Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Peretti, Luca (2008) Electrical drives for application in mechatronics - Azionamenti elettrici per la meccatronica. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

9Mb

Abstract (inglese)

This thesis is the result of a three-years work at the Department of Technique and Management of Industrial Systems of the University of Padova, located in Vicenza, Italy.
The research concerns advanced control methodologies for electrical drives. In particular, the first part of the thesis deals with sensorless control of induction motors, in which the speed is not measured but estimated by means of a mathematical model. Among the topics, there is a corollary of the sensorless control: the compensation of PWM inverter non-linearities and the induction motor parameters estimation.
The second part of the thesis deals with a strategy for the automatic seeking of the maximum torque-per-ampere ratio in synchronous reluctance motors, with extension of the theory (and practice) to other motor types. The study aims to the development of more energy-efficient controls in which motor losses are reduced with the convenient choice of the control variables.

Abstract (italiano)

Questa tesi è frutto dei tre anni di lavoro svolto presso il Dipartimento di Tecnica e Gestione dei Sistemi Industriali dell’Università degli Studi di Padova, sito in Vicenza, Italia. Il principale filone di ricerca trattato riguarda le metodologie di controllo avanzate per azionamenti elettrici. In particolare, nella prima parte della tesi sono stati trattati i controlli sensorless per motori ad induzione, in cui la velocità del motore non è misurata ma è stimata con un modello matematico. Due degli argomenti riportati ne costituiscono un naturale corollario: la compensazione delle non linearità negli inverter PWM e la
stima parametrica per motori ad induzione.
La seconda parte della tesi tratta una strategia per la ricerca automatica del massimo rapporto coppia/corrente per motori sincroni a riluttanza, con estensione della teoria (e della pratica) ad altri tipi di motori. Lo studio è volto allo sviluppo di controlli più efficienti in cui le perdite del motore siano ridotte tramite opportune scelte delle variabili di controllo.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zigliotto, Mauro
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > INGEGNERIA INDUSTRIALE > MECCATRONICA E SISTEMI INDUSTRIALI
Data di deposito della tesi:22 Gennaio 2009
Anno di Pubblicazione:Dicembre 2008
Parole chiave (italiano / inglese):Electrical drives, Induction motors, Sensorless control, Maximum-torque-per-ampere, Parameter estimation, inverter non-linearities compensation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/32 Convertitori, macchine e azionamenti elettrici
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:1376
Depositato il:22 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] S.Bolognani and M. Zigliotto, “Self-Commissioning Compensation of Inverter Non-Idealities for Sensorless AC Drives Applications,” in Proceedings of IEE International Cerca con Google

Conference on Power Electronics, Machines and Drives (PEMD 2002), Bath, UK, Jun. 2002, pp. 30–37. Cerca con Google

[2] A. R. Munoz and T. A. Lipo, “On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683–689, Cerca con Google

Jul. 1999. Cerca con Google

[3] J. Jung and K. Nam, “A PI-Type Dead-Time Compensation Method for Vector-Controlled GTO Inverters,” IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 452–457, Cerca con Google

May/Jun. 1998. Cerca con Google

[4] J. Holtz and J. Quan, “Sensorless Vector Control of Induction Motors at Very Low Speed Using a Nonlinear Inverter Model and Parameter Identification,” IEEE Trans. Cerca con Google

Ind. Appl., vol. 38, no. 4, pp. 1087–1095, Jul./Aug. 2002. Cerca con Google

[5] C. Attaianese and G. Tomasso, “Predictive Compensation of Dead-Time Effects in VSI Feeding Induction Motors,” IEEE Trans. Ind. Appl., vol. 37, no. 3, pp. 856–863, Cerca con Google

May/Jun. 2001. Cerca con Google

[6] H.-S. Kim, H.-T. Moon, and M.-J. Youn, “On-Line Dead-Time Compensation Method Using Disturbance Observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336– Cerca con Google

1345, Nov. 2003. Cerca con Google

[7] N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, “An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives,” IEEE Trans. Cerca con Google

Power Electron., vol. 20, no. 5, pp. 1150–1160, Sep. 2005. Cerca con Google

[8] H. Zhao, Q. M. J. Wu, and A. Kawamura, “An Accurate Approach of Nonlinearity Compensation for VSI Inverter Output Voltage,” IEEE Trans. Power Electron., vol. 19, Cerca con Google

no. 4, pp. 1029–1035, Jul. 2004. Cerca con Google

[9] A. Cichowski and J. Nieznanski, “Self-Tuning Dead-Time Compensation Method for Voltage-Source Inverters,” IEEE Power Electron. Lett., vol. 31, no. 2, pp. 72–75, Jun. Cerca con Google

2005. Cerca con Google

[10] L. Ben-Brahim, “On the Compensation of Dead Time and Zero-Current Crossing for a PWM-Inverter-Controlled AC Servo Drive,” IEEE Trans. Ind. Electron., vol. 51, Cerca con Google

no. 5, pp. 1113–1118, Oct. 2004. Cerca con Google

[11] G. Hillerström and K. Walgama, “Repetitive Control Theory and Applications - A Survey,” in Proceedings of the 13th International Federation of Automatic Control (IFAC) World Congress, vol. D, San Francisco, USA, Jul. 1996, pp. 1–6. Cerca con Google

[12] J. H. Moon, M. N. Lee, and M. J. Chung, “Repetitive Control for the Track-Following Servo System of an Optical Disk Drive,” IEEE Trans. Control Syst. Technol., vol. 6, Cerca con Google

no. 5, pp. 663–670, Sep. 1998. Cerca con Google

[13] P. Mattavelli, L. Tubiana, and M. Zigliotto, “Torque-Ripple Reduction in PM Synchronous Motor Drives Using Repetitive Current Control,” IEEE Trans. Power Electron., Cerca con Google

vol. 20, no. 6, pp. 1423–1431, Nov. 2005. Cerca con Google

[14] V. Kaura and V. Blasko, “Operation of a Phase Locked Loop System Under Distorted Utility Conditions,” IEEE Trans. Ind. Appl., vol. 30, no. 1, pp. 58–63, Jan./Feb. 1997. Cerca con Google

[15] S.-K. Chung, “A Phase Tracking System for Three Phase Utility Interface Inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431–438, May 2000. Cerca con Google

[16] S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Boaventura, “Performance Evaluation of PLL Algorithms for Single-Phase Grid-Connected Systems,” Cerca con Google

in Conference Record of the 39th IEEE Industry Applications Society Annual Meeting (IAS 2004), vol. 4, Seattle, Washington, USA, Oct. 2004, pp. 2259–2263. Cerca con Google

[17] R. W. Wall, “Simple Methods for Detecting Zero Crossing,” in Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society (IECON 2003), vol. 3, Roanoke, USA, Nov. 2003, pp. 2477–2481. Cerca con Google

[18] P. Vas, Sensorless Vector and Direct Torque Control. Oxford University Press, 1998, pp. 407–410. Cerca con Google

[19] T. Du, P. Vas, and F. Stronach, “Design and Application of Extended Observers for Joint State and Parameter Estimation in High-Performance AC Drives,” IEE Proc. Cerca con Google

Electr. Pow. Appl., vol. 142, no. 2, pp. 71–78, Mar. 1995. Cerca con Google

[20] T.-S. Kwon, M.-H. Shin, and D.-S. Hyun, “Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Cerca con Google

Observer,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 864–869, Jul. 2005. Cerca con Google

[21] Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. Cerca con Google

1225–1233, Sep./Oct. 1994. Cerca con Google

[22] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman Ffilter Tuning in Sensorless PMSM Drives,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1741–1747, Cerca con Google

Nov./Dec. 2003. Cerca con Google

[23] H. Kubota, K. Matsuse, and T. Nakano, “DSP-based Speed Adaptive Flux Observer of Induction Motor,” IEEE Trans. Ind. Appl., vol. 29, no. 2, pp. 344–348, Mar./Apr. Cerca con Google

1993. Cerca con Google

[24] J. Maes and J. A. Melkebeek, “Speed-Sensorless Direct Torque Control of Induction Motors Using an Adaptive Flux Observer,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 778–785, May/Jun. 2000. Cerca con Google

[25] M. Rashed and A. F. Stronach, “A Stable Back-EMF MRAS-based Sensorless Low-Speed Induction Motor Drive Insensitive to Stator Resistance Variation,” IEE Proc.- Cerca con Google

Electr. Power Appl., vol. 151, no. 6, pp. 685–693, Nov. 2004. Cerca con Google

[26] M. Montanari, S. M. Peresada, C. Rossi, and A. Tilli, “Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer,” IEEE Trans. Cerca con Google

Control Syst. Technol., vol. 15, no. 6, pp. 1049–1064, Nov. 2007. Cerca con Google

[27] M. O. Sonnaillon, G. Bisheimer, C. D. Angelo, J. Solsona, and G. O. Garcia, “Mechanical-Sensorless Induction Motor Drive Based Only on DC-Link Measurements,” Cerca con Google

IEE Proc.-Electr. Power Appl., vol. 153, no. 6, pp. 815–822, Nov. 2006. Cerca con Google

[28] J. Yu and J. W. Finch, “An Alternative Way to the Scalar Control of Induction Drives,” in Proc. of the Fifth International Conference on Electrical Machines and Systems (ICEMS 2001), vol. 2, Aug. 2001, pp. 683–686. Cerca con Google

[29] R. Joetten and G. Maeder, “Control Methods for Good Dynamic Performance Induction Motor Drives Based on Current and Voltage as Measured Quantities,” Cerca con Google

IEEE Trans. Ind. Appl., vol. IA-19, no. 3, pp. 356–363, May/Jun. 1983. Cerca con Google

[30] J. C. Papazian, J. P. Rognon, D. Roye, and P. Delbosc, “From Scalar Control to Space Vector Control: Functions and Limitations of the Different Elements,” in Conference Record of the 30th IEEE Industry Applications Society Annual Meeting (IAS 1995), vol. 3, Orlando, Florida, USA, Oct. 1995, pp. 1944–1950. Cerca con Google

[31] S. Jin, Z. Wei, and H. Zhenyi, “One Novel Scalar Control Scheme for Induction Machine,” in Proceedings of 30th Annual Conference of IEEE Industrial Electronics Society (IECON 2004), vol. 1, Nov. 2004, pp. 347–352. Cerca con Google

[32] B. K. Bose and N. R. Patel, “A Programmable Cascaded Low-Pass Filter-Based Flux Synthesis for a Stator Flux-Oriented Vector-Controlled Induction Motor Drive,” IEEE Cerca con Google

Trans. Ind. Electron., vol. 44, no. 1, pp. 140–143, Feb. 1997. Cerca con Google

[33] C. C. Wang and C. H. Fang, “Sensorless Scalar Controlled Induction Motor Drives with Modified Flux Observer,” IEEE Power Engineering Review, vol. 22, no. 8, pp. Cerca con Google

61–68, Aug. 2002. Cerca con Google

[34] R. Bojoi, P. Guglielmi, and G. Pellegrino, “Sensorless Direct Field Oriented Control of Three-Phase Induction Motor Drives for Low Cost Applications,” in Conference Cerca con Google

Record of the IEEE 41th Industry Applications Society Annual Meeting (IAS 2006), vol. 2, Tampa, Florida, USA, Oct. 2006, pp. 866–872. Cerca con Google

[35] J. Hu and B. Wu, “New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969–977, Sep. Cerca con Google

1998. Cerca con Google

[36] S. Bolognani and M. Zigliotto, “Essentials of IM Parameters Measurement for FOC Drives Tuning,” in CD-ROM Proc. of Int. Conf. on Electrical Machines (ICEM 2002), Cerca con Google

Bruges, Belgium, 2002. Cerca con Google

[37] S. Bolognani, L. Tubiana, and M. Zigliotto, “V-Type Sensorless Field Oriented Control of Induction Motors for Low Cost Applications,” in Proc. of EPE-PEMC 2004, vol. CD-ROM, Riga, Latvia, Sep. 2004, ISBN 9984-32-010-3. Cerca con Google

[38] S. Bolognani, A. Faggion, L. Peretti, and M. Zigliotto, “Sensorless V-Type Vector- Controlled IM Drive with Inherent Flux-Weakening Capability,” in Proceedings of the 4th IET Conference on Power Electronics, Machines and Drives (PEMD 2008), York, UK, Apr. 2008, pp. 465–469. Cerca con Google

[39] K. B. Nordin, D. W. Novotny, and D. S. Zinger, “The Influence of Motor Parameter Deviations in Feedforward Field Orientation Drive Systems,” IEEE Trans. Ind. Appl., vol. 21, no. 4, pp. 1009–1015, Jul. 1985. Cerca con Google

[40] C. Wang, D. W. Novotny, and T. A. Lipo, “An Automated Rotor Time-Constant Measurement System For Indirect Field-Oriented Drives,” IEEE Trans. Ind. Appl., vol. 24, no. 1, pp. 151–159, Jan./Feb. 1988. Cerca con Google

[41] A. M. Khambadkone and J. Holtz, “Vector-Controlled Induction Motor Drive with a Self-Commissioning Scheme,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 322–327, Oct. 1991. Cerca con Google

[42] J.-K. Seok, S.-I. Moon, and S.-K. Sul, “Induction Machine Parameter Identification Using PWM Inverter at Standstill,” IEEE Trans. Ind. Electron., vol. 12, no. 2, pp. 127–132, Jun. 1997. Cerca con Google

[43] A. Wolfram, “Induction Motor Parameter Estimation at Standstill by Means of Advanced Signal Processing Methods,” in Proceedings of the International Exhibition and Conference for Power Electronics Intelligent Motion Power Quality (PCIM), Nürnberg, Germany, May/Jun. 2006, pp. 105–110. Cerca con Google

[44] J.-K. Seok and S.-K. Sul, “Induction Motor Parameter Tuning for High-Performance Drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 35–41, Jan./Feb. 2001. Cerca con Google

[45] M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino, “A New Experimental Application of Least-Squares Techniques for the Estimation of the Induction Motor Parameters,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1247–1256, Sep./Oct. 2003. Cerca con Google

[46] ——, “Constrained Minimization for Parameter Estimation of Induction Motors in Saturated and Unsaturated Conditions,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1391–1402, Oct. 2005. Cerca con Google

[47] P. Castaldi and A. Tilli, “Parameter Estimation of Induction Motor at Standstill with Magnetic Flux Monitoring,” IEEE Trans. Control Syst. Technol., vol. 13, no. 3, pp. 386–400, May 2005. Cerca con Google

[48] P. Vaclavek and P. Blaha, “Lyapunov-Function-Based Flux and Speed Observer for AC Induction Motor Sensorless Control and Parameters Estimation,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 138–145, Feb. 2006. Cerca con Google

[49] G. Yang and T.-H. Chin, “Adaptive-Speed Identification Scheme for a Vector- Controlled Speed Sensorless Inverter-Induction Motor Drive,” IEEE Trans. Ind. Appl., vol. 29, no. 4, pp. 820–825, Jul./Aug. 1993. Cerca con Google

[50] H. M. Kojabadi, L. Chang, and R. Doraiswami, “A MRAS-Based Adaptive Pseudoreduced-Order Flux Observer for Sensorless Induction Motor Drives,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 930–938, Jul. 2005. Cerca con Google

[51] K. Akatsu and A. Kawamura, “Sensorless Very Low-Speed and Zero-Speed Estimations with Online Rotor Resistance Estimation of Induction Motor without Signal Injection,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 764–771, May/Jun. 2000. Cerca con Google

[52] C. Attaianese, G. Tomasso, A. Damiano, I. Marongiu, and A. Perfetto, “A Novel Approach to Speed and Parameters Estimation in Induction Motor Drives,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 939–945, Dec. 1999. Cerca con Google

[53] J. L. Zamora and A. García-Cerrada, “Online Estimation of the Stator Parameters in an Induction Motor Using Only Voltage and Current Measurements,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 805–816, May/Jun. 2000. Cerca con Google

[54] M. Bertoluzzo, G. S. Buja, and R. Menis, “Self-Commissioning of RFO IM Drives: One-Test Identification of the Magnetization Characteristic of the Motor,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1801–1806, Nov./Dec. 2001. Cerca con Google

[55] A. Ganji, P. Guillaume, R. Pintelon, and P. Lataire, “Induction Motor Dynamic and Static Inductance Identification Using a Broadband Excitation Technique,” IEEE Trans. Energy Convers., vol. 13, no. 1, pp. 15–20, Mar. 1998. Cerca con Google

[56] M. J. Durán, J. L. Durán, F. Pérez, and J. Fernández, “Induction-Motor Sensorless Vector Control With Online Parameter Estimation and Overcurrent Protection,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 154–161, Feb. 2006. Cerca con Google

[57] A. B. Proca and A. Keyhani, “Identification of Variable Frequency Induction Motor Models from Operating Data,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 24–31, Mar. 2002. Cerca con Google

[58] H. A. Toliyat, E. Levi, and M. Raina, “A Review of RFO Induction Motor Parameter Estimation Techniques,” IEEE Trans. Energy Convers., vol. 18, no. 2, pp. 271–283, Jun. 2003. Cerca con Google

[59] R. J. Kerman, J. D. Thunes, T. M. Rowan, and D. W. Schlegel, “A Frequency-Based Determination of Transient Inductance and Rotor Resistance for Field Commissioning Purposes,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 577–584, May/Jun. 1996. Cerca con Google

[60] M. Ruff, A. Bünte, and H. Grotstollen, “A New Self-Commissioning Scheme for an Asynchronous Motor Drive System,” in Conference Record of the 29th IEEE Industry Applications Society Annual Meeting (IAS 1994), vol. 1, Denver, Colorado, USA, Oct. 1994, pp. 616–623. Cerca con Google

[61] J. Godbersen, “A Stand-Still Method for Estimating the Rotor Resistance of Induction Motors,” in Conference Record of the 34th IEEE Industry Applications Society Annual Meeting (IAS 1999), vol. 2, Phoenix, Arizona, USA, Oct. 1999, pp. 900–905. Cerca con Google

[62] T. J. White and J. C. Hinton, “Compensation for the Skin Effect in Vector-Controlled Induction Motor Drive Systems,” in Proceedings of the 7th IEE International Conference on Electrical Machines and Drives, Durham, UK, Sep. 1995, pp. 301–305. Cerca con Google

[63] S. Bolognani, L. Peretti, and M. Zigliotto, “Parameter Sensitivity Analysis of an Improved Open-Loop Speed Estimate for Induction Motor Drives,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2127–2135, Jul. 2008. Cerca con Google

[64] E. M. Rashad, T. S. Radwan, and M. A. Rahman, “A Maximum Torque per Ampere Vector Control Strategy for Synchronous Reluctance Motors Considering Saturation and Iron Losses,” in Conference Record of the 39th IEEE Industry Applications Society Annual Meeting (IAS 2004), vol. 4, Seattle, Washington, USA, Oct. 2004, pp. 2411–2417. Cerca con Google

[65] A. Kilthau and J. M. Pacas, “Parameter-Measurement and Control of the Synchronous Reluctance Machine Including Cross Saturation,” in Conference Record of the 36th IEEE Industry Applications Society Annual Meeting (IAS 2001), vol. 4, Chicago, Illinois, USA, Sep./Oct. 2001, pp. 2301–2309. Cerca con Google

[66] ——, “Appropriate Models for the Control of the Synchronous Reluctance Machine,” in Conference Record of the 37th IEEE Industry Applications Society Annual Meeting (IAS 2002), vol. 4, Pittsburgh, Pennsylvania, USA, Oct. 2001, pp. 2289–2295. Cerca con Google

[67] R. Morales and M. Pacas, “Predictive Torque and Flux Control for the Synchronous Reluctance Machine,” Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 54, no. 3, pp. 271–277, Sep. 2006. Cerca con Google

[68] I. Takahashi and T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor,” IEEE Trans. Ind. Appl., vol. 22, no. 5, pp. 820–827, Sep. 1986. Cerca con Google

[69] ——, “Take a Look Back upon the Past Decade of Direct Torque Control,” in Proceedings of the 23rd Annual Conference of the IEEE Industrial Electronics Society (IECON 1997), vol. 2, New Orleans, Louisiana, USA, Nov. 1997, pp. 546–551. Cerca con Google

[70] J. V. D. Burgt, “The Voltage/Current Model in Field-Oriented AC Drives at Very Low Flux Frequencies,” Ph.D. dissertation, Eindhoven University of Technology, 1996. Cerca con Google

[71] J. Luukko, M. Niemelä, and J. Pyrhönen, “Estimation of the Flux Linkage in a Direct- Torque-Controlled Drive,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 283–287, Apr. 2003. Cerca con Google

[72] T. Matsuo, A. El-Antably, and T. A. Lipo, “A New Control Strategy for Optimum Efficiency Operation of a Synchronous Reluctance Motor,” in Conference Record of the 31st IEEE Industry Applications Society Annual Meeting (IAS 1996), vol. 1, San Diego, California, USA, Oct. 1996, pp. 109–116. Cerca con Google

[73] S. Vaez, V. I. John, and M. A. Rahman, “An On-Line Loss Minimization Controller for Interior Permanent Magnet Motor Drives,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1435–1440, Dec. 1999. Cerca con Google

[74] C. Mademlis, “Compensation of Magnetic Saturation in Maximum Torque to Current Vector Controlled Synchronous Reluctance Motor Drives,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 379–385, Sep. 2003. Cerca con Google

[75] C. Mademlis, I. Kioskeridis, and N. Margaris, “Optimal Efficiency Control Strategy for Interior Permanent-Magnet Synchronous Motor Drives,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 715–723, Dec. 2004. Cerca con Google

[76] P. Niazi, H. A. Toliyat, and A. Goodarzi, “Robust Maximum Torque per Ampere (MTPA) Control of PM-Assisted synRM for Traction Applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538–1545, Jul. 2007. Cerca con Google

[77] S. Bolognani, L. Sgarbossa, and M. Zordan, “Self Tuning of MTPA Current Vector Generation Scheme in IPM Synchronous Motor Drives,” in Proceedings of the 12th European Conference on Power Electronics and Applications (EPE 2007), vol. 1, Aalborg, Denmark, Sep. 2007, pp. 1–10. Cerca con Google

[78] G. Marsaglia. (1994, Aug.1) “Yet another RNG”. posted to sci.stat.math. Cerca con Google

[79] J. T. Boys, “Theoretical spectra for narrow-band random PWM waveforms,” IEE Proceedings-B (Electr. Power Appl.), vol. 140, no. 6, pp. 393–400, Nov. 1993. Cerca con Google

[80] J. Ahn, S.-B. Lim, K.-C. Kim, J. Lee, J.-H. Choi, S. Kim, and J.-P. Hong, “Field Weakening Control of Synchronous Reluctance Motor for Electric Power Steering,” IET Electr. Power Appl., vol. 1, no. 4, pp. 565–570, Jul. 2007. Cerca con Google

[81] J. Mühlethaler, “Torque Ripple in Permanent Magnet Motors and a Compensation Approach,” Master’s thesis, ETH Zurich, Mar. 2008. Cerca con Google

[82] S. Chen, C. Namuduri, and S. Myr, “Controller-Induced Parasitic Torque Ripples in a PM Synchronous Motor,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1273–1281, Sep./Oct. 2002. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record