Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Trevisan, Sara (2009) A genomic approach for studying the biological activity of humic substances. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
12Mb

Abstract (inglese)

Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In the first part of this thesis the “auxin activity” of HS has been investigated in detail by studying the induction of lateral root development in Arabidopsis thaliana with a combination of genetic and molecular evidence. The data obtained, also by using specific inhibitors of auxin transport or action, showed that HS induce lateral root formation mostly through their “auxin activity”. These findings were
further supported by the fact that the humic substances used in this study activated the auxin synthetic reporter DR5::GUS and enhanced the transcription of the early auxin responsive gene IAA19 with a time course not different from that of auxin. The presence of additional factors, different from auxin and responsible for part of the measured HS
biological activity, was also shown and discussed.
Furthermore in the second part a comprehensive transcriptomic study was used in the
model plant Arabidopsis thaliana to investigate the global molecular regulation that plant
acts in response to HS, providing a broad overview of differentially expressed transcripts
involved in this process.
The cDNA-AFLP (amplification fragment length polymorphism) technique was used to
identify more than 100 genes, which were sequenced and sorted into functional categories
according to their gene ontology annotation.
This study provides the first wide transcriptional profile for the comprehension of key
events of the HS-plant interaction and highlights the regulative role for auxin from the early
phase of this process.

Abstract (italiano)

Le Sostanze Umiche (SU) costituiscono la parte di materia organica maggiormente diffusa in natura. E’ stato ampiamente dimostrato come le sostanze umiche, agendo sulla struttura e fertilità del suolo, sono in grado di manifestare numerosi effeti postitivi sulla fisiologia della pianta, modificandone l'architettura dell'apparato radicale e conseguentemente influenzando l'assorbimento dei nutrienti. Nonostante numerosi studi ne abbiano evidenziato una forte attività biologica, i meccanismi biochimici e molecolari che regolano la risposta della pianta alle SU sono solo parzialmente conosciuti. La presenza di auxina, accertata in frazioni umiche diverse, supporta l’ipotesi avanzata da diversi autori che le SU possano agire sulla pianta attraverso una via auxino-simile. Tuttavia questo non basta a chiarire il complesso meccanismo dell’interazione SU-pianta. La prima parte di questa tesi ha avuto come obiettivo quello di verificare l’attività auxinica esercitata dalle SU nella pianta modello Arabidopsis thaliana attraverso l’osservazione dello sviluppo delle radici laterali. I risultati ottenuti grazie anche all’utilizzo di specifici inibitori del trasporto o dell’azione auxinica hanno dimostrato come le SU inducano la formazione di primordi radicali principalmente attraverso una attività auxinica. Inoltre le SU usate in questo studio hanno sia attivato l’espressione del costrutto DR5::GUS che stimolato la trascrizione di un early auxin responsive gene, IAA19, con una time-course non diversa rispetto a quella osservata in risposta all’auxina. I risultati ottenuti, comunque, non escludono la presenza di fattori addizionali diversi dall’auxina, i quali potrebbero contribuire all’attività biologica riscontrata in presenza di SU.
Nella seconda parte di questa tesi lo studio si è concentrato sui meccanismi molecolari che regolano la risposta della pianta alle SU. Per capire quali geni siano coinvolti in questo processo è stato scelto un approccio trascrittomico ad ampio spettro, in grado di individuare una vasta gamma di trascritti differenzialmente espressi in Arabidopsis thaliana in seguito a trattamenti con SU. La tecnica del cDNA-AFLP (cDNA-amplification fragment length polymorphism) ha permesso di individuare più di 100 geni, i quali sono stati in seguito suddivisi in categorie funzionali secondo la loro annotazione di gene ontology. Questo studio ha permesso di ottenere il primo ampio profilo trascrizionale in risposta alle sostanze umiche, iniziando a chiarire alcuni degli eventi chiave nell’interazione SU-pianta e evidenziando il ruolo regolativo dell’auxina sin dalle prime fasi di questo processo.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Quaggiotti, Silvia - Nardi, Serenella
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGROBIOTECNOLOGIE
Data di deposito della tesi:21 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):humic substances, auxin, lateral root, cDNA-AFLP
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Biotecnologie Agrarie
Codice ID:1354
Depositato il:21 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abel S, Oeller PW and Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. PNAS USA 91:326–330. Cerca con Google

Abel S and Theologis A (1996) Early genes and auxin action. Plant Physiology 111:9–17. Cerca con Google

Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis L. Plant Molecular Biology 56:879-894. Cerca con Google

Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F and Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiology 138:2185-2199. Cerca con Google

Alvarez-Puebla RA, Goulet PJG and Garrido JJ (2005) Characterization of the porous structure of different humic. Colloids and Surfaces A: Physicochemical and Engineering Aspects 256:129–135. Cerca con Google

Andreux F (1996) “Humus in World Soils”. In: Humic Substances in Terrestrial Ecosystems, Piccolo A eds, Elsevier, Amsterdam pp. 45-100. Cerca con Google

Armstrong JE, Heimsch C (1976) Ontogenetic reorganization of the root meristem in the Compositae. American Journal of Botany 63: 212-219. Cerca con Google

Arslan G and Pehlivan E (2008) Uptake of Cr3+ from aqueous solution by lignite-based humic acids. Bioresource Technology 99(16):7597-7605. Cerca con Google

Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser R (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal 9 745-753. Cerca con Google

Bachem CW, Oomen RJFJ and Visser RGF (1998) Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Molecular Biology Reporter 16:157-173. Cerca con Google

Baes AU and Bloom PR (1989) Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Science Society American Journal 53:695–700. Cerca con Google

Baldock JA and Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Organic Geochemistry 31:697–710. Cerca con Google

Balfour EB (1944) The Living Soil, Faber & Faber Eds London. Cerca con Google

Ballas N, Wong L-M, Theologis A (1993) Identification of the auxin- responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). Journal of Molecular Biology 233:580–596. Cerca con Google

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens Gand Friml J (2003) Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell 115(5):591-602. Cerca con Google

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273:948–950. Cerca con Google

Bernard F and Andre B (2001) Ubiquitin and the SCFGrr1 ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Letters 496, 81–85. Cerca con Google

Blanchet RM (1958) The direct and indirect effect of humified, organic matter on the nutrition of vascular plants. Annales agronomiques 9, 499-532. Cerca con Google

Bollag JM, Myers C, Pal S and Huang PM (1995) The role of abiotic and biotic catalysts in the transformation of phenolic compounds. In: Environmental impacts of soil component interactions, Huang PM, Berthelin J, Bollag JM, McGill WB and Page AL eds, Lewis Publ Chelsea, MI, pp 297–308. Cerca con Google

Bottomley WB (1917) Some effects of organic growth-promotion substances (auximones) on the growth of Lemma minor in mineral cultural solutions. Proceedings of the Royal Society of London (Biology) 89: 481–505. Cerca con Google

Bottomley WB (1920) The effect of organic matter on the growth of various plants in culture solutions. Annals of Botany, London, 34: 353–365. Cerca con Google

Burdon J (2001)Are the traditional concepts of the structures of humic substances realistic? Soil Science 166(11):752-769. Cerca con Google

Cameron RS, Thornton BK, Swift RS and Posner AM (1972) Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts. Journal of Soil Science 23:394–408. Cerca con Google

Canellas LP, Olivares FL, Okorokova-Façanha AL and Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology 130:1951–1957. Cerca con Google

Canellas LP, Teixeira Junior LRL, Dobbss LB, Silva CA, Medici LO, Zandonadi DB and Façanha AR (2008) Humic acids crossinteractions with root and orgnic acids. Annals of Applied Biology 153: 157-166. Cerca con Google

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13(4):843–52. Cerca con Google

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends in Plants Science 8(4):165-71. Cerca con Google

Chapman K, Groot EP, Nichol SA and Rost TL (2003) Primary Root Growth and the Pattern of Root Apical Meristem Organization are Coupled. Journal of Plant Growth Regulation 21(4):287-295. Cerca con Google

Chen Y and Aviad T (1990) Effects of humic substances on plant growth. In: Humic Substances in Soil and Crop Science: Selected Readings, MacCarthy P, Malcolm RL, Clapp CE and Bloom PR eds, American Society of Agronomy and Soil Science Society of America, Madison, WI, 161-187. Cerca con Google

Chen J, LeBoeuf EJ, Dai S and Gu B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50(5):639-647. Cerca con Google

Chen Y, De Nobili M and Aviad T (2004) Stimulatory effects of humic substances on plant growth. In: Soil Organic Matter in Sustainable Agriculture, Magdoff FR and Weil RR eds, CRC Press, Boca Raton, Florida, 103-129. Cerca con Google

Childers JW and Palmer RA (1986) A comparison of photoacoustic and diffuse reflectance detection in fourier transform infrared spectrometry. American Laboratory 18(3):22-38. Cerca con Google

Citterio S, Albertini E, Varotto S, Feltrin E, Soattin M, Marconi G, Sgorbati S, Lucchin M, Barcaccia G (2005) Alfalfa Mob 1-like genes are expressed in reproductive organs during meiosis and gametogenesis. Plant Molecular Biology 58:789-807. Cerca con Google

Citterio S, Piatti S, Albertini E, Aina R, Varotto S, Barcaccia G (2006) Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis. Experimental Cell Research 312:1050-1064. Cerca con Google

Clapp CE, and MHB Hayes (1999) Characterization of humic substances isolated from clay- and silt-sized fractions of a corn residue-amended agricultural soil. Soil Science 164:899–913. Cerca con Google

Clapp CE, Chen Y ,Hayes MHB and Cheng HH (2001) Plant growth promoting activity of humic substances. In: Understanding and Managing Organic Matter in Soils, Sediments, and Waters, Swift RS and Sparks KM eds, International Humic Science Society, St. Paul, MN, 243–255. Cerca con Google

Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N (2006) Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. Journal of Experimetal Botany 57:2967-2983. Cerca con Google

Dahm H, Sitek JM and Strzelczyk E (1977) Synthesis of auxins by bacterial isolated from the roots of pine seedlings inoculated with rusty forest soil. Polish Journal of Soil Science10:131–137. Cerca con Google

Dell’Agnola G. and Nardi S (1987) Hormone-like effect and enhanced nitrate uptake induced by depolycondensed humic fractions obtained from Allobophora rosea and A. caliginosa faeces. Biology And Fertility Of Soils 4: 115-118. Cerca con Google

De Nobili M and Chen Y (1999) Size exclusion chromatography of humic substances: limits, perspectives and prospectives. Soil Science 164:825–833. Cerca con Google

Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proceedings of the National Academy of Sciences 101:4489-4494. Cerca con Google

Diamond J (1997) Guns, Germs, and Steel: The Fates of Human Societies. WW Norton, New York. Cerca con Google

Dobbss LB, Medici LO, Peres LEP, Pino-Nunes LE, Rumjianek VM, Façanha AR and Canellas (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisols. Annals of Aplied Biology 151:199-211. Cerca con Google

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts R and Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84. Cerca con Google

Dubrovsky JG, Sauer M, Mendivil SN, Ivanchenko MG, Friml J, Shishkova S, John CelenzaJ, Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells PNAS 105(25):12-16. Cerca con Google

Elgala AM Metwally AJ and Khalil RA (1978) The effect of humic acid and Na2 EDDHA on the uptake of Cu, Fe and Zn by barley in sand culture. Plant Soil 49, 41-48. Cerca con Google

Elliott LF, Lynch JM (1984) The effect of available carbon and nitrogen in straw on soil and ash aggregation and acetic acid production. Plant and Soil 78:335–343. Cerca con Google

Façanha AR, Façanha ALO, Olivares FL, Guridi F, Santos GA, Velloso ACX, Rumjianek VM, Brasil F, Schrimsema J, Braz-filho R, Oliveira MA, Canellas LP (2002) Bioatividade de àcidos hùmicos: efeito sobre o desenvolvimento redicular e sobre a bomba de pròtons da membrana plasmàtica. Pesquisa Agropecuaària Brasileira 37:1301-1310. Cerca con Google

Feller C and Boulaine J (1987) La réapparition du mot Humus au XVIIe siècle et sa signification agronomique. Revue Forestière Française 29(6):487-495. Cerca con Google

Feller C (1997) The Concept of Soil Humus in the Past Three Centuries. In: History of SoilScience: International Perspectives, Yaalon DH and Berkowicz S eds. Advances in Geoecology Reiskirchen, Germany, Catena Verlag 29:15-46. Cerca con Google

Flaig W, Beutelsacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Soil components: Organic components, vol 1, Gieseking JE eds, Springer-Verlag, New York, 1–211. Cerca con Google

Francioso O, Sànchez-Cortés S, Tugnoli V, Marzadori C, Ciavatta C (2001) Spectroscopic study (DRIFT, SERS and 1H NMR) of peat, leonardite and lignite humic substances. Journal of Molecular Structure 565:481-485. Cerca con Google

Frankenberger WT and Arshad M (1995) Phytormones in Soils. New York, Marcel Dekker Inc. Cerca con Google

Franzluebbers AJ, Hons FM, Zuberer DA (1995) Tillage and crop effects on seasonal soil carbon and nitrogen dynamics. Soil Science Society of America Journal 56:1618–1624. Cerca con Google

Frias I, Caldeira MT, Perez-Castineira JR, Navarro-Avino JP, Culianez-Macia FA, Kuppinger O, Stransky H, Pages M, Hager A, Serrano R. 1996. A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. The Plant Cell 8:1533–1544. Cerca con Google

Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. Journal Of Experimental Botany 55:253-26. Cerca con Google

Gil P, Liu Y, Orbovic V, Verkemp E, Poff KL, Green PJ (1994) Characterization of the auxin inducible SAUR-ACI gene for use as a molecular genetic tool in Arabidopsis. Plant Physiology 104:777-784. Cerca con Google

Giordano A (1999) Pedologia, UTET, Torino, 364. Cerca con Google

Golchin A, Oades JM, Skjemstand JO and Clarke P (1994) Soil structure and carbon cycling. Australian Journal of Soil Research 32:1043–1068. Cerca con Google

Golonka I, Czechowski F, Jezierski A (2005) EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmospheres. Geoderma 127(3-4): 237-252. Cerca con Google

Gramss G, Kirsche B, Voight KD, Gunther T and Fritsche W (1999) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycological Research 103:1009–1018. Cerca con Google

Gregorich EG, Carter MR, Angers DA, Monreal CM and Ellert BH74 (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal Of Soil Science 74(4):367–384. Cerca con Google

Griffiths PR and Fuller MP (1982) Mid-infrared spectroscopy of powdered samples. Advances in infrared and Raman Spectroscopy 9:63-129. Cerca con Google

Griffiths PR and Olinger JM (2002) Handbook of Vibrational Spectroscopy, vol. 2. Wiley and Sons, Chichester, 1125. Cerca con Google

Guminski S (1968) Present-day views on physiological effects induced in plant organism by humic compounds. Soviet Soil Science 1250-1256. Cerca con Google

Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O (2008) Towards a Systematic Validation of References in Real-Time RT-PCR. Plant Cell 20(7):1734-1735. Cerca con Google

Haberhauer G and Gerzabek MH (1999) Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter. Vibrational Spectroscopy 19(2): 413-417. Cerca con Google

Hagen G, Kleinschmidt A and Guilfoyle T (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162:147–153. Cerca con Google

Hamence JH (1946) The determination of auxins in soils, including a note on synthetic growth substances. Analyst 71:111–116. Cerca con Google

Hatcher PG and Spiker EC (1988) Selective degradation of plant biomolecules. In: Humic substances and their role in the environment, Frimmel FH and Christman RF eds John Wiley & Sons, New York pp 58–74. Cerca con Google

Hedges JI (1988) Polymerization of humic substances in natural environments. In: Humic substances and their role in the environment, Frimmel FH and Christman RF eds, John Wiley & Sons, New York pp 45–58. Cerca con Google

Hernando V, Ortega BC and Fortun C (1977) Study of the action of two types of humic acid on the maize plant. In: Soil Organic Matter Studies, Vol 2, Report of IAEA Meeting Vienna, Pergamon Press, Oxford. Cerca con Google

Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007 )The Auxin-Regulated AP2/EREBP Gene PUCHI Is Required for Morphogenesis in the Early Lateral Root Primordium of Arabidopsis. Plant Cell 19 (7):2156. Cerca con Google

Hobbie L and Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. The Plant Journal 7(2):211-20 Cerca con Google

Hornak JP (1999) The Basics of NMR: A Web Resource on NMR Spectroscopy. North East Regional Meeting of the American Chemical Society, Potsdam, NY. Cerca con Google

Huang YC, Chang YL, Hsu JJ, Chuang HW (2008) Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene 420(2):118-24. Cerca con Google

Hur J, Williams MA and MA Schlautman (2006) Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere 63(3): 387-402. Cerca con Google

Inbar Y, Chen Y, Hadar Y (1989) Solid-state C-13 NMR and infrared spectroscopy of composted organic matter. Soil Science Society American Journal 53: 1695–1701. Cerca con Google

Insam H, Rangger A, Henrich M & Hitzl W (1996) The effect of grazing on soil microbial biomass and community on alpine pastures. Phyton 36: 205-216. Cerca con Google

Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. The Plant Journal: for cell and molecular biology 55(2):335-47. Cerca con Google

Izac AMN and Swift MJ (1994) On agricultural sustainability and its measurement in small scale farming systems in sub-Saharan Africa. Ecological Economics 11: 105-125. Cerca con Google

Jezierski A, Czechowski H, Jerzykiewicz M and Drozd J (2000) EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake, Applied Magnetic Resonance 18:127–136. Cerca con Google

Kim J, Harter K and Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. PNAS USA 94: 11786–11791. Cerca con Google

Laird DA, Martens DA and Kingery WL (2001) Nature of clay–humic complexes in an agricultural soil: I. Chemical, biochemical, and spectroscopic analyses. Soil Science Society of America Journal. 65:1413–1418. Cerca con Google

Lebuhn M and Hartmann A (1993) Method for determination of indole-3- acetic acid and related compounds of L-tryptophan catabolism in soils. Journal of Chromatography 629:255–266. Cerca con Google

Liu Z, Ulmasov T, Shi X, Hagen G, Guilfoyle T (1994) Soybean GH3 Promoter Contains Multiple Auxin-Inducible Elements. Plant Cell 6(5):645. Cerca con Google

Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal 28: 465–74. Cerca con Google

Ljung K, Hull AK,Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology 50:309–332. Cerca con Google

Lucas M, Guédon Y, Jay-Allemand C ,Godin C and Laplaze L (2008) An auxin transport-based model of root branching in Arabidopsis thaliana. PLoS ONE 3(11):e3673. Cerca con Google

Macdonald H (1997) Auxin perception and signal transduction. Physiol plantarum 100:423-430. Cerca con Google

Mackowiak CL, Grossl PR and Bugbee BG (2001) Beneficial Effects of Humic Acid on Micronutrient Availability to Wheat. Soil Science Society of America Journal 65:1744-1750. Cerca con Google

Malamy JE, and Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124(1):33–44. Cerca con Google

Maher EP, Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochemical Genetics 18:1041–1053. Cerca con Google

Mårald E (2002) Everything circulates: agricultural chemistry and recycling theories in the second half of the nineteenth century. Environment and History 8: 65–84. Cerca con Google

Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO Journal 18: 2066–2073. Cerca con Google

Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14: 589–597. Cerca con Google

Martin F (1941) Les mots Latins (Latin words), Hachette, Paris. Cerca con Google

Martin JP and Haider K (1971) Microbial activity in relationship to soil humus formation. Soil Science 111:54-63. Cerca con Google

Martin M, Celi L, Bonifacio E, Nardi S and Barberis E (2006) Characteristics of soil organic matter in a limnic histosol of the alpine morainic system. Soil science 171(7): 527-540. Cerca con Google

Matson P (1997) NOx emissions from soils and its consequences for the atmosphere and biosphere. Nutrient Cycling in Agroecosystems 48:1-6. Cerca con Google

Mazoyer M and Roudart L (1997) Histoire des agricultures du monde. Du néolitique à la crise contemporaine. Eds du Seuil, Paris. Cerca con Google

Meharg AA, Blatt MR (1995) NO3– transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. Journal of Membrane Biology 145:49–66. Cerca con Google

Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany 300:843–854. Cerca con Google

Miller S (1955) Production of some organic compounds under possible primitive Earth conditions. Journal of the American Chemical Society 77:2351-2361. Cerca con Google

Montecchio D, Francioso O, Carletti P, Pizzeghello D, Chersich S, Previtali F, Nardi S (2006) Thermal analysis (TG-DTA) and DRIFT spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. Journal of Thermal Analysis and Calorimetry 83 (2): 393–399. Cerca con Google

Morris DA and Thomas AG (1978) A microautoradi-ographic study of auxin transport in the steam of intact pea seedlings. Journal of Experimetal Botany 29:147–157. Cerca con Google

Muscolo A, Felici M, Concheri G and Nardi S (1993) Effect of humic substances on peroxidase and esterase patterns during growth of leaf explants of Nicotiana plumbaginifolia. Biology and Fertility of Soils 15:127-131. Cerca con Google

Muscolo A, Panuccio MR, Abenavoli MR, Concheri G and Nardi S (1996) Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase and phosphoenolpyruvate carboxylase in Daucus carota II cells. Biology and Fertility of Soils 22:83-88. Cerca con Google

Muscolo, A Cutrupi, S. and Nardi, S. (1998) IAA detection in humic substances. Soil Biology and Biochemistry 30:1199–1201. Cerca con Google

Muscolo A, Bovalo F, Gionfriddo F and Nardi S (1999) Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemestry 3:1303-1311. Cerca con Google

Muscolo A, Sidari M, Francioso O, Tugnoli V and Nardi S (2007) The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33(1):115-129. Cerca con Google

Mylonas VA and McCants CB (1980) Effects of humic and fulvic acids on growth of tobacco. 2. Tobacco growth and ion uptake. Journal of Plant Nutrition 2:377-393. Cerca con Google

Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide Induces IAA5, IAA19, and DR5, a Synthetic Auxin Response Element in Arabidopsis, Implying a Cross Talk Point of Brassinosteroid and Auxin Signalling. Plant Physiology 133:1843–1853. Cerca con Google

Nardi S, Dell’Agnola G, Albuzio A (1986) Variazione della cmplessità molecolare delle sostanze umiche per effetto dell’acidificazione con acidi organici. Agrochimica, XXX: 148-159. Cerca con Google

Nardi S, Concheri G, Dell'Agnola G (1996) Biological activity of humus. In: Humic Substances in Terrestrial Ecosystems, Piccolo A ed, Elsevier, The Netherlands, 361-406. Cerca con Google

Nardi S, Reniero F, Concheri G (1997) Soil organic matter mobilization by root exudates of three maize hybrids. Chemosphere 35:2237–2244. Cerca con Google

Nardi S, Pizzeghello D, Remiero F, Rascio N (2000) Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Science Society of America Journal 64, 639-645. Cerca con Google

Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biology and Biochememistry 34:1527–1536. Cerca con Google

Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings Soil Biology and Biochemistry 39(12): 3138-3146. Cerca con Google

Niemeyer J, Chen Y and Bollag JM (1992) Characteristics of humic acids, composts, and peat by diffuse reflectance Fourier transform infrared spectroscopy. Soil Science Society American Journal 56:135–140. Cerca con Google

Oettmeier W, Masson K and Donner A (1988) Anthraquinone inhibitors of photosystem II electron transport, FEBS Letters 231:259–262. Cerca con Google

Oliver DP and Kookana RS (2006) On-farm management practices to minimise off-site movement of pesticides from furrow irrigation. Pest Management Science 62(10):899-911. Cerca con Google

Oono Y, Oura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiology 111:1135-1147 Cerca con Google

Painter P, Starsinic M and Coleman M (1985) Determination of functional groups in coal by Fourier transform interferometry. In: Application to chemical systems Fourier transform spectroscopy, vol 4, Ferraro JR and Basile LJ eds, Academic Press, Orlando, FL, 169–241. Cerca con Google

Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends in Plant Science 10: 170–177. Cerca con Google

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:2002-2007. Cerca con Google

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations. Biotechnology Letters 26: 509–551. Cerca con Google

Pflugmacher S, Pietsch C, Rieger W and Steinberg CEW (2006) Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum Science of The Total Environment 357(1-3):169-175. Cerca con Google

Piccolo A (1996) Humus and soil conservation. In: Humic substances in terrestrial ecosystems Piccolo A eds, Elsevier Science, BV Amsterdam pp 225–264. Cerca con Google

Piccolo A, Conte P (1999) Conformational arrangement of dissolved humic substances. Influence of solution composition on the association of humic molecules. Enviromental Science and Technology, 33:1682-1690. Cerca con Google

Piccolo A (2001) The supramolecular structure of humic substances. Soil Science 166:810-833. Cerca con Google

Pinton R, Cesco S, Iacoletti G, Astolfi S and Varanini Z (1999) Modulation of NO3- uptake Cerca con Google

by water-extractable humic substances: involvement of root plasma membrane H+ATPase. Plant and Soil 215:155–161. Cerca con Google

Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A (2008) cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics 9:142. Cerca con Google

Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V and Nardi S (2004) Effect of low molecular size humic substances on the expression of genes involved in nitrate transport and reduction in maize (Zea mays L.). Journal of Experimental Botany 55:803-813. Cerca con Google

Quaggiotti S, Barcaccia G, Schiavon M, Nicolé S, Galla G, Rossignolo V, Soattin M, Malagoli M (2007) Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Gene 402:68-80. Cerca con Google

Rademacher W (1992) Occurrence of gibberellins in different species of the fungal genera Sphaceloma and Elsinoe. Phytochemistry 31:4155–4157. Cerca con Google

Radford T (2004) Soil erosion as big a problem as global warming say scientists. The Guardian. Cerca con Google

Reinhardt DH and Rost TL (1995) On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environmental Experimental Botany 35: 575-588. Cerca con Google

Rigby D and Cáceres D (2001) Organic farming and the sustainability of agricultural systems Agricultural Systems 68(1):21-40. Cerca con Google

Ruiz-Cristin J, Briskin DP (1991) Characterization of a H+/NO3– symport associated with plasma membrane vescicles of maize roots using 36ClO3– as a radiotracer analog. Archives of Biochemistry and Biophysics 285:74–82. Cerca con Google

Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant and Soil 283:175–185. Cerca con Google

Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472. Cerca con Google

Scherer GFE (2002) Second messengers and phosholipase A2 in auxin transduction. Plant Molecular Biology 49:357-372. Cerca con Google

Schmidt W, Cesco S, Santi S, Pinton R and Varanini Z (2005) Water-extractable humic substances as nutrient acquisition signals for root hairs development in Arabidopsis. In: Rizosphere 2004 – Perspectives and Challenges, Hartmann A, Schmid M, Wenzel W and Hinnsinger P eds, GSF-Berich, Neuherberg, pp 71. Cerca con Google

Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 300:259–267. Cerca con Google

Schnitzer M (1971) Characterization of humic constituents by spectroscopy. In: Soil Biochemistry: Vol 2. McLaren AD & Skujins J eds, Marcel Dekker, New York, 60-95. Cerca con Google

Schulten HR and Leinweber P (1996) Characterization of humic and soil particles by analytical pyrolysis and computer modeling. Journal of Analytical and Applied Pyrolysis 38:1–53. Cerca con Google

Schulten HR and Leinweber P (2000) New insights into organic–mineral particles: composition, properties, and models of molecular structure. Biology and Fertility of Soils 30:399–432. Cerca con Google

Sciacovelli O, Senesi N, Solinas V and Testini C (1977) Spectroscopic studies on soil organic fractions I. IR and NMR spectra. Soil Biology and Biochemistry 9:287-293. Cerca con Google

Seago JL, Heimsch C (1969) Apical organization in roots of the Convolvulaceae. American Journal of Botany 56: 131-138. Cerca con Google

Senesi N, Miano TM, Provenzano MR and Brunetti G (1989) Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Science of Total Environment 81/82:143-156. Cerca con Google

Senesi N, Miano TM, Provenzano MR and Brunetti G (1991) Characterization, differentiation and classification of humic substances by fluorescence spectroscopy. Soil Science 152(4): 259-271. Cerca con Google

Sessi E, Nardi S and Gessa C (2000) Effects of low and high molecular weight humic substances from two differ ent soils on nitrogen assimilation pathway in maize seedlings. Humic Substances in the Environment 2 (1/4):39-46. Cerca con Google

Shevchenko SM and GW Bailey (1996) The mystery of the lignin-carbohydrate complex: A computational approach. Journal of Molecular Structure: THEO-CHEM 364:197–208. Cerca con Google

Sinnott W (1935) Botany Principles and Problems. McGraw-Hill Book Company, Inc New York, pp 525. Cerca con Google

Sladký, Z (1959) The effect of extracted humus substances on growth of tomato plants. Biologia Plantarum 1:142-150. Cerca con Google

Smil V (1999) Crop residues: agriculture's largest harvest. BioScience 49:299-308. Cerca con Google

Stevenson FJ and Goh KM (1971) Infrared spectra of humic acids and related substances. Geochimica et Cosmochimica Acta 35: 471-483. Cerca con Google

Stevenson FJ and Goh KM (1974) Infrared spectra of humic acids: Elimination of the interference due to hygroscopic moisture and structural changes accompanying heating with KBr. Soil Science 177: 34-41. Cerca con Google

Stevenson FJ (1982) Humus Chemistry–Genesis, Composition, Reactions. John Wiley & Sons, New York, NY, USA, 443. Cerca con Google

Stevenson FJ (1994) Organic forms of soil nitrogen. In: Humic Chemistry: Genesis, Composition, Reaction, John Wiley, New York, 59–95. Cerca con Google

Stewart WS and Anderson MS (1942) Auxins in some american soils. Botanical Gazette 103:570–575. Cerca con Google

Sutton R and Sposito G (2005), Molecular structure in soil humic substances: The new view. Environmental Science and Technology 39 :9009–9015. Cerca con Google

Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Development 15:2648–2653. Cerca con Google

Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JDG, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology advance on line publication (current). Cerca con Google

Swarup R , Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16: 3069–3083. Cerca con Google

Swift MJ and Anderson JM (1989) Decomposition. In: Tropical Rainforest Ecosystems: Biogeographical and Ecological Studies, Lieth H, Werger MJA eds, Elsevier, Amsterdam 547–567. Cerca con Google

Swift RS (1999) Macromolecular properties of soil humic substances: fact, fiction, and opinion, Soil Science 164:790–802. Cerca con Google

Swift MJ (1999) Integrating soils, systems and society. Nature and Resources 35(4):12–20. Cerca con Google

Tan KH (2003) Humic Matter in Soil and the Environment. Marcel Dekker, New York, NY. Cerca con Google

Tate RL (1987) Soil organic matter: biological and ecological effects. New York, USA, John Wiley & Sons pp 291 Cerca con Google

Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology 7(11):847-859. Cerca con Google

Theng BKG (1987) Clay-humic interactions and soil aggregate stability. In P. Rengasamy, ed. Soil structure and aggregate stability, pp. 32-73. Proc. Institute of Irrigation and Salinity Research. Tatura, Australia. Cerca con Google

Thibaud JB, Grignon C (1981) Mechanism of nitrate uptake in corn roots. Plant Science Letters 22:279–289. Cerca con Google

Thomas SM, Thorne GN and Pearman I (1978) Effect of nitrogen on growth, yield and photorespiratory activity in spring wheat. Annals of Botany 42:827-837. Cerca con Google

Tilman D (1997) Biodiversity and ecosystem functioning. In: Societal Dependence on Natural Ecosystems, Daily G, eds Nature's Services, Island Press, Washington, D.C93-112. Cerca con Google

Tilman D (1998) Species composition, species diversity, and ecosystem processes: understanding the impacts of global change. In: Limitations, and Frontiers in Ecosystem Science, ML Pace and PM Groffman, eds Successes, Springer-Verlag, New York pp 452-472. Cerca con Google

Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. The Plant Journal 8: 561–569. Cerca con Google

Turan M and I Angin (2004) Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agriculturæ Scandinavica Section B, Soil and Plant Science 54:221–231. Cerca con Google

Udvardi MK, Czechowski T, Scheible WR (2008) Eleven Golden Rules of Quantitative RT-PCR. The Plant Cell 20(7):1736-1737. Cerca con Google

Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7: 1611–1623. Cerca con Google

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971. Cerca con Google

Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. PNAS USA 96:5844-5849. 26. Cerca con Google

Varanini Z and Pinton R (1995) Humic substances and plant nutrition. In: Progress in Botany, Lüttge ed, U 56. Springer, Berlin, 97–117. Cerca con Google

Varanini Z and Pinton R (2001) Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: The Rizosphere, Pinton R, Varanini Z and Nannipieri P eds, Marcel Dekker, Basel, 141–158. Cerca con Google

Vaughan D (1967) The stimulation of invertase development in aseptic storage tissue slices by humic acids. Soil Biology and Biochememistry 1:15-28. Cerca con Google

Vaughan D, Chesire MV and Mundie CM (1974) Uptake by the beetroot tissue and biological activity of 14C-labelled fractions of soil organic matter. Transactions of the Biochemical Society 2:126–129. Cerca con Google

Vaughan D and Linehan DJ (1976) The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil 44:445-449. Cerca con Google

Vaughan D and Ord BG (1981) Uptake and Incorporation of 14C-labelled Soil Organic Matter by Roots of Pisum sativum L. Journal of Experimental Botany 32(4):679-687. Cerca con Google

Vaughan D, and Malcolm RE (1985) Influence of humic substances on growth and physiological processes. In: Soil Organic Matter and Biological Activity, Vaughan D and Malcolm RE eds, Martinus Nijhoff/ Junk W, Dordrecht, The Netherlands, 37–76. Cerca con Google

Vaughan D (1986) Effetto delle sostanze umiche sui processi metabolici delle piante. In: Sostanze Umiche effetti sul terreno e sulle piante, Burns RG, Dell'Agnola G, Miele S, Nardi S, Savoini G, Schnitzer M, Sequi P, Vaughan D and Visser SA eds, Ramo Editoriale degli Agricoltori, Roma, pp. 59–81. Cerca con Google

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human Domination of Earth's Ecosystems. Science 277(5325):494–499. Cerca con Google

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J and Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407-4414. Cerca con Google

Vuylsteke M, Daele H, Vercauteren A, Zabeau M and Kuiper M (2006) Genetic dissection of transcriptional regulation by cDNA-AFLP. The Plant Journal 45 439-446. Cerca con Google

Wershaw RL (1999) Molecular aggregation of humic substances. Soil Science 164: 803-813. Cerca con Google

Wood SA (1996) The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geology Reviews 11:1–31. Cerca con Google

Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Annals of Botany 95(5):707-735. Cerca con Google

Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology 16:1123–1127. Cerca con Google

Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595. Cerca con Google

Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A and Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–16. Cerca con Google

Ziechmann W (1994) Humic Substances. Wissenschaftsverlag Mannheim Cerca con Google

Andreux F (1996) Humus in world soils. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 45-100. Cerca con Google

Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology 134:1624–1631. Cerca con Google

Bellamy J (1975) The infrared spectra of complex molecules, volume 1, 3rd edn. Chapman & Hall, London. Cerca con Google

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602. Cerca con Google

Botton A, Lezzer P, Dorigoni A, Barcaccia G, Ruperti B, Ramina A, 2008. Genetic and environmental factors affecting allergen-related gene expression in apple fruit (Malus domestica L. Borkh). JAFC 56: 6707-6716. Cerca con Google

Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology 130:1951–1957. Cerca con Google

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends in Plant Science 8:165-71. Cerca con Google

Chen Y, Clapp CE, Magen H (2004) Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Science and Plant Nutrition 50:1089-1095. Cerca con Google

Clapp CE, Chen Y, Hayes MHB, Cheng HH (2001) Plant growth promoting activity of humic substances. In: Swift RS, Sparks KM (eds) Understanding and managing organic matter in soils, sediments, and waters. Int Humic Science Society, Madison, pp 243-255. Cerca con Google

Conte P, Spaccini R, Smejkalova D, Nebbioso A, Piccolo A (2007) Spectroscopic and conformational properties of size-fractions acid separated from a lignite humic. Chemosphere 69: 1032-1039. Cerca con Google

De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Molecular Biology 60:871-87. Cerca con Google

Dobbss LB, Medici LO, Peres LEP, Pino Nunes LE, Rumjanek VM, Facanha AR, Canellas LP (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisol. Annals of Applied Biology 151:199-211. Cerca con Google

FAO – ISSDS (1999) World Reference Base For Soil Resources. Versione Italiana. IstitutoSperimentale per lo Studio e la Difesa del Suolo, Firenze. Cerca con Google

Francioso O, Sanchez-Cortes S, Tugnoli V, Ciavatta C, Gessa C (1998) Characterization of feat fulvic acid fractions by means of FT-IR, SERS, and H-1, C-13 NMR spectroscopy. Applied Spectroscopy 52:270-277. Cerca con Google

Francioso O, Sanchez-Cortes S, Casarini D, Garcia-Ramos JV, Ciavatta C, Gessa C (2002) Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. Journal of Molecular Structure 609:137-147. Cerca con Google

Frias I, Caldeira MT, Perez-Castineira JR, Navarro-Avino JP, Culianez-Macia FA, Kuppinger O, Stransky H, Pages M, Hager A, Serrano R (1996) A major isoform of the maize plasma membrane H(+)-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533-1544. Cerca con Google

Frye JS and Maciel GE (1982) Setting the magic angle using a quadrupolar nuclide. Journal of Magnetic Resonance 48:125–131. Cerca con Google

Gibbons JD (1976) Non-Parametric Methods for Quantitative Analysis. In: Holt Rinehart and Winston (eds). American Sciences Press, New York 1997, pp 537. Cerca con Google

Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology 130:1-16. Cerca con Google

Gumi?ski S (1968) Present-day views on physiological effects induced in plant organisms by humic compounds. Soviet Soil Science 1250-1256. Cerca con Google

Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant Journal 7:211–220. Cerca con Google

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6:3901-7. Cerca con Google

Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology 8:298-300. Cerca con Google

Macdonald H (1997) Auxin perception and signal transduction. Physiol Plantarum 100:423–430 Cerca con Google

Maggioni A, Varanini Z, Nardi S., and Pinton R (1987) Action of soil humic matter on plant roots: stimulation of ion uptake and effects on (Mg2+ + K+) ATPase activity. Science of the Total Environment 62:355-363. Cerca con Google

Malamy JE, Benfey PN (1997) Organisation and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44. Cerca con Google

Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589-97. Cerca con Google

Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal 17:6903-11. Cerca con Google

Muscolo A, Felici M, Concheri G, Nardi S (1993) Effect of earthworm humic substances on esterase and peroxidase activity during growth of leaf explants of Nicotiana plumbaginifolia. Biology and Fertility of soil 15:127–131. Cerca con Google

Muscolo A, Panuccio MR, Abenavoli MR, Concheri G, Nardi S (1996) Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamina synthetase, and phosphoenolpyruvate carboxylase in Daucus Carota a II cells. Biology and Fertility of Soil 22:83-88. Cerca con Google

Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humic substances. Soil Biology and Biochemistry 30:1199–1201. Cerca con Google

Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry 31:1303-1311. Cerca con Google

Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007) The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33:115–129. Cerca con Google

Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signalling. Plant Physiology 133(4):1843-53. Cerca con Google

Napier RM (2004) Plant hormone binding sites. Annals of Botany 93:227–233. Cerca con Google

Nardi S, Arnoldi G, Dell’Agnola G (1988) Release of the hormone-like activities from Allolobophora rosea (Sav.) and Allolobophora caliginosa (Sav.) faeces. Canadian Journal of Soil Science 68:563–567. Cerca con Google

Nardi S, Panucci MR, Abenavoli MR, Muscolo A (1994) Auxin-like effect of humic substances extracted from faeces of Allolobophora Caliginosa and Allolobophora Rosea. Soil Biology and Biochemistry 23: 833-836. Cerca con Google

Nardi S, Pizzaghello D,Gessa C, Ferrarese L, Trainotti L, Casadoro G (2000) A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings. Soil Biology and Biochemistry 32:415-419. Cerca con Google

Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances in higher plants. Soil Biology and Biochemistry 34: 1527-1537. Cerca con Google

Nardi S, Tosoni M, Pizzeghello D, Provenzano MR, Cilenti A, Sturaro A, Rella R and Vianello A (2005) Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Science Society of America Journal 69: 2012–2019. Cerca con Google

Niemeyer J, Chen Y, Bollag JM (1992) Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Science Society of America Journal 56:135-140. Cerca con Google

Oono Y, Oura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiology 111:1135-1147. Cerca con Google

Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett, MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. The Plant Journal 25:399-406. Cerca con Google

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29. Cerca con Google

Piccolo A (2001) The supramolecular structure of humic substances. Soil Science 166:810-832. Cerca con Google

Piccolo A, Nardi S and Concheri G (1996) Macromolecular changes of soil humic substances induced by interactions with organic acids. European Journal of Soil Science 47:319–328. Cerca con Google

Pinton R, Varanini Z, Nannipieri P (2007) The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. In: CRC Press (2nd ed). Madison, pp 447. Cerca con Google

Pizzeghello D, Nicolini G, Nardi S (2001) Hormone-like activity of humic substances in Fagus sylvaticae L. forests. New Phytologist 151:647-657. Cerca con Google

Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany 55(398):803-813. Cerca con Google

Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press New York and London. Cerca con Google

Rubery PH (1981) Auxin receptors. Annual Review of Plant Physiology and Plant Molecular Biology 32:569–596. Cerca con Google

Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M 1998 The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Development 12:198-207. Cerca con Google

Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185. Cerca con Google

Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463-72. Cerca con Google

Andreux F (1996) Humus in world soils. In: Picollo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 45-100. Cerca con Google

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. CSHL Press, New York. Cerca con Google

Scherer GF (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Molecular Biology 49:357-72. Cerca con Google

Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 300:259–267. Cerca con Google

Schulten H.-R., Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biology and Fertility of soils 26:1-15. Cerca con Google

Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439-1440. Cerca con Google

Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. 2nd edn. John Wiley and Sons, New York. Cerca con Google

Sutton R and Sposito G (2005) Molecular structure in soil humic substances: the new view. Environmental Science and Technology 39:9009-9015. Cerca con Google

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963-71. Cerca con Google

Varanini Z, Pinton R (2001) Direct versus indirect effetcs of soil humic substances on plant growth and nutrition. In: Pinton R, Varanini Z, Nannipieri P (ed) The Rhizosphere, Marcel Dekker, Basel, 141–158. Cerca con Google

Vaughan D, Ord G (1981) Uptake and incorporation of 14C-labelled soil organic matter by roots of Pisum sativum L. Journal of Experimental Botany 32:679-687. Cerca con Google

Vaughan D, Malcolm RE (1985) Influence of humic substances on growth and physiological processes. In: Vaughan D and Malcolm RE (ed) Soil Organic Matter and Biological Activity. Martinus Nijhoff Junk W, Dordrecht, The Netherlands, pp 37–76. Cerca con Google

Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H (2005) Characterization of terfestatin A, a new specific inhibitor for auxin signalling. Plant Physiology 139:779-789. Cerca con Google

Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583-159. Cerca con Google

Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK, Doonan JH, Weeds AG, Hussey PJ (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1 Plant Cell 14(11):2915-27. Cerca con Google

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool Journal of Molecular Biology 215:403– 410. Cerca con Google

Assaad FF, Huet Y, Mayer U, Jürgens G (2001) The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. Journal of Cell Biology 5;152(3):531-43. Cerca con Google

Baud S, Guyon V, Kronenberger J, Wuilleme S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant Journal 33: 75–86. Cerca con Google

Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure JD, Rochat C (2004) gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. EMBO reports 5(5): 515-520. Cerca con Google

Bergmann DC (2001) SECuring the perimeter. Trends in Plant Science 6(6):235-7. Cerca con Google

Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant Journal 17(6):657-65. Cerca con Google

Botton A, Barcaccia G, Cappellozza S, Da Tos R, Bonghi C, Ramina, A (2005) DNA fingerprinting sheds light on the origin of introduced mulberry (Morus spP) accessions in Italy. Genetic Resources and Crop Evolution 52:181-192. Cerca con Google

Botton A, Ferrigo D, Scopel C, Causin R, Bonghi C, Ramina A (2008) A cDNA-AFLP approach to study ochratoxin A production in Aspergillus carbonarius. International Journal of Food Microbiology 127 (1-2): 105-115. DOI: 10.1016/JijfoodmicrO2008.06.037. Cerca con Google

Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots Plant Physiology 130:1951–1957. Cerca con Google

Canellas LP, Teixeira LRL, Dobbss LB, Silva CA, Medici LO, Zandonadi DB, Façanha AR (2008) Humic acids crossinteractions with root and organic acids. Annals of Applied Biology 153:157–166. Cerca con Google

Carletti P, Masi A, Spolaore B, Polverino De Laureto P, De Zorzi M, Turetta L, Ferretti M, Nardi S (2008) Protein Expression Changes in Maize Roots in Response to Humic Substances. Journal of Chemical Ecology 34:804–818. Cerca con Google

Chen R, Guan C, Boonsirichai K, Masson PH (2002) Complex physiological and molecular processes underlying root gravitropism. Plant Molecular Biology 49: 305–317. Cerca con Google

Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 16;89(4):575-85. Cerca con Google

Conesa A, Gotz S, García-Gómez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676. Cerca con Google

Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamin. PNAS 99(10): 6784 – 6789. Cerca con Google

De Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering softwarE Bioinformatics(http://bonsaIimSu-tokyOaCjp/~mdehoon/software/cluster/index.html) Vai! Cerca con Google

Dello Ioio R, Scaglia Linhares F, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins Determine Arabidopsis Root-Meristem Size by Controlling Cell Differentiation. Current Biology 17(8):678-682. Cerca con Google

Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8(9): 864-870. Cerca con Google

Dobbss LB, Medici LO, Peres LEP, Pino-Nunes LE, Rumjianek VM, Façanha AR and Canellas (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisols. Annals of Aplied Biology 151:199-211. Cerca con Google

Ferretti, M, Ghisi, R, Nardi, S, and Passera, C (1991). Effect of humic substances on photosynthetic sulphate assimilation in maize seedlings. Canadian Journal of Soil Science 71:239-242. Cerca con Google

Flaig w and e Saalbach (1955) Humic acids 13: The effect of initial development of cereal in Neubauer vessels of thymohydroquinonie. Z. pflanzenernaehr. Dueng Bodenk 71: 7-15. Cerca con Google

Fukaki H,Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant Journal 29(2):153. Cerca con Google

Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology 130:1-16. Cerca con Google

Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML (1995) Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. Journal of Cell Biology 131(5):1243-59. Cerca con Google

Hattan J, Kanamoto H, Takemura M, Yokota A, Kohchi T (2004) Molecular characterization of the cytoplasmic interacting protein of the receptor kinase IRK expressed in the inflorescence and root apices of Arabidopsis. Bioscience Biotechnology and Biochemistry 68(12):2598-606. Cerca con Google

Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO Journal 21: 898–908. Cerca con Google

Jockusch BM, Schoenenberger CA, Stetefeld J, Aebi U (2006) Tracking down the different forms of nuclear actin. Trends in cell biology 16(8):391-6 Cerca con Google

Jürgens G (2001) Apical–basal pattern formation in Arabidopsis embryogenesiS EMBO Journal 20: 3609–3616. Cerca con Google

Kim E, Lane, CE, Curtis BA, Kozera C, Bowman S, Archibald JM (2008). Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 9:215. Cerca con Google

Maggioni, A, Varanini, Z, Nardi, S, and Pinton, R (1987). Action of soil humic matter on plant roots: stimulation of ion uptake and effects on (Mg2+ + K+) ATPase activity. Science of Total Environment 62:355-363. Cerca con Google

Menand B, Meyer C, Robaglia C (2004) Plant growth and the TOR pathway. Current Topics in Microbiology and Immunology 279: 97–113. Cerca con Google

Merlo L, Ghisi R, Rascio N, Passera C (1991) Effects of humic substances on carbohydrate metabolism of maize leaveS Canadian Journal of Plant Science 71:419–425. Cerca con Google

Miller D, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of cytoskeleton-plasma membrane cell wall continuum in root hairs. Journal of Experimental Botany 48: 1881–1896. Cerca con Google

Moon AL, Janmey PA, Louie KA, Drubin DG (1993) Cofilin is an essential component of the yeast cortical cytoskeleton. Journal of Cell Biology 120(2):421-35. Cerca con Google

Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal 17:6903-11. Cerca con Google

Muscolo A, Cutrupi S, Nardi S (1998). IAA detection in humic substances. Soil Biology and Biochemistry 30:1199–1201. Cerca con Google

Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry 31:1303-1311. Cerca con Google

Muscolo A, Sidari M, Francioso O, Tugnoli V and Nardi S (2007) The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33(1):115-129. Cerca con Google

Naoi K and Hashimoto T (2004) A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16:1841–1853. Cerca con Google

Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biology and Biochememistry 34:1527–1536. Cerca con Google

Nardi S, Tosoni M, Pizzeghello D, Provenzano MR, Cilenti A, Sturaro A, Rella R and Vianello A (2005) Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Science Society of America Journal 69: 2012–2019. Cerca con Google

Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings Soil Biology and Biochemistry 39(12): 3138-3146. Cerca con Google

Nemhauser J, Hong F, Chory J (2006) Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell 126, 467–475. Cerca con Google

Oldham S, Mont agne J, Radimerski T, Thomas G, Hafen E (2000) Genes Development 14:2689 –2694. Cerca con Google

Pal D (2006) On gene ontology and function annotation. Bioinformation 1(3): 97–98. Cerca con Google

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:2002-2007. Cerca con Google

Pinton R, Cesco S, Iacoletti G, Astolfi S, Varanini Z (1999). Modulation of NO-3 uptake by water-extractable humic substances: involvement of root plasma membrane H+ATPase. Plant Soil 215:155–161. Cerca con Google

Pizzeghello D, Nicolini G, Nardi S (2001) Hormone-like activity of humic substances in Fagussylvatica forests. New Phytologist 151:647-657. Cerca con Google

Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high-affinity NO3– transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. Journal of Experimental Botany 54(384):1023-1031. Cerca con Google

Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi, S (2004). Effect of low molecular size humic substances on the expression of genes involved in nitrate transport and reduction in maize (Zea mays L). Journal of Experimental Botany 55:803-813. Cerca con Google

Quaggiotti S, Barcaccia G, Schiavon M, Nicolè S, Galla G, Rossignolo V, Soattin M, Malagoli M (2007) Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Gene 402:68-80. Cerca con Google

Quettier AL, Bertrand C, Habricot Y, Miginiac E, Agnes C, Jeannette E, Maldiney R (2006) The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana.The Plant Journal 47(5):711-9. Cerca con Google

Quirk S, Maciver SK, Ampe C, Doberstein SK, Kaiser DA, VanDamme J, Vandekerckhove JS, Pollard TD (2003) Primary structure of and studies on Acanthamoeba actophorin. Biochemistry 32(33): 8525-33. Cerca con Google

Ryan E, Steer M, Dolan L (2001) Cell biology and genetics of root hair formation in Arabidopsis thaliana. Protoplasma 215(1-4):140-9. Cerca con Google

Robertson FC, Skeffington AW, Gardner MJ, Webb AAR (2008) Interactions between circadian and hormonal signalling in plants. Plant Molecular Biology DOI 10.1007/s11103-008-9407-4. Cerca con Google

Ross JJ, O’Neill D (2001) New intractions between classical plant hormones. Trends in Plant Science 6: 2–4. Cerca con Google

Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006). Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant and Soil 283:175–185. Cerca con Google

Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. Cerca con Google

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn CSHL Press, New York. Cerca con Google

Sessi E, Nardi S, Gessa C (2000). Effects of low and high molecular weight humic substances from two different soils on nitrogen assimilation pathway in maize seedlings Humic Substances in the Environment 2(1/4):39-46. Cerca con Google

Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water- extractable humic substances alter root development and epidermal cell pattern in Arabidopsis, Plant and Soil 300:259–267. Cerca con Google

Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439-1440. Cerca con Google

Sladky Z (1959) The effect of extracted humus substances of growth of tomato plants. Biologia Plantarum 1:142-150. Cerca con Google

Smith RD, Wilson JE, Walker JC, Baskin TI (1994) Protein-phosphatase inhibitors block root hair growth and alter cortical cell shape of Arabidopsis roots. Planta 194:516–524. Cerca con Google

Skoog F, Tsui C (1948) Formation of adventitious shoots and roots in tobacco. American Journal of Botany 35: 782–787. Cerca con Google

Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro Symposia of the Society for Experimental Biology 11: 118–130 Cerca con Google

Söllner R, Glässer G, Wanner G, Somerville CR, Jürgens G, Assaad FF (2002) Cytokinesis-defective mutants of Arabidopsis. Plant Physiology 129(2):678-90. Cerca con Google

Staiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends in Plant Science 2(7): 275-281. Cerca con Google

Stals H and Inze ?D (2001) When plant cells decide to divide. Trends in Plant Science 6:359 – 364. Cerca con Google

Theodosiou, A., and Ashworth, A. (2002). MAP kinase phosphatases. Genome Biology 3:3009.1–3009.10. Cerca con Google

Thomas SM, Thorne GN, Pearman I (1978). Effect of nitrogen on growth, yield and photorespiratory Cerca con Google

activity in spring wheat. Annals of Botany 42:827-837. Cerca con Google

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(11):195-201. Cerca con Google

Vaccaro S, Quaggiotti S, Muscolo A, Nardi S (2009 Humic substances stimulate maize nitrogen assimilation and amino acids metabolism at physiological and molecular level. Journal of Agricultural and Food Chemistry Submitted. Cerca con Google

van-den-Berg C, Weisbeek P, Scheres B (1998) Cell fate and cell differentiation status in the Arabidopsis root. Planta 205:483–491. Cerca con Google

Vantard M, Blanchoin L (2002) Actin polymerization processes in plant cells. Current Opinion in Plant Biology 5(6):502-6. Cerca con Google

Varanini Z and Pinton R (2001) Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: The Rizosphere. Pinton R, Varanini Z and Nannipieri P eds Marcel Dekker, Basel, pp 141–158. Cerca con Google

Vaughan D and MacDonald IR (1971) Effects of humic acid on protein synthesis and ion uptake in beet discs . Journal of Experimental Botany 22:400-10. Cerca con Google

Vaughan D and McDonald IR (1976) Some effects of humic acid on the cation uptake by parenchyma tissue. Soil Biology and Biochemistry 8:415-421. Cerca con Google

Vaughan D, Malcolm RE (1985) Influence of humic substances on growth and physiological processeS In: Soil Organic Matter and Biological Activity. Vaughan D and Malcolm RE ed Martinus Nijhoff Junk W, Dordrecht, The Netherlands, pp 37–76 Cerca con Google

Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jürgens G, Mayer U (2000) The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Current Biology 2;10(21):1371-4. Cerca con Google

Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583-1595. Cerca con Google

Zhang, H. et al., (2000) Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany51:51-59. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record