Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ruggieri, Valentina (2009) Coinvolgimento del sistema peptidergico centrale nocicettina/orfanina FQ, N/OFQ al recettore NOP
nella modulazione del dolore e nei disturbi dell'umore: ansia e depressione.
[Ph.D. thesis]

Full text disponibile come:

[img]Cover Image ( shown in the Abstract page)
53Kb
[img]HTML Document
1452Kb

Abstract (english)

Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) are widely distributed in the central nervous system (CNS), where they modulate several functions such as pain, anxiety, stress, learning, memory, food intake and drug addiction. On this basis, the purpose of the present research was to investigate, in the rat, the role of NOP ligands in: a) modulation on nociception in paracetamol-induced analgesia; b) anxiety-related behaviours after development of tolerance to hypolocomotor effects and c) exposure to chronic stressful conditions which cause depression.
As regards point a), we have demonstrated that both the antinociceptive effect of paracetamol (400 mg/kg, i.p.), evaluated by means of the hot-plate test (1) and the changes in central serotonin content were completely abolished by administration of N/OFQ (10 nmol/rat, i.c.v.) and restored by a pre-treatment with the NOP antagonist UFP-101 (20 nmol/rat, i.c.v.).
In anxiety experiment (b), a double i.c.v. injection on N/OFQ dose-dependently decreased the expression of anxiety-related behaviour in both the elevated plus maze and the conditioned defensive burying tests without affecting locomotor activity. UFP-101 significantly reduced the effects of N/OFQ to control values in either test (2).
In the stress paradigm (c), rats were exposed to chronic mild stress (CMS) (3) for a period of at least 6 weeks to induce a condition of anhedonia, measured as reduction of 1% sucrose solution intake.
The stressed groups were treated, once a day, with UFP-101 (5, 10 and 20 nmol/rat, i.c.v.), or imipramine (IMI, 15 mg/kg, i.p.), or saline for 21 days. UFP-101, reinstated sucrose solution intake within the 1st week of treatment following the highest dose; at 10 and 5 nmol/rat it abolished the reduction in sucrose intake from the 2nd and 3rd week treatment, respectively. The restoration of sucrose consumption, once induced, remained stable up to the end of the experiment for all treatments. In the FST, 24 h after the last administration, all UFP-101 treatments decreased the time of immobility to that of non stressed controls. IMI produced similar effects on sucrose intake and on the FST.
Pre-treatment with either UFP-101 at the higher doses or with IMI completely abolished the increase in CORT induced by CMS. 5-HT turnover was increased by CMS in the frontal cortex and decreased in the pons; UFP-101, as well as IMI, were able to revert these changes to values comparable to those of non stressed controls. Repeated co-administration of N/OFQ (5 nmol/rat, from day 12 to day 21) completely prevented the behavioural and biochemical effects of UFP-101 (10 nmol/rat). Our results showed that UFP-101 reversed the CMS-induced changes in behaviour, HPA axis control and central 5-HT turnover. It also abolished increase in serum corticosterone induced by CMS and reverted changes in central 5-HT/5-HIAA ratio.
Brain-derived neurotrophic factor mRNA and protein in hippocampus were not reduced by CMS nor did UFP-101 modify these parameters.

On the whole, the present findings support the view that the N/OFQ-NOP system represents an important candidate target for the development of innovative therapeutics for several neurological conditions, including nociception, and psychiatric diseases, chiefly involving anxiety and depression.

References:
1. M. Sandrini et al., Eur J of Pharmacol 2005, 507, 43-48.
2. G. Vitale et al., Peptides 2006, 27, 2193-2200.
3. P. Willner, Trends Pharmacol Sci 1991, 12, 131-136.

Abstract (italian)

La Nocicettina/Orfanina FQ (N/OFQ) è un peptide endogeno non oppioide agonista dei recettori ORL1, attualmente chiamati recettori NOP. N/OFQ e il NOP sono altamente espressi nel sistema nervoso centrale (SNC), in particolare nelle strutture coinvolte nei processi emozionali (ponte, corteccia frontale). La Nocicettina è coinvolta in molti sistemi e funzioni biologici integrati a livello periferico, spinale e sopraspinale; nel SNC, questo peptide ha infatti un'importante influenza sulla risposta ad ansia e stress, apprendimento e memoria, locomozione, alimentazione, ricompensa e dolore.
Su questa base, lo scopo della mia tesi di dottorato è stato quello di: a) studiare l'azione della nocicettina nell'analgesia indotta da paracetamolo, b) analizzare il comportamento ansioso dopo sviluppo di tolleranza all'effetto locomotorio e c) indagare il possibile coinvolgimento del sistema dopo esposizione a stress cronico moderato.
In riferimento al punto a) abbiamo dimostrato che sia l'effetto analgesico del paracetamolo (400 mg/kg, i.p.), valutato con il test della piastra calda (1), che i cambiamenti dei livelli centrali di serotonina nel ratto, sono completamente revertiti dalla somministrazione di N/OFQ (10 nmol/rat, i.c.v.) e riportati ai livelli dei ratti trattati con paracetamolo dal pre-trattamento con l'antagonista selettivo del recettore NOP, [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) (20 nmol/rat, i.c.v.).
Per quanto riguarda gli esperimenti sull'ansia (b), una doppia somministrazione intracerebroventricolare ha ridotto l'effetto sulla locomozione della nocicettina, favorendo lo studio del suo ruolo ansiolitico nel ratto, utilizzando due test specifici sui comportamenti legati all'ansia: elevated plus maze e conditioned difensive burying. UFP-101 ha ridotto in modo significativo l'effetto della N/OFQ in entrambi i test (2).
Infine, per gli studi del punto c), i ratti sono stati sottoposti allo stress cronico moderato (SCM), un'esposizione cronica giornaliera dell'animale ad una sequenza inevitabile di lievi stimoli stressanti che determina, dopo alcune settimane, un comportamento simil-depresso (anedonia) caratterizzato da una diminuzione del consumo di una soluzione "gratificante" contenente 1% di saccarosio (3).
L'UFP-101, somministrato i.c.v. ripetutamente per 21 giorni (5, 10 and 20 nmol/rat, i.c.v.), è in grado di revertire, già a partire dalla prima settimana di trattamento e in modo dose-dipendente, la riduzione del consumo di saccarosio indotta dal SCM. Questo effetto è confermato anche dai dati ottenuti nel test del nuoto forzato (FST). L'imipramina (IMI, 15 mg/kg), farmaco antidepressivo di riferimento, è stata somministrata i.p. per 21 giorni, ed ha prodotto effetti comportamentali simili a quelli dell'UFP-101.
Il trattamento con UFP-101 o IMI, inoltre, ha ripristinato, fino ai livelli basali, anche le azioni biochimiche prodotte dallo SCM quali l'incremento dei livelli di corticosterone sierico, le alterazioni del rapporto tra 5-HIAA e 5-HT a livello della corteccia frontale e del ponte. Infine, ripetute co-somministrazioni di N/OFQ (5 nmoli/ratto, dal 12° al 21° giorno) prevengono completamente gli effetti comportamentali e biochimici dell'UFP-101 (10 nmoli/ratto). L'esposizione allo SCM non comporterebbe, invece, una riduzione dei livelli di mRNA o del peptide del fattore neurotrofico brain-derived neurotrophic factor (BDNF) nell'ippocampo in confronto con l'animale non stressato.

Questi risultati forniscono un supporto all'ipotesi secondo la quale il recettore NOP possa rappresentare un candidato target per lo sviluppo di nuove terapie in campo neurologico, come nocicezione, ansia e depressione.

Bibliografia:
1. M. Sandrini et al., Eur J of Pharmacol 2005, 507, 43-48.
2. G. Vitale et al., Peptides 2006, 27, 2193-2200.
3. P. Willner, Trends Pharmacol Sci 1991, 12, 131-136.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Sandrini, Maurizio
Supervisor:Vitale, Giovanni
Ph.D. course:Ciclo 21 > Corsi per il 21simo ciclo > FARMACOLOGIA, TOSSICOLOGIA E TERAPIA
Data di deposito della tesi:03 February 2009
Anno di Pubblicazione:2009
Key Words:Nociceptin, NOP receptor, UFP-101, analgesia, anxiety, depression, rat
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/14 Farmacologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Farmacologia ed Anestesiologia "E. Meneghetti"
Codice ID:1399
Depositato il:03 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Besson JM. La complexité des aspects physiopharmacologiques de la douleur. Drugs 1997; 53 (Suppl.2): 1-9. Cerca con Google

Bitran D., M. Shiekh, J.A. Dowd, M.M. Dugan and P. Renda, Corticosterone is permissive to the anxiolytic effect that results from the blockade of hippocampal mineralcorticoid receptors, Pharmacol Biochem Behav 60 1998, pp. 879-887. Cerca con Google

Björkman R., Central antinociceptive effects of non-steroidal anti-inflammatory drugs and paracetamol. Experimental studies in the rat. Acta Anaesthesiol. Scand. 1995, 39(Suppl.3), 7-43. Cerca con Google

Calò G., Rizzi A., Rizzi G., Bigoni R., Guerrini R., Marzola G., Marti M., McDonald J., Morari M., Lambert D.G., Salvatori S., Regoli D. [Nphe1,Arg14,Lys15]nociceptin-NH2, a novel, potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br. J. Pharmacol. (2002)136:303-311. Cerca con Google

Calò G., R. Guerrini, A. Rizzi, S. Salvadori, M. Burmeister and D.R. Kapusta. PUFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor, CNS Drug Rev 11 (2005) (2), pp. 97-112. Cerca con Google

Ciccocioppo R., Economidou D., Fedeli A., Massi M. The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: a review of recent work in alcohol-preferring rats. Physiol Behav. (2003) 79:121-128. Cerca con Google

Conner J.M., Lauterborn J.C., Yan Q., Gall C.M., Varon S. Distribution of brain-erived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. (1997) 17:2295-2313. Cerca con Google

Coppell A.L., Pei Q., Zetterström T.S. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology (2003) 44:903-910. Cerca con Google

Corradini L., Briscini L., Ongini E., Bertorelli R. Putative OP4 antagonist, [Nphe1]nociceptin (1-13)NH2, prevents the effects of nociceptin in neuropathic rats. Brain Res. 2001 905(1-2), 127-133. Cerca con Google

Courade J.P., Caussade F., Martin K., Besse D., Delchambre C.. Hanoun N., Hamon M., Eschalier A., Cloarec A.. Effects of acetaminophen on monoaminergic systems in the rat central nervous system. Naunyn-Schmiedebergs Arch. Pharmacol. 2001364, 534-537. Cerca con Google

Cryan J.F., Markou A., Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. (2002) Sci. 23:238-245. Cerca con Google

D'Aquila P.S., Brain P., Willner P. Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiol. Behav. (1994) 56:861-867. Cerca con Google

D'Aquila P.S., Peana A.T., Carboni V., Serra G. Different effects of desipramine on locomotor activity in quinpirole-treated rats after repeated restraint and chronic mild stress. J. Psychopharmacol. (2000) 14:347-352. Cerca con Google

D'Sa C., Duman R.S. Antidepressant and plasticity. Bipolar Disord. (2002) 4:184-194. Cerca con Google

Dautzenberg F.M., J. Wichmann, J. Higelin, G. Py-Lang, C. Kratzeisen and P. Malherbe. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo, J Pharmacol Exp Ther 298 (2001) (2), pp. 812-819. Cerca con Google

Davis S., Heal D.J. e Standford S.C. Long-lasting effect of acute stress on the neurochemistry a d function of 5-hydroxytryptaminergic neurones in mouse brain. Psychopharmacology 1995118: 267-272. Cerca con Google

De Cesare D. e Sassone-Corsi P. Trascriptional by Cyclic AMP-Responsive Factors. Progres in Nuclic Acid Research and Molecular Biology 2000, vol. 64. Academic Press. Cerca con Google

Deakin J. 5 -HT, antidepressant drugs and the psychosocial origins of depression. Psychopharmacol. 199610: 31-38. Cerca con Google

de Boer S.F., J.L. Slagen and J. Van der Gugten, Effects of buspirone and chlordiazepoxide on plasma catecholamine and corticosterone levels in stressed and nonstressed rats, Pharmacol Biochem Behav 38 (1991), pp. 299-308. Cerca con Google

Detke M.J., Rickels M., Lucki I. Active behaviours in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants Psychopharmacology (Berl) (1995) 121:66-72. Cerca con Google

Devine D.P., L. Taylor, R.K. Reinscheid, F.J. Monsma Jr., O. Civelli and H. Akil, Rats rapidly develop tolerance to the locomotor-inhibiting effects of the novel neuropeptide orphanin FQ, Neurochem Res 21 (1996), pp. 1387-1396. Cerca con Google

Devine D.P., M.T. Hoversten, Y. Ueda and H. Akil, Nociceptin/orphanin FQ content is decreased in forebrain neurons during acute stress, J Neuroendocrinol 15 (2002), pp. 69-74. Cerca con Google

Devine D.P., S.J. Watson and H. Akil, Orphanin FQ regulates neuroendocrine function of the limbic-hypothalamic-pituitary-adrenal axis, Neuroscience 102 (2001), pp. 541-553. Cerca con Google

Devor M. Pain mechanisms and syndromes. In Campbell NJ (Eds): Pain 1996-an updated review. IA-PAS Press, Seattle, 1996; 103-112. Cerca con Google

Duman R.S., Monteggia L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry(2006) 59:1116-1127. Cerca con Google

Duncan G.E., Knapp D.J., Carson S.W. e Breese G. Differential Effects of Chronic Antidepressant Treatment on Swim Stress- and Fluoxetine-Induced Secretion of Corticosterone and Progesterone. The Journal of Pharmacology and Experimental Therapeutics 1998 285: 579-587. Cerca con Google

Elhwuegi A.S. Central monoamines and their role in major depression. Prog Neuropsychopharmacol. Biol. Psychiatry. 2004 28(3): 435-451. Cerca con Google

Fernandez F., M.A. Misilmeri, J.C. Felger and D.P. Devine, Nociceptin/orphanin FQ increases anxiety-related behaviour and circulating levels of corticosterone during neophobic tests of anxiety, Neuropsychopharmacology 29 (2004) (1), pp. 59-71. Cerca con Google

Florin S., C. Suaudeau, J.C. Meunier and J. Costentin, Nociceptin stimulates locomotion and exploratory behaviour in mice, Eur J Pharmacol 317 (1996), pp. 9-13. Cerca con Google

Florin S., I. Leroux-Nicolett, J.C. Meunier and J. Costentin, Autoradiographic localization of [3H]nociceptin binding sites from telencephalic to mesencephalic regions of the mouse brain, Neurosci Lett 230 (1997), pp. 33-36. Cerca con Google

Gavioli E.C., G.A. Rae, G. Calò, R. Guerrini and T.C. De Lima, Central injections of nocistatin or its C-terminal hexapeptide exert anxiogenic-like effect on behavior of mice in the plus-maze test, Br J Pharmacol 136 (2002) (5), pp. 764-772. Cerca con Google

Gavioli E.C., Calò G. Antidepressant- and anxiolytic-like effect of nociceptin/orphanin FQ receptor ligands Naunyn-Schmiedeberg's Arch. Pharmacol. (2006) 372:318-330. Cerca con Google

Gavioli E.C., Marzola G., Guerrini R., Bertorelli R., Zucchini S., De Lima T.C., Rae G.A., Salvatori S., Regoli D., Calò G. Blockade of the nociceptin/orphanin FQ-NOP receptor sygnaling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur. J. Neurosci. (2003) 17:1987-1990. Cerca con Google

Gavioli E.C., Vaughan C.W., Marzola G., Guerrini R., Mitchell V.A., Zucchini S., De Lima T.C., Rae G.A., Salvadori S., Regoli D., Calò G. Antidepressant-like effects of the nociceptin/orphainin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn-Schmiedeberg's Arch. Pharmacol. (2004) 369:547-553. Cerca con Google

Greibel G., G. Perrault and D.J. Sanger, Orphanin FQ, a novel neuropeptide with anti-stress-like activity, Brain Res 836 (1999), pp. 221-224. Cerca con Google

Grossi G., Bargossi A., Sprovieri G., Benagozzi V., Pasquale R. Full automation of serotonin determination by column switching and HPLC. Chromatographia (1990) 30:61-68. Cerca con Google

Handley S.L and J.S. Mithani, Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of "fear"-motivated behaviour, Naunyn-Schmiedeberg's Arch Pharmacol 327 (1984), pp. 1-5. Cerca con Google

Hanks G.W., Portenoy R.K., Mac Donald N. et al. Difficult pain problems. In Doyle D, Hanks GW, Mac Donald N (Eds): Oxford University Press, Oxford, 1993; 257-274. Cerca con Google

Harrison L.M., Grandy D.K.,. Opiate modulating properties of nociceptin/orphanin FQ. Peptides 2000 21; 151-172. Cerca con Google

Helyes Z., Nemeth J., Pinter E., Szolcsanyi J. Inibition by nociceptin of neuronergic inflammation and the release of SP and CGRP fromsensory nerve terminals. Br J Pharmacol 1997; 121: 613-5. Cerca con Google

Herman J.P., Cullinan W.E. Neurocircuitry of stress. Central control of the hypothalamo-pituitary adrenocortical axis. Trends Neurosci. (1997) 20:78-84. Cerca con Google

Jenck F., J. Wichmann, F.M. Dautzenberg, J.-L. Moreau, A.M. Ouagazzal and J.R. Martin. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat, Proc Natl Acad Sci USA 97 (2000), pp. 4938-4943. Cerca con Google

Jenck F., J.-L. Moreau, J.R. Martin, G.J. Kilpatrick, R.K. Reinscheid and F.J. Monsma Jr. Orphanin FQ acts as an anxiolytic to attenuate behavioural responses to stress, Proc Natl Acad Sci USA 94 (1997), pp. 14854-14858. Cerca con Google

Jensen T.S. Mechanism of neuropatic pain. In Campbell NJ (Eds): Pain 1996-an updated review. IA-PAS Press, Seattle, 1996; 77-86. Cerca con Google

Katz R.J., Roth K.A., Carroll B.J. Acute and chronic stress effects on open field activity in the rat: implication for a model of depression. Neurosci. (1981) Biobehav. Rev. 5:247-251. Cerca con Google

Kennet G.A., Chaouloff F., Marcou M., Curzon G. Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Res (1986). 382:416-421. Cerca con Google

Kioukia-Fougia N., Antoniou K., Bekris S., Liapi C., Christofidis I., Papadopouolu-Daifoti Z. The effect of stress exposure on the hypothalamic-pituitary-adrenal axis, thymus, thyroid hormones and glucose levels. Prog. Neuro-Psychopharmacol. (2002) 26:823-830. Cerca con Google

Koster A., A. Montkowski, S. Schulz, E.M. Stube, K. Knaudt and F. Jenck. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice, Proc Natl Acad Sci USA 96 (1999), pp. 10444-10449. Cerca con Google

Le Bars D., Gozariu M., Cadden S.W. Animal models of nociception. Pharmacol. Rev. 2001 53, 597-652. Cerca con Google

Lister G.G. Ethologically based animal models of anxiety disorders, Pharmacol Ther 46 (1990) (1), pp. 321-340. Cerca con Google

Lopez-Rubalcava C., A. Fernandez-Guasti and R. Urba-Holmgren, Age-dependent differences in the rat's conditioned difensive burying behavior: effect of 5-HT1A compounds, Dev Psychobiol 29 (1996) (2), pp. 157-169. Cerca con Google

Lopez-Rubalcava C., S.L. Cruz and A. Fernandez-Guasti, Blockade of the anxiolytic-like action of ipsapirone and buspirone, but not that of 8-OH-DPAT, by adrenalectomy in male rats, Psychoneuroendocrinology 24 (1999) (4), pp. 409-422. Cerca con Google

Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav. Pharmacol. (1997) 8:523-532. Cerca con Google

Lufty K., Sharza A., Maidment N.T. Tolerance develops to the inhibitory effect of orphanin FQ on morphine-induced antinociception in the rat. Neuroreport 1999.10, 103-106. Cerca con Google

Maisonnette S., S. Morato and M.L. Brandao, Role of resocialization and 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test, Physiol Behav 54 (1993) (4), pp. 753-758. Cerca con Google

Marc V. and P.L. Morselli, Effect of diazepam on plasma corticosterone levels in the rat, J Pharm Pharmacol 21 (1969), pp. 784-786. Cerca con Google

Marti. M., Stocchi S., Paganini F., Mela F., De Risi C., Calò G., Guerrini R., Barnes T.A., Lambert D.G., Beani L., Bianchi C. e Morari M. Pharmacological profiles of presinaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex. Br. J. Pharmacol 2003 138, 91-98. Cerca con Google

Matheson G.K., D. Gage, G. White, V. Dixon and D. Gipson, A comparison of the effects of buspirone and diazepam on plasma corticosterone levels in rat, Neuropharmacology 27 (1988), pp. 823-830. Cerca con Google

McCormack N. Non-steroidal anti-inflammatory drugs and spinal nociceptive processing. Pain 1994 59, 9-43. Cerca con Google

McEwen B.S. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism (2005) 54:20-23. Cerca con Google

Meyer H.J., Swinson R., Kennedy S.H., Brown G.M. Increased left posterior parietal-temporal cortex activation after D-fenfluoramine in women with panic disorder. Psychiatry Res 2000 98, 133-134. Cerca con Google

Mogil J.S., Griesel J.E., Reinscheid R.K., Civelli O., Belknap J.K., Grandy D.K. Orphanin FQ is a functional anti opioid peptide. Neuroscience 1996 15, 333-337. Cerca con Google

Mogil Y.S., Pasternak G.W. The molecular and behavioural pharmacology of orphanin FQ/nociceptin peptide and receptor family. Pharmacol. Rev. 2001 45, 381-415. Cerca con Google

Mollereau C, Mouledous L. Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides (2000) 21:907-917. Cerca con Google

Morley-Fletcher S, Darnaudery M, Mocaer E, Froger N, Lanfumey L, Laviola G, Casolini P, Zuena AR, Marzano L, Hamon M, Maccari S. Chronic treatment with imipramine reverses immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT1A receptor mRNA in prenatally stressed rats. Neuropharmacology (2004) 47: 841-847. Cerca con Google

Mulder AH, Hogenboom F, Wardeh G, Schoffelmeer AN. Morphine and enkephalins potently inhibit [3H] noradrenaline release from rat brain cortex synaptosomes: further evidence for a presynaptic localization of mu opioid receptors. J Neurochem 1987; 48: 1043-1047. Cerca con Google

Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. (1995) 15:7539-7547. Cerca con Google

Nutt D.J. The neuropharmacology of serotonin and noradrenaline in depression. Int. Clin. Psychopharmacol. 2002 17: S1-S12. Cerca con Google

Pasternak G.W. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993 16: 1-18. Cerca con Google

Paxinos G, Watson C The Rat Brain in Stereotaxic Coordinates. Academic Press (1986), Orlando Cerca con Google

Pellissier T., Alloui A., Paeile C., Eschalier E. Evidence on central antinociceptive effect of paracetamol involving spinal 5-HT3 receptors. Neuroreport 1995 6, 983-993. Cerca con Google

Pellow S. and S.E. File, Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus maze: a novel test of anxiety in the rat, Pharmacol Biochem Behav 24 (1986), pp. 525-529. Cerca con Google

Pellow S. and S.E. File, The effect of putative anxiogenic compounds (FG 7142, CGS 8216 and Ro 15-1788) on the rat corticosterone response, Physiol Behav 35 (1985), pp. 587-590. Cerca con Google

Pinel J.P.J. and D. Treit, Burying as defensive response in rats, J Comp Physiol Psychol 92 (1978), pp. 708-712. Cerca con Google

Pini L.A., Sandrini M., Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotonergic system in the rat brain. Eur. J. Pharmacol 1996 308, 31-40. Cerca con Google

Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. (1978) 47:379-391. Cerca con Google

Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature (1977) 266:730-732. Cerca con Google

Reinscheid R.K., H.P. Nothacker, A. Bourson, A. Ardati, R.A. Henningsen and J.R. Bunzow et al., Orphanin FQ: a neuropeptide that activates an opioid-like G-protein-coupled receptor, Science 270 (1995), pp. 792-794. Cerca con Google

Reul JMHM, Stec I, Soder M, Holsbore F. Chronic treatment of rats with the antidepressant amitryptiline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology (1993) 133:312-320. Cerca con Google

Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calò G. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vivo studies. J. Pharmacol. Exp. Ther. (2007) 321:968-974. Cerca con Google

Russo-Neustadt AA, Beard RC, Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology (1999) 21:679-682. Cerca con Google

Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain derived neurotrophic transcripts in the rat hippocampus. Neuroscience (2000) 101:305-312. Cerca con Google

Sandrini M., Vitale G., Pini L.A., Lopetuso G., Romualdi P., Candeletti S. Nociceptin/orphanin FQ prevents the antinociceptive action of paracetamol on the rat hot plate test. Eur. J. Pharmacol 2005 507, 43-48. Cerca con Google

Sbrenna S, Marti M, Morari M, Calò G, Guerrini R, Beani L, Bianchi C. Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin. Bri J Pharmacol 2000; 130: 425-433. Cerca con Google

Schlicker E., Morari M. Nociceptin/orphanin/FQ and neurotransmitter release in central nervous system. Peptides 2000 21, 1023-1029. Cerca con Google

Smith MA, Makino S, Kvetnansky R. Post RM Stress and glucocorticoids affect the expression of brain derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus. J. Neurosci. (1995) 15:1768-1777. Cerca con Google

Soblosky JS. Biochemical and behavioural correlates of chronic stress: effects of tricyclic antidepressants. Pharm. Biochem. Behav. (1986) 24:1362-1368. Cerca con Google

Spampinato S., R. Di Toro and A.R. Qasem, Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells, Neuroreport 12 (2001), pp. 3159-3163. Cerca con Google

Spampinato S., R. Di Toro, M. Alessandri and G. Murari, Agonist-induced internalization and desensitization of the human nociceptin receptor expressed in CHO cells, Cell Mol Life Sci 59 (2002), pp. 2172-2183. Cerca con Google

Schmidt-Kastner R, Wetmore C, Olson L. Comparative study of brain-derived neurotrophic factor messenger RNA and protein at the cellular level suggests multiple roles in hippocampus, striatum and cortex. Neuroscience (1996) 74:161-183. Cerca con Google

Tafet GE and Bernardini R. Psychoneuroendocrinological links between chronic stress and depression. Prog. Neuro-Psychopharmacol. (2003) 27:893-903. Cerca con Google

Treit D. Animal models for the study of antianxiety agents: a review, Neurosci Biobehav Rev 9 (1985), pp. 203-222. Cerca con Google

Treit D., J.P.J. Pinel and H.C. Fibiger. Conditioned defensive burying: a new paradigm for the study of anxiolytic agents, Pharmacol Biochem Behav 15 (1981), pp. 619-626. Cerca con Google

Varty G.B., L.A. Hyde, R.A. Hodgson, S.X. Lu, M.F. McCool and T.M. Kazdoba. Characterization of the nociceptin receptor (ORL-1) agonist, Ro64-6198, in test of anxiety across multiple species, Psychopharmacology 182 (2005), pp. 132-143. Cerca con Google

Vincieri F.F., Celli S., Mulinacci N., Speroni E. An aproach to the study of the biological activity of Escholtzia californica Cham. Pharmacol Res Com 1988 20 (Suppl. V), 41-48. Cerca con Google

Wang J.L., Zhu C., Cao X.D., Wu G.C. Distinct effect of intracerebroventricular and intrathecal injection of nociceptin/orphanin FQ in the rat formalin test. Reg. Pept. 1999 79, 159-163. Cerca con Google

Wichmann J., G. Adam, S. Rover, M. Hennig, M. Scalone and A.M. Cesura. Synthesis of (1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4. 5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties, Eur J Med Chem 35 (2000), pp. 839-851. Cerca con Google

Willner P. Dopamine and depression: a review of recent evidences. II Theoretical approaches. Brain Res (1983). 287:225-236. Cerca con Google

Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) (1997) 134:319-329. Cerca con Google

Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci. Biobehav. Rev. (1992) 16:525-534. Cerca con Google

Xu H, Steven Richardson J, Li XM. Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology (2003) 28:53-62. Cerca con Google

Zetterström TSC, Pei Q, Ainsworth K, Grahame-Smith DG. Effects of antidepressant treatments on BDNF gene expression in rat brain Br. J. Pharmacol. (1998) 123 (Proc. Suppl.):211. Cerca con Google

Zhu C.B., Zhang X.L., Cao X.D., Wu G.C., Li M.Y., Cui D.F., Qi Z.W. Antagonistic effect of orphanin FQ on opioid analgesia in rat. Acta Pharmacol 1998. Sin. 19, 10-14. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record