Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cusinato, Marzia (2009) The role of Calcium/calmodulin-dependent kinase and Calcineurin pathways in activity-dependent gene regulation in skeletal muscle. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1487Kb

Abstract (inglese)

Motor neuron activity is a fundamental controller of skeletal muscle growth and differentiation. Excitation-transcription coupling is the process whereby activity causes specific changes in gene transcription through an increase in the concentration of sarcolemmal calcium (Ca2+). The molecular mechanisms that relay plasma membrane depolarization to activity-dependent gene transcription is not yet fully understood. Two main Ca2+-dependent pathways are known to transduce Ca2+ signals into changes in gene expression, the Cn-NFAT and CaMK pathways. We have focused on Cn-NFAT and CaMKII, which is the major CaMK isoform in skeletal muscle. We have studied the effects of the inhibition of these pathways on the expression of Ca2+-dependent genes involved in muscle metabolism, such as glucose transporter 4 (GLUT4), mitochondrial transcription factor A (TFAM) and citrate synthase (CS), or in muscle contraction and specific of slow or fast IIB fibers, such as myosin heavy chain-slow and -2B (MyHC-slow and -2B). To this purpose we have used a loss-of-function approach by co-transfecting vectors, coding for natural peptide inhibitors of Cn and CaMKII pathways, together with Luciferase (LUC) reporters in rat skeletal muscle, through in vivo electroporation. We have analyzed the effects of these inhibitors on activity-dependent gene expression. Our results indicate that CaMKII controls not only muscle metabolism, by regulating the expression of GLUT4, TFAM and CS, but also the expression of contractile proteins, such as MyHC-slow and -2B. The Cn-NFAT signalling pathway has been widely demonstrated to be a fundamental regulator of muscle fiber slow program. Interestingly our data indicate that Cn also controls the expression of genes involved in muscle metabolism such as GLUT4 and CS. A question remains open as to whether CaMKII and Cn pathways can synergistically control the expression of shared activity-dependent genes. If synergy exists it will be interesting to investigate which is the molecular target underlying CaMKII and Cn synergistic cooperation.

Abstract (italiano)

L’attivita’ dei motoneuroni ha un ruolo fondamentale nella crescita e nel differenziamento del muscolo scheletrico. Il cosiddetto processo di accoppiamento eccitazione-trascrizione, attraverso l’aumento del livello di calcio (Ca2+) nel sarcolemma, causa specifici mbiamenti attivita’-dipendenti nella trascrizione genica. I meccanismi molecolari che convertono la depolarizzazione della membrana plasmatica in specifiche variazioni nella trascrizione genica-attività dipendente, non sono ancora del tutto chiari. Nel muscolo scheletrico, sono note due principali vie Ca2+/calmodulina-dipendenti che accoppiano i segnali del Ca2+ a cambiamenti dell’espressione genica: esse sono le vie calcineurina (Cn)-NFAT e chinasi Ca2+/calmodulina-dipendenti (CaMK). In questo lavoro abbiamo incentrato la nostra attenzione sulla via Cn-NFAT e su CaMKII, la principale isoforma di CaMK nel muscolo scheletrico. Abbiamo studiato gli effetti dell’inibizione di queste vie sull’espressione di alcuni geni Ca2+-dipendenti implicati nel metabolismo muscolare, come il trasportatore del glucosio 4 (GLUT4), il fattore di trascrizione mitocondriale A (TFAM) e la citrato sintasi (CS), e nella contrazione muscolare e specifici per le fibre slow o rapide 2B, come il gene della catena pesante della miosina-lenta e -2B (MyHC-slow e -2B). A tale scopo, abbiamo utilizzato un approccio loss-of-function, co-trasfettando vettori, codificanti inibitori endogeni delle vie Cn e CaMKII, insieme a sensori luciferasi (LUC), mediante elettroporazione in vivo. Abbiamo analizzato gli effetti di tali inibitori sull’espressione di geni attività-dipendenti. I nostri risultati indicano che l’attività di CaMKII controlla non solo il metabolismo muscolare, regolando l’espressione di GLUT4, TFAM e CS, ma inaspettatamente abbiamo dimostrato che ha un effetto anche sull’espressione di proteine contrattili quali MyHC-slow e -2B. E’ stato largamente dimostrato che la via di segnale Cn-NFAT ha un ruolo fondamentale nella regolazione del programma lento della fibra muscolare. I nostri dati suggeriscono che Cn controlla anche l’espressione di geni metabolici, come per esempio GLUT4 e CS. Stiamo cercando di chiarire se le vie CaMKII e Cn possono controllare sinergicamente l’espressione di geni bersaglio condivisi. Nel caso in cui si verifichi tale sinergia, cercheremo di caratterizzare il meccanismo molecolare alla base di tale sinergia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Schiaffino, Stefano
Correlatore:Murgia, Marta
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:28 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):CaMK, Calcineurin, skeletal muscle, calcium-dependent excitation-transcription coupling
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:1410
Depositato il:28 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Akimoto T, Li P, Yan Z. (2008) Functional interaction of regulatory factors with the Pgc-1alpha promoter in response to exercise by in vivo imaging. Am J Physiol Cell Physiol 295, 288-292. Cerca con Google

Allen DL and Leinwand LA. (2002) Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277, 45323-45330. Cerca con Google

Allen DL, Sartorius CA, Sycuro LK, Leinwand LA. (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276, 43524-43533. Cerca con Google

Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA, Edelman AM, Fremeau RT, Means AR. (1998) Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta. J Biol Chem 273, 31880-3189. Cerca con Google

Anglister J, Grzesiek S, Wang AC, Ren H, Klee CB, Bax A. (1994) 1H, 13C, 15N nuclear magnetic resonance backbone assignments and secondary structure of human calcineurin B. Biochemistry 33, 3540-3547. Cerca con Google

Aramburu J, Garcia-Cozar F, Raghavan A, Okamura H, Rao A, Hogan PG. (1998) Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell 1, 627-637. Cerca con Google

Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A. (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129-2133. Cerca con Google

Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lomo T. (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10, 153-160. Cerca con Google

Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN. (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28, 3437-3445. Cerca con Google

Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116, 1853-1864. Cerca con Google

Barany M and Close RI. (1971) The transformation of myosin in cross-innervated rat muscles. J Physiol 213, 455-474. Cerca con Google

Bassel-Duby R and Olson EN. (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75, 19-37. Cerca con Google

Bayer KU and Schulman H. (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Byophysic Res Commun 289, 917-23. Cerca con Google

Bayer KU, De Koninck P, Schulman H. (2002) Alternative splicing modulates the frequency-dependent response of CaMKII to Ca(2+) oscillations. EMBO J 21, 3590-3597. Cerca con Google

Bayer KU, Löhler J, Schulman H, Harbers K. (1999) Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res 70, 147-154. Cerca con Google

Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD, Montminy M. (2007) SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13, 597-603. Cerca con Google

Bito H, Deisseroth K, Tsien RW. (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203-1214. Cerca con Google

Black BL and Olson EN. (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14, 167-196. Cerca con Google

Blaeser F, Ho N, Prywes R, Chatila TA. (2000) Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem 275, 197-209. Cerca con Google

Braun AP and Schulman H. (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57, 417-445. Cerca con Google

Brocke L, Srinivasan M, Schulman H. (1995) Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci 15, 6797-67808. Cerca con Google

Buelow R, O'Hehir RE, Schreifels R, Kummerehl TJ, Riley G, Lamb JR. (1992) Localization of the immunologic activity in the superantigen Staphylococcal enterotoxin B using truncated recombinant fusion proteins. J Immunol 148, 1-6. Cerca con Google

Butler-Browne GS, Bugaiski LB, Cuenoud S, Schwartz K, Whalen RG. (1982) Denervation of new born rat muscles does not block the appearance of adult fast myosin heavy chain. Nature 299, 830-833. Cerca con Google

Chang BH, Mukherji S, Soderling TR. (1998) Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A 95, 10890-10895. Cerca con Google

Chin ER, Olson EN, Yang Q, Shelton J, Bassel-Duby R, Williams RS. (1998) A calcineurin-dependent pathway control skeletal muscle fiber type. Genes and Development 12, 2499-2509. Cerca con Google

Chin ER. (2004) The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Society 63, 279-286. Cerca con Google

Chin ER. (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99, 414-423. Cerca con Google

Choi YS, Kim S, Kyu Lee H, Lee KU, Pak YK. (2004) In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem Biophys Res Commun 314, 118-122. Cerca con Google

Colbran RJ, Fong YL, Schworer CM, Soderling TR. (1988) Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263, 18145-18151. Cerca con Google

Colbran RJ, Smith MK, Schworer CM, Fong YL, Soderling TR. (1989) Regulatory domain of calcium/calmodulin-dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation. J Biol Chem 264, 4800-4804. Cerca con Google

Colbran RJ. (2004) Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J 378, 1-16. Cerca con Google

Crabtree GR and Olson EN. (2002) NFAT signaling: choreographing the social lives of cells. Cell 109 Suppl, 67-79. Cerca con Google

Crabtree GR. (2001) Calcium, Calcineurin, and the Control of Transcription. J Biol Chem 276, 2313–2316. Cerca con Google

Croissant JD, Kim JH, Eichele G, Goering L, Lough J, Prywes R, Schwartz RJ. (1996) Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev Biol 177, 250-264. Cerca con Google

Curtis BM and Catterall WA. (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23, 2113-2118. Cerca con Google

Czubryt MP, McAnally J, Fishman GI, Olson EN. (2003) Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A 100, 1711-1716. Cerca con Google

Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA. (2000) Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49, 1092-1095. Cerca con Google

Davies KD, Alvestad RM, Coultrap SJ, Browning MD. (2007) alphaCaMKII autophosphorylation levels differ depending on subcellular localization. Brain Res 1158, 39-49. Cerca con Google

Davis FJ, Gupta M, Camoretti-Mercado B, Schwartz RJ, Gupta MP. (2003) Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 278, 20047-20058. Cerca con Google

De Koninck P and Schulman H. (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227-230. Cerca con Google

De la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW. (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182-186. Cerca con Google

De Nardi C, Ausoni S, Moretti P, Gorza L, Velleca M, Buckingham M, Schiaffino S. (1993) Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J Cell Biol 123, 823-835. Cerca con Google

DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000-1007. Cerca con Google

Fluck M, Booth FW, Waxham MN. (2000a) Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270, 488-494. Cerca con Google

Fluck M, Waxham MN, Hamilton MT, Booth FW. (2000b) Skeletal muscle Ca(2+)-indipendent kinase activity increasing during hypertrophy or running. J Appl Physiol 88, 352-358. Cerca con Google

Fox K. (2003) Synaptic Plasticity: The Subcellular Location of CaMKII Controls Plasticity. Curr Biol 13, 143-145. Cerca con Google

Freyssenet D, Di Carlo M, Hood DA. (1999) Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells. J Biol Chem 274, 9305-9311. Cerca con Google

Friday BB, Horsley V, Pavlath GK. (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149, 657-666. Cerca con Google

Garcia-Cozar FJ, Okamura H, Aramburu JF, Shaw KT, Pelletier L, Showalter R, Villafranca E, Rao A. (1998) Two-site interaction of nuclear factor of activated T cells with activated calcineurin. J Biol Chem 273, 23877-23883. Cerca con Google

García-Rodríguez C and Rao A. (1998) Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J Exp Med 187, 2031-2036. Cerca con Google

Gibbs EM, Stock JL, McCoid SC, Stukenbrok HA, Pessin JE, Stevenson RW, Milici AJ, McNeish JD. (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 95, 1512-1518. Cerca con Google

Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G. (1985) Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneimittelforschung 35, 1917-1935. Cerca con Google

Gonzalez GA and Montminy MR. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675-680. Cerca con Google

Goodyear LJ and Kahn BB. (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49, 235-261. Cerca con Google

Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. (2001) Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105, 863-875. Cerca con Google

Griffith LC, Lu CS, Sun XX. (2003) CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Interv 3, 386-403. Cerca con Google

Grimby G, Broberg C, Krotkiewska I, Krotkwieski M. (1976) Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med 8, 37-42. Cerca con Google

Grozinger CM and Schreiber SL. (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9, 3-16. Cerca con Google

Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. (2001) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270, 2074-2081. Cerca con Google

Hanson PI and Schulman H. (1992) Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J Biol Chem 267,17216-24. Cerca con Google

Hanson PI, Meyer T, Stryer L, Schulman H. (1999) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12, 943-956. Cerca con Google

Hasegawa K, Lee SJ, Jobe SM, Markham BE, Kitsis RN. (1997) cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96, 3943-3953. Cerca con Google

Hashimoto Y, Perrino BA, Soderling TR. (1990) Identification of an autoinhibitory domain in calcineurin. J Biol Chem 265, 1924-1927. Cerca con Google

Hawley JA and Lessard SJ. (2008) Exercise training-induced improvements in insulin action. Acta Physiol 192, 127–135. Cerca con Google

Hayashi T, Wojtaszewski JF, Goodyear LJ. (1997) Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 273, 1039-1051. Cerca con Google

Heist EK, Srinivasan M, Schulman H. (1998) Phosphorylation at the nuclear localization signal of Ca2+/calmodulin-dependent protein kinase II blocks its nuclear targeting. J Biol Chem 273, 19763-19771. Cerca con Google

Hennig R and Lomo T. (1985) Firing pattern of motor units in normal rats. Nature 314, 164-166. Cerca con Google

Hodge MR, Ranger AM, Charles de la Brousse F, Hoey T, Grusby MJ, Glimcher LH. (1996) Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397-405. Cerca con Google

Hoey T, Sun YL, Williamson K, Xu X. (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2, 461-472. Cerca con Google

Hogan PG, Chen L, Nardone J, Rao A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17, 2205-2232. Cerca con Google

Hood DA, Irrcher I, Ljubicic V, Joseph AM. (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209, 2265-2275. Cerca con Google

Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK. (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153, 329-338. Cerca con Google

Huber B and Pette D. (1996) Dynamics of parvabulmin expression in low-frequency-stimulated fast-twitch rat muscle. Eur J Biochem 236, 814-819. Cerca con Google

Hudmon A and Schulman H. (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364, 593-611. Cerca con Google

Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H. (2007) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19, 1146-1148. Cerca con Google

Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS. (2006) HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 119, 4305-4314. Cerca con Google

Kegley KM, Gephart J, Warren GL, Pavlath GK. (2001) Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol 232, 115-126. Cerca con Google

Kennedy MB. (1997) Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res Brain Res Rev 26, 243-257. Cerca con Google

Kiani A, Rao A, Aramburu J. (2000) Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359-372. Cerca con Google

Kim MS, Wang F, Puthanveetil P, Kewalramani G, Hosseini-Beheshti E, Ng N, Wang Y, Kumar U, Innis S, Proud CG, Abrahani A, Rodrigues B. (2008) Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes. Circ Res 103, 252-260. Cerca con Google

Kincaid R (1993). Calmodulin-dependent protein phosphatases from microorganisms to man. A study in structural conservatism and biological diversity. Advances in second messenger and phosphoprotein research 27, 1-23. Cerca con Google

Klee CB, Crouch TH, Krinks MH. (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A 76, 6270-6273. Cerca con Google

Klee CB, Draetta GF, Hubbard MJ. (1988) Calcineurin. Advances in enzymology and related areas of molecular biology 61, 149-200. Cerca con Google

Klee CB, Ren H, Wang X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273, 13367-13370. Cerca con Google

Kobe B, Heierhorst J, Kemp BE. (1997) Intrasteric regulation of protein kinases. Adv Second Messenger Phosphoprotein Res 31, 29-40. Cerca con Google

Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK. (2000) Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem 275, 14354-14359. Cerca con Google

Kong X, Manchester J, Salmons S, Lawrence JC Jr. (1994) Glucose transporters in single skeletal muscle fibers. Relationship to hexokinase and regulation by contractile activity. J Biol Chem 269, 12963-12967. Cerca con Google

Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH. (1998) Cain, a novel physiologic protein inhibitor of calcineurin. J Biol Chem 273, 18325-18331. Cerca con Google

Lee JC and Edelman AM. (1994) A protein activator of Ca(2+)-calmodulin-dependent protein kinase Ia. J Biol Chem 269, 2158-2164. Cerca con Google

Li M, Linseman DA, Allen MP, Meintzer MK, Wang X, Laessig T, Wierman ME, Heidenreich KA. (2001) Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J Neurosci 21, 6544-6552. Cerca con Google

Lin J, Handschin C, Spiegelman BM. (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1, 361-370. Cerca con Google

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797-801. Cerca con Google

Liu ML, Olson AL, Edgington NP, Moye-Rowley WS, Pessin JE. (1994) Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. J Biol Chem 269, 28514-28521. Cerca con Google

Liu ML, Olson AL, Moye-Rowley WS, Buse JB, Bell GI, Pessin JE. (1992) Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 267, 11673-11676. Cerca con Google

Liu Y, Shen T, Randall WR, Schneider MF. (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26, 13-21. Cerca con Google

Long X and Griffith LC. (2000) Identification and characterization of a SUMO-1 conjugation system that modifies neuronal calcium/calmodulin-dependent protein kinase II in Drosophila melanogaster. J Biol Chem 275, 40765-40776. Cerca con Google

Long YC and Zierath JR. (2008) Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle. Am J Physiol Endocrinol Metab 295, 545-552. Cerca con Google

Long YC, Glund S, Garcia-Roves PM, Zierath JR. (2007) Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem 282, 1607-1614. Cerca con Google

Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A. (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci U S A 96, 7214-7219. Cerca con Google

Lu J, McKinsey TA, Nicol RL, Olson EN. (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97, 4070-4075. Cerca con Google

Macian F. (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5, 472-484. Cerca con Google

MacLennan DH, Brandl CJ, Korczak B, Green NM. (1985) Amino-acid sequence of a Ca2+/Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696-700. Cerca con Google

Mao Z and Wiedmann M. (1999) Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J Biol Chem 274, 31102-31107. Cerca con Google

Marin P, Andersson B, Krotkiewski M, Björntorp P. (1994) Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 17, 382-386. Cerca con Google

McClelland GB, Kraft CS, Michaud D, Russell JC, Mueller CR, Moyes CD. (2004) Leptin and the control of respiratory gene expression in muscle. Biochim Biophys Acta 1688, 86-93. Cerca con Google

McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lomo T, Schiaffino S. (2004) NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A 101, 10590-10595. Cerca con Google

McGee SL and Hargreaves M. (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53, 1208-1214. Cerca con Google

McGee SL and Hargreaves M. (2006) Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol. 33, 395-399. Cerca con Google

McGee SL, Howlett KF, Starkie RL, Cameron-Smith D, Kemp BE, Hargreaves M. (2003) Exercise increases nuclear AMPK alpha2 in human skeletal muscle. Diabetes 52, 926-928. Cerca con Google

McGee SL, Sparling D, Olson AL, Hargreaves M. (2005) Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 20, 348-349. Cerca con Google

McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M. (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860-867. Cerca con Google

McKinsey TA, Zhang CL, Lu J, Olson EN. (2000a) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106-111. Cerca con Google

McKinsey TA, Zhang CL, Olson EN. (2000b) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97, 14400-14405. Cerca con Google

McKinsey TA, Zhang CL, Olson EN. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27, 40-47. Cerca con Google

Meissner JD, Gros G, Scheibe RJ, Scholz M, Kubis HP. (2001) Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture. J Physiol 533, 215-226. Cerca con Google

Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ. (2006) Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J Cell Physiol 211, 138-148. Cerca con Google

Meyer T, Hanson PI, Stryer L, Schulman H. (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199-1202. Cerca con Google

Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D. (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 96, 4262-4267. Cerca con Google

Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6, 307-316. Cerca con Google

Mora S and Pessin JE. (2000) The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 275, 16323-16328. Cerca con Google

Moreno H, Serrano AL, Santalucía T, Gumá A, Cantó C, Brand NJ, Palacin M, Schiaffino S, Zorzano A. (2003) Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle. J Biol Chem 278, 40557-40564. Cerca con Google

Mu X, Brown LD, Liu Y, Schneider MF. (2007) Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics 30, 300-312. Cerca con Google

Mukwevho E, Kohn TA, Lang D, Nyatia E, Smith J, Ojuka EO. (2008) Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and increases MEF2A binding to the site via a CaMK-dependent mechanism. Am J Physiol Endocrinol Metab 294, 582-588. Cerca con Google

Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN. (1999) Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 126, 2045-2052. Cerca con Google

Nyholm B, Qu Z, Kaal A, Pedersen SB, Gravholt CH, Andersen JL, Saltin B, Schmitz O. (1997) Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM. Diabetes 46, 1822-1828. Cerca con Google

Ojamaa K, Klemperer JD, MacGilvray SS, Klein I, Samarel A. (1996) Thyroid hormone and hemodynamic regulation of beta-myosin heavy chain promoter in the heart. Endocrinology 137, 802-808. Cerca con Google

Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO. (2003) Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17, 675-681. Cerca con Google

Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO. (2002) Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab 282, 1008-1013. Cerca con Google

Park S, Uesugi M, Verdine GL. (2000) A second calcineurin binding site on the NFAT regulatory domain. Proc Natl Acad Sci U S A 97, 7130-7135. Cerca con Google

Parker D, Jhala US, Radhakrishnan I, Yaffe MB, Reyes C, Shulman AI, Cantley LC, Wright PE, Montminy M. (1998) Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol Cell 2, 353-359. Cerca con Google

Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD. (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23, 4331-4343. Cerca con Google

Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105, 1395-1406. Cerca con Google

Pette D and Staron RS. (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170, 143-223. Cerca con Google

Pette D and Staron RS. (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115, 359-372. Cerca con Google

Pette D and Vrbova G. (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120, 115-202. Cerca con Google

Pette D. (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90, 1119-1124. Cerca con Google

Pilegaard H, Saltin B, Neufer PD. (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546, 851-858. Cerca con Google

Potthoff MJ and Olson EN. (2002) MEF2: a central regulator of diverse developmental programs. Development 134, 4131-4140. Cerca con Google

Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN. (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 117, 2459-24567. Cerca con Google

Putkey JA and Waxham MN. (1996) A peptide model for calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem 271, 29619-29623. Cerca con Google

Rao A, Luo C, Hogan PG. (1997) Transcription factors of the NFAT family: regulation and function. Ann Rev Immunol 15, 707-747. Cerca con Google

Rich RC and Schulman H. (1998) Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273, 28424-28429. Cerca con Google

Rios E and Pizarro G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71, 849-908. Cerca con Google

Röckl KS, Witczak CA, Goodyear LJ. (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60, 145-153. Cerca con Google

Rose AJ and Hargreaves M. (2003) Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol 553, 303-309. Cerca con Google

Rose AJ, Alsted TJ, Kobberø JB, Richter EA. (2007a) Regulation and function of Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. J Physiol 580, 993-1005. Cerca con Google

Rose AJ, Frøsig C, Kiens B, Wojtaszewski JF, Richter EA. (2007b) Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol 583, 785-795. Cerca con Google

Rose AJ, Kiens B, Richter EA. (2006) Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574, 889-903. Cerca con Google

Rose AJ, Michell BJ, Kemp BE, Hargreaves M. (2004) Effect of exercise on protein kinase C activity and localization in human skeletal muscle. J Physiol 561, 861-870. Cerca con Google

Roth SY, Denu JM, Allis CD. (2001) Histone acetyltransferases. Annu Rev Biochem 70, 81-120. Cerca con Google

Rustin P, Munnich A, Rötig A. (2002) Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet 10, 289-291. Cerca con Google

Ryder JW, Bassel-Duby R, Olson EN, Zierath JR. (2003) Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 278, 44298-44304. Cerca con Google

Sahyoun N, LeVine H 3rd, Bronson D, Cuatrecasas P. (1984) Ca2+-calmodulin-dependent protein kinase in neuronal nuclei. J Biol Chem 259(15):9341-9344. Cerca con Google

Santalucía T, Camps M, Castelló A, Muñoz P, Nuel A, Testar X, Palacin M, Zorzano A. (1992) Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130, 837-846. Cerca con Google

Santalucía T, Moreno H, Palacín M, Yacoub MH, Brand NJ, Zorzano A. (2001) A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription. J Mol Biol 314, 195-204. Cerca con Google

Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H. (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12, 1410-1416. Cerca con Google

Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T. (1989). Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10, 197-205. Cerca con Google

Schiaffino S, Sandri M, Murgia M. (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22, 269-278. Cerca con Google

Schneider MF and Chandler WK. (1987) Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244-246. Cerca con Google

Serfling E, Berberich-Siebelt F, Avots A, Chuvpilo S, Klein-Hessling S, Jha MK, Kondo E, Pagel P, Schulze-Luehrmann J, Palmetshofer A. (2004) NFAT and NF-kappaB factors-the distant relatives. Int J Biochem Cell Biol 36, 1166-1170. Cerca con Google

Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S. (2001) Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 98, 13108-13113. Cerca con Google

Shadel GS and Clayton DA. (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66, 409-435. Cerca con Google

Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. (1988) Identification of a putative regulator of early T cell activation genes. Science 241, 202-205. Cerca con Google

Sheng M, Thompson MA, Greenberg ME. (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-1430. Cerca con Google

Simmerman HK and Jones LR. (1988) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78, 921-947. Cerca con Google

Smith JA, Collins M, Grobler LA, Magee CJ, Ojuka EO. (2006) Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo. Am J Physiol Endocrinol Metab 292, 413-420. Cerca con Google

Smith JA, Kohn TA, Chetty AK, Ojuka EO. (2008) CaMK activation during exercise is required for histone hyper-acetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metab 295, 698-704. Cerca con Google

Soderling TR and Stull JT. (2001) Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev 101, 2341-2352. Cerca con Google

Soderling TR, Chang B, Brickey D. (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276, 3719-3722. Cerca con Google

Soderling TR. (1996) Structure and regulation of calcium/calmodulin-dependent protein kinases II and IV. Biochim Biophs Acta 1297, 131-138. Cerca con Google

Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ. (1999) MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18, 5085-5098. Cerca con Google

Spector SA. (1985a) Effects of elimination of activity on contractile and histochemical properties of rat soleus muscle. J Neurosci 5, 2177-2188. Cerca con Google

Spector SA. (1985b) Trophic effects on the contractile and histochemical properties of rat soleus muscle. J Neurosci 5, 2189-2196. Cerca con Google

Srinivasan M, Edman CF, Schulman H. (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 12, 839-852. Cerca con Google

Sun P, Enslen H, Myung PS, Maurer RA. (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8, 2527-2539. Cerca con Google

Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281, 1690-1693. Cerca con Google

Swoap SJ. (1998) In vivo analysis of the myosin heavy chain IIB promoter region. Am J Physiol 274, 681-687. Cerca con Google

Swoap, SJ, Hunter RB, Stevenson EJ, Felton HM, Kansagra NV, Lang JM, Esser KA, Kandarian SC. (2000) The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 279, C915-924. Cerca con Google

Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. (1998) Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 273, 14285-14292. Cerca con Google

Tobimatsu T and Fujisawa H. (1989) Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J boil Chem 264, 17907-17012. Cerca con Google

Tokumitsu H and Soderling TR. (1995) Requirements for calcium and calmodulin in the calmodulin kinase activation cascade. J Biol Chem 271, 5617-5622. Cerca con Google

Tokumitsu H, Wayman GA, Muramatsu M, Soderling TR. (1997) Calcium/calmodulin-dependent protein kinase kinase: identification of regulatory domains. Biochemistry 36, 12823-12827. Cerca con Google

Torgan CE and Daniels MP. (2001) Regulation of myosin heavy chain expression during rat skeletal muscle development in vitro. Mol Biol Cell 12, 1499-1508. Cerca con Google

Tothova J, Blaauw B, Pallafacchina G, Rudolf R, Argentini C, Reggiani C, Schiaffino S. (2006). NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119, 1604-1611. Cerca con Google

Tozzo E, Gnudi L, Kahn BB. (1997) Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138, 1604-1611. Cerca con Google

Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA. (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24, 8374-8385. Cerca con Google

Vega RB, Huss JM, Kelly DP. (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20, 1868-1876. Cerca con Google

Verdin E, Dequiedt F, Kasler HG. (2003) Class II histone deacetylases: versatile regulators. Trend Genet 19, 286-293. Cerca con Google

Virbasius JV and Scarpulla RC. (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 91, 1309-1313. Cerca con Google

Vrbova G. (1963) The effects of motoneurone activity on the speed of contraction of striated muscle. J Physiol (London) 169, 313-526. Cerca con Google

Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343. Cerca con Google

Wang J and Best PM. (1992) Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature 359, 739-741. Cerca con Google

Wiegand G and Remington SJ. (1986) Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem 15, 97-117. Cerca con Google

Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266, 11144-11152. Cerca con Google

Wright DC, Geiger PC, Holloszy JO, Han DH. (2005) Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metab 288, 1062-1066. Cerca con Google

Wright DC, Hucker KA, Holloszy JA, Han DH. (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53, 330-335. Cerca con Google

Wright DC. (2007) Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis. Appl Physiol Nutr Metab, 840-845. Cerca con Google

Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296, 349-352. Cerca con Google

Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, Williams RS. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19, 1963-1973. Cerca con Google

Wu X and McMurray CT. (2001) Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 276, 1735-1741. Cerca con Google

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124. Cerca con Google

Yang SN, Tang YG, Zucker RS. (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81, 781-787. Cerca con Google

Youn HD, Chatila TA, Liu JO. (2000) Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 19, 4323-4331. Cerca con Google

Zalk R, Lehnart SE, Marks AR. (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76, 367-385. Cerca con Google

Zhu J and McKeon F. (1999) NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256-260. Cerca con Google

Zierath JR, He L, Gumà A, Odegoard Wahlström E, Klip A, Wallberg-Henriksson H. (1996) Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39, 1180-1189. Cerca con Google

Zorzano A, Palacín M, Gumà A. (2005) Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 183, 43-58. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record