. Ando. Electronic intertube transfer in double-wall carbon Cerca con Google

nanotubes. Phys. Rev. B 72, 245403 (2005). Cerca con Google

[176] V. Z´olyomi, ´A. Ruszny´ak, J. K¨urti, ´A. Gali, F. Simon, H. Kuzmany, ´A. Cerca con Google

Szabados, and P. R. Surj´an. Semiconductor-to-metal transition of double Cerca con Google

walled carbon nanotubes induced by intershell interaction. Phys. Status Cerca con Google

Solidi B 243, 3476 (2006). Cerca con Google

[177] M. Damnjanovi´c, I. Miloˇsevi´c, E. Dobardˇzi´c, T. Vukovi´c, and B. Nikoli´c. Cerca con Google

Symmetry of commensurate double-wall carbon nanotubes. J. Phys. A: Cerca con Google

Math. Gen. 36, 10349 (2003). Cerca con Google

[178] M. Damnjanovi´c, E. Dobardˇzi´c, I. Miloˇsevi´c, T. Vukovi´c, and B. Nikoli´c. Cerca con Google

Lattice dynamics and symmetry of double wall carbon nanotubes. N. J. Cerca con Google

Phys. 5, 148 (2003). Cerca con Google

[179] H. Abud and G. Sartori. The geometry of spontaneous symmetry breaking. Cerca con Google

Annals of Physics (NY) 150, 307 (1983). Cerca con Google

[180] Shidong Wang and Milena Grifoni. Helicity and electron-correlation effects Cerca con Google

on transport properties of double-walled carbon nanotubes. Phys. Cerca con Google

Rev. Lett. 95, 266802 (2005). Cerca con Google

[181] Jie Lu and ShidongWang. Tight-binding investigation of the metallic proximity Cerca con Google

effect of semiconductor-metal double-wall carbon nanotubes. Phys. Cerca con Google

Rev. B 76, 233103 (2007). Cerca con Google

[182] J.-C. Charlier and J.-P. Michenaud. Energetics of multilayered carbon Cerca con Google

tubules. Phys. Rev. Lett. 70, 1858 (1993). Cerca con Google

[183] S. Okada and A. Oshiyama. Curvature-induced metallization of doublewalled Cerca con Google

semiconducting zigzag carbon nanotubes. Phys. Rev. Lett. 91, Cerca con Google

216801 (2003). Cerca con Google

[184] P. N. D’yachkov and D. V. Makaev. Linear augmented cylindrical wave Cerca con Google

for calculating the electronic structure of double-wall carbon nanotubes. Cerca con Google

Phys. Rev. B 74, 155442 (2006). Cerca con Google

[185] M. Damnjanovi´c. Super-slippery carbon nanotubes: symmetry breaking Cerca con Google

breaks friction. Eur. Phys. Journ. B 25, 131 (2002). Cerca con Google

166 BIBLIOGRAPHY Cerca con Google

[186] J. Cumings and A. Zettl. Low-friction nanoscale linear bearing realized Cerca con Google

from multiwall carbon nanotubes. Science 289, 602 (2000). Cerca con Google

[187] R. Loudon. One-dimensional hydrogen atom. Am. J. Phys. 27, 649 (1959). Cerca con Google

[188] J. Hubbard. Electron correlations in narrow energy bands. Proc. Roy. Soc. Cerca con Google

London A 276, 238 (1963); ibid 277, 237 (1964); ibid 281, 401 (1965). Cerca con Google

[189] E. Dagotto. Correlated electrons in high-temperature superconductors. Cerca con Google

Rev. Mod. Phys. 66, 763 (1994). Cerca con Google

[190] N. F. Mott and Z. Zinamon. The metal-nonmetal transition. Rep. Prog. Cerca con Google

Phys. 33, 881 (1970). Cerca con Google

[191] I. Bˆaldea and L. Cederbaum. Unusual scarcity in the optical absorption Cerca con Google

of metallic quantum-dot nanorings described by the extended Hubbard Cerca con Google

model. Phys. Rev. B 77, 165339 (2008). Cerca con Google

[192] J.-P. Nikkarila, M. Koskinen, and M. Manninen. Magnetism of quantum Cerca con Google

dot clusters: a Hubbard model study. Eur. Phys. J. B 64, 95 (2008). Cerca con Google

[193] E. H. Lieb and F. Y. Wu. Absence of Mott transition in an exact solution of Cerca con Google

the short-range, one-band model in one dimension. Phys. Rev. Lett.20,1445 Cerca con Google

(1968). Cerca con Google

[194] Tsuneya Ando. Excitons in carbon nanotubes. Journ. Phys. Soc. Japan 66, Cerca con Google

1066 (1997). Cerca con Google

[195] C. L. Kane and E. J. Mele. Ratio problem in single carbon nanotube fluorescence Cerca con Google

spectroscopy. Phys. Rev. Lett. 90, 207401 (2003). Cerca con Google

[196] C. L. Kane and E. J. Mele. Electron Interactions and scaling relations Cerca con Google

for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402 Cerca con Google

(2004). Cerca con Google

[197] F. Wang, G.Dukovic, L.E. Brus, and T. F. Heinz. The optical resonances in Cerca con Google

carbon nanotubes arise from excitons. Science 308, 5723 (2005). Cerca con Google

[198] J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Cerca con Google

Molinari, M. S. Strano, C. Thomsen, and C. Lienau. Exciton binding energies Cerca con Google

in carbon nanotubes from two-photon photoluminescence. Phys. Rev. Cerca con Google

B 72, 241402 (2005). Cerca con Google

[199] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie. Excitonic Cerca con Google

effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Cerca con Google

Lett. 92, 077402 (2004). Cerca con Google

BIBLIOGRAPHY 167 Cerca con Google

[200] E. Chang, G. Bussi, A. Ruini, and E. Molinari. Excitons in carbon nanotubes: Cerca con Google

an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 Cerca con Google

(2004). Cerca con Google

[201] T. G. Pedersen. Variational approach to excitons in carbon nanotubes. Cerca con Google

Phys. Rev. B 67, 073401 (2003). Cerca con Google

[202] V. Perebeinos, J. Tersoff, and P. Avouris. Scaling of excitons in carbon Cerca con Google

nanotubes. Phys. Rev. Lett. 92, 257402 (2004). Cerca con Google

[203] E. Chang, G. Bussi, A. Ruini, and E. Molinari. First-principles approach Cerca con Google

for the calculation of optical properties of one-dimensional systems with Cerca con Google

helical symmetry: the case of carbon nanotubes. Phys. Rev. B 72, 195423 Cerca con Google

(2005). Cerca con Google

[204] J. Jiang, R. Saito, K. Sato, J. S. Park, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, Cerca con Google

and M. S. Dresselhaus. Exciton-photon, exciton-phonon matrix elements, Cerca con Google

and resonant Raman intensity of single-wall carbon nanotubes. Cerca con Google

Phys. Rev. B 75, 035405 (2007). Cerca con Google

[205] J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, and M. S. Cerca con Google

Dresselhaus. Chirality dependence of exciton effects in single-wall carbon Cerca con Google

nanotubes: tight-binding model. Phys. Rev. B 75, 035407 (2007). Cerca con Google

[206] O. Kiowski, K. Arnold, S. Lebedkin, F. Hennrich, and M. Kappes. Direct Cerca con Google

observation of deep excitonic states in the photoluminescence spectra of Cerca con Google

single-walled carbon nanotubes. Phys. Rev. Lett. 99, 237402 (2007). Cerca con Google

[207] R. Matsunaga, K. Matsuda, and Y. Kanemitsu. Evidence for dark excitons Cerca con Google

in a single carbon nanotube due to the Aharonov-Bohm effect. Phys. Rev. Cerca con Google

Lett. 101, 147404 (2008). Cerca con Google

[208] H. Zhao and S. Mazumdar. Electron-electron interaction effects on the optical Cerca con Google

excitations of semiconducting single-walled carbon nanotubes. Phys. Cerca con Google

Rev. Lett. 93, 157402 (2004). Cerca con Google

[209] Z. Wang, H. Zhao, and S. Mazumdar. Quantitative calculations of the excitonic Cerca con Google

energy spectra of semiconductig single-walled carbon nanotubes Cerca con Google

within a π-electron model. Phys. Rev. B 74, 195406 (2006). Cerca con Google

[210] S.Mazumdar, Z.Wang, and H. Zhao. Universality in the photophysics of π- Cerca con Google

conjugated polymers and single-walled carbon nanotubes in Ultrafast dynamics Cerca con Google

and laser action of organic semiconductors (2008) and references Cerca con Google

therein, arXiv.org: 0809.2119. Cerca con Google

168 BIBLIOGRAPHY Cerca con Google

[211] S. Uryu, H. Ajiki, and T. Ando. Excitonic two-photon absorption in Cerca con Google

semiconducting carbon nanotubes within an effective-mass approximation. Cerca con Google

Phys. Rev. B 78, 115414 (2008). Cerca con Google

[212] E. Perfetto,M. Cini, S. Ugenti, P. Castrucci,M. Scarselli,M. De Crescenzi, Cerca con Google

F. Rosei, and M. A. El Khakani. Experimental and theoretical study of Cerca con Google

electronic correlations in carbon nanotubes and graphite from Auger spectroscopy. Cerca con Google

Journ. Phys.: Conference Series 100, 052082 (2008). Cerca con Google

[213] E. Perfetto,M. Cini, S. Ugenti, P. Castrucci,M. Scarselli,M. De Crescenzi, Cerca con Google

F. Rosei, and M. A. El Khakani. Electronic correlations in carbon nanotubes Cerca con Google

and graphite from Auger spectroscopy. arXiv:0710.3721 [condmat. Cerca con Google

str-el] (2008). Cerca con Google

[214] F. Lin and E. S. Sørensen. Estimates of effective Hubbard model parameters Cerca con Google

for C20 isomers. Phys. Rev. B 78, 085435 (2008). Cerca con Google

[215] P. F. Maldague. Optical spectrum of a Hubbard chain. Phys. Rev. B 16, Cerca con Google

2437 (1977). Cerca con Google

[216] F. Gebhard. Optical absorption of non-interacting tight-binding electrons Cerca con Google

in a Peierls-distorted chain at half band-filling. Phil. Mag. B 75, pp. 1-12 Cerca con Google

(1997), also available from arXiv:cond-mat/9609089v1 (1996). Cerca con Google

[217] H. Q. Lin and J. E. Gubernatis. Exact diagonalization method for quantum Cerca con Google

systems. Computers in Physics 7, 400 (1993). Cerca con Google

[218] http://www.wolfram.com Vai! Cerca con Google

[219] W. Kinzel and G. Reents. Physics by Computer: Programming Physical Cerca con Google

Problems using Mathematica and C. (Springer, 1998). Cerca con Google

[220] Rok Zitko. The SNEG Ljubljana Library v. 1.161 (2008). Available from Cerca con Google

http://nrgljubljana.ijs.si/sneg/ Vai! Cerca con Google

[221] http://math.nist.gov/MatrixMarket/formats.html Vai! Cerca con Google

[222] http://math-atlas.sourceforge.net/ Vai! Cerca con Google

[223] http://www.caam.rice.edu/software/ARPACK/ Vai! Cerca con Google

[224] M. Troyer. Are generic parallel algorithms feasible for quantum lattice Cerca con Google

models ? Proceedings of ISCOPE ’ 99, Lecture Notes in Computer Science Cerca con Google

1732, 164, (1999), Springer-Verlag Berlin Heidelberg (1999). Cerca con Google

BIBLIOGRAPHY 169 Cerca con Google

[225] F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. K¨orner, A. L¨auchli, S. Cerca con Google

R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Cerca con Google

Schollw¨ock, F. St¨ockli, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Cerca con Google

Wessel. The ALPS project: open source software for strongly correlated Cerca con Google

systems. J.Phys. Soc. Jpn 74, Suppl. , 30 (2005). Cerca con Google

[226] A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, Cerca con Google

L. Gamper, E. Gull, S. G¨urtler, A. Honecker, R. Igarashi, M. K¨orner, A. Cerca con Google

Kozhevnikov, A. L¨auchli, S. R. Manmana, M. Matsumoto, I. P. McCulloch, Cerca con Google

F. Michel, R. M. Noack, G. Pawłowski, L. Pollet, T. Pruschke, U. Cerca con Google

Schollw¨ock, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel. The Cerca con Google

ALPS project release 1.3: open-source software for strongly correlated systems. Cerca con Google

J. Magn. Magn. Mater. 310, 1187 (2007). Cerca con Google

[227] L. Salem. TheMolecular Orbital Theory of Conjugated Systems,W.A. Benjamin, Cerca con Google

Inc., New York, 1966, par.1-10, p. 43. Cerca con Google

[228] M. Glerup, V. Krstic, C. Ewels, M. Holzinger, and G. Van Lier, Doping Cerca con Google

of Carbon Nanotubes in Doped Nanomaterials and Nanodevices, Ed. Wei Cerca con Google

Chen (2007) and references therein. Cerca con Google

[229] S. Latil, S. Roche, D. Mayou, and J.-C. Charlier, Mesoscopic transport in Cerca con Google

chemically doped carbon nanotubes, Phys. Rev. Lett. 92, 256805 (2004). Cerca con Google

[230] N.M. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos, J.M. B. Lopes dos Cerca con Google

Santos, and A. H. Castro Neto, Electron waves in chemically substituted Cerca con Google

graphene, arXiv:0705.3040v1 [cond-mat], (2007). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record