Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pittarello, Lidia (2009) Study of exhumed paleo-seismic fault as a gauge to estimate earthquake source parameters. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

33Mb

Abstract (inglese)

Exhumed faults decorated by pseudotachylyte, solidified friction induced melt recording a seismic rupture (Sibson, 1975), might give information about the earthquake source. Two cases, representative of different seismogenic environments have been investigated: the pseudodotachylyte-mylonite association in the lower crust, in the Ivrea Zone metagabbros, and the “upper crust” pseudotachylytes in the Tertiary Adamello granitoid batholith.
In metagabbros, a cyclical and coeval production of frictional melts and high temperature localized ultramylonites, during amphibolite metamorphic conditions, has been documented.
From a selected pseudotachylyte in the Adamello batholith the earthquake energy budget has been estimated, concluding that the most energy was dissipated as frictional heat. The thermal evolution of a frictional melt was modeled, demonstrating that the pristine cataclastic structure used for the component of the surface energy estimation might locally have been preserved.

Abstract (italiano)

Faglie esumate sigillate da pseuotachiliti, fusi di frizione solidificati che registrano una rottura sismica (Sibson, 1975), possono fornire informazioni sulla sorgente del terremoto. Sono stati studiati due casi rappresentativi di ambienti simogenetici differenti: l’associazione pseudotachiliti-miloniti nella corsta inferiore, nei metagabbri della Zona d’Ivrea e le pseudotachiliti della “crosta superiore” nel batolite granitoide terziario dell’Adamello.
Nei metagabbri è stata documentata la produzione ciclica e contemporanea di fusi di frizione e ultramiloniti localizzate di alta temperatura, entrambe prodotte in facies anfibolitica.
Studiando una pseudotachilite prescelta dal batolite dell’Adamello, si è stimato il bilancio energetico di un terremoto, concludendo che la maggior parte dell’energia si è dissipata sotto forma di calore di frizione. Infine si è modellizzata l’evoluzione termica di un fuso di frizione, dimostrando che l’originaria struttura cataclastica usata per stimare il contributo dell’energia di superficie può potenzialmente essersi localmente preservata.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Pennacchioni, Giorgio
Correlatore:Di Toro, Giulio
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > SCIENZE DELLA TERRA
Data di deposito della tesi:27 Gennaio 2009
Anno di Pubblicazione:02 Febbraio 2009
Parole chiave (italiano / inglese):pseudotachylyte, metagabbros, earthquake energy, thermal evolution
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Struttura di riferimento:Dipartimenti > pre 2012 -Dipartimento di Geologia, Paleontologia e Geofisica
Codice ID:1445
Depositato il:27 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

ABERCROMBIE, R., MCGARR, A., DI TORO, G., KANAMORI, H., 2006. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series Vol. 170 (American Geophysical Union, Washington, D.C.), pp. 327. ISBN 978-0-87590-435-1. Cerca con Google

ANDERSEN, T.B., AUSTRHEIM, H., 2006. Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. EPSL, 242, 58-72. Cerca con Google

ARAGON, E., GONZALEZ, P., AGUILERA, Y.E., CAVAROZZI, C.E., LLAMBIAS, E., RIVALENTI, G., 2003. Thermal divide andesite-trachytes, petrologic evidence, and implications from Jurassic north Patagonian massif alkaline volcanism. J. South. Am. Earth. Sc., 16, 91-103. Cerca con Google

AUSTRHEIM, H., ANDERSEN, T.B., 2004. Pseudotachylytes from Corsica: fossil earthquakes from a subduction complex. Terra Nova, 166, 193-197. Cerca con Google

AUSTRHEIM, H., BOUNDY, T.M., 1994. Pseudotachylytes generated during seismic faulting and eclogitation of the deep crust. Science, 265, 82-83. Cerca con Google

AUSTRHEIM, H., ERAMBERT, M., BOUNDY, T.M., 1996. Garnets recording deep crustal earthquakes. EPSL, 139, 223-238. Cerca con Google

BASS, J.D., 1995. Elasticity of minerals, glasses and melts, in: Ahrens, T. (Ed.), A handbook of physical constants. Mineral physics and crystallography, AGU Reference Shelf 2, Washington D.C., pp. 45-63. Cerca con Google

BELL, T.H., ETHERIDGE M.A., 1973. Microstructures of mylonites and their descriptive terminology. Lithos, 6, 337-348. Cerca con Google

BEST, M., 2002. Igneous and Metamorphic Petrology. Blackwell Publishing, 2nd ed., ISBN 1-4051-0588-7 Cerca con Google

BONNET, E., BOUR, O., ODLING, N.E., DAVY, P., MAIN, I., COWIE, P., BERKOWITZ, B., 2001. Scaling of fracture systems in geological media. Rev. Geophys. 39, 347-383. Cerca con Google

BRAECK, S., PODLADCHIKOV, Y.Y., 2007. Spontaneous thermal runaway as an ultimate failure mechanism of materials. Phys. Rev. Lett., 98. Cerca con Google

BRODIE, K.H., RUTTER, E.H., 1985 On the relationship between deformation and metamorphism with special reference to the behaviour of basic rock. In A.B. Thompson and D.C: Rubie Editors, Metamorphic reactions: Kinematics, Texture and Deformation. Adv. Phys. Geochem. Springer, Berlin, 4, 138-179. Cerca con Google

BRODIE, K.H., RUTTER, E.H., 1987 Deep crustal extensional faulting in the Ivrea Zone of Northern Italy. Tectonophysics, 140, 193-212. Cerca con Google

BRUCE, W.F., WALSH, J.B., 1962. Some direct measurements of the surface energy of quartz and orthoclase. Am. Mineral. 47, 1111-1122. Cerca con Google

CAMACHO, A., VERNON, R.H., FITZ GERALD, J.D., 1995. Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia. J. Struct. Geol., 17, 371-383. Cerca con Google

CARSLAW, H.S., JAEGER, J.C. 1959. Conduction of Heat in solid. Oxford University Press. UK. Cerca con Google

CHESTER, J.S., CHESTER, F.M., KRONENBERG, A.K., 2005. Fracture surface energy of the Punchbowl Fault, San Andreas System. Nature, 437, 133-136. Cerca con Google

CHOUDHURI, A., SILVA, D., 2000. A clynopyroxene-orthopyroxene-plagioclase symplectite formed by garnet breackdown in granulite facies, Guaxupé, Minas Gerais, Brazil. Gondwana Research, 3, 115-152. Cerca con Google

CLARKE, G.L., NORMAN, A.R., 1993 Generation of pseudotachylyte under granulite facies conditions and its preservation during cooling. J.Metamorph.Geol., 11, 319-335. Cerca con Google

COCCO, M., SPUDICH, P., TINTI, E, 2006. On the mechanical work absorbed on faults during earthquake ruptures, in: Abercrombie, R.E., Mc Garr, A., Kanamori, H. & Di Toro, G. (Eds.), Radiated Energy and the Physics of Earthquake Faulting, AGU Monograph Series 170, Washington D.C., pp. 237-254. Cerca con Google

COWAN, D.S., 1999. Do faults preserve a record of seismic faulting? A field geologist's opinion. J. Struct. Geol. 21, 995-1001. Cerca con Google

CRANK, J., NICHOLSON, P., 1947. A practical method for numerical evaluation of solutions of partial differential equations of heat-conduction type. Proceedings of the Cambridge Philosophical Society, 43, 50–67. Cerca con Google

DEER, W.A, HOWIE, R.A., ZUSSMAN, J., 1992. An introduction to rock forming minerals, 2nd ed., Longman Group Ltd. Cerca con Google

DI TORO, G., HIROSE, T., NIELSEN, S., SHIMAMOTO, T., 2006. Relating high-velocity rock friction experiments to coseismic slip in the presence of melts, in: Abercrombie, R., McGarr, A., Kanamori, H. & Di Toro, G. (Eds.), Radiated Energy and the Physics of Faulting, Geophysical Monograph Series Vol. 170, American Geophysical Union, Washington, D.C., pp. 121-134. Cerca con Google

DI TORO, G., NIELSEN, S., PENNACCHIONI, G., 2005. Earthquake dynamics frozen in exhumed ancient faults. Nature, 436, 1009-1012. Cerca con Google

DI TORO, G., PENNACCHIONI, G., 2004. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps). J. Struct. Geol., 26, 1783-1801. Cerca con Google

DI TORO, G., PENNACCHIONI, G., 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402, 54-79. Cerca con Google

DI TORO, G., PENNACCHIONI, G., NIELSEN, S. Pseudotachylytes and earthquake source mechanics. In (Ed. Fukuyama E.) Rheology, friction, and structure of fault zones, in press. Cerca con Google

DI TORO, G., PENNACCHIONI, G., TEZA, G., 2005. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402, 3-20. Cerca con Google

DOR, O., BEN-ZION, Y., ROCKWELL, T.K., BRUNE, J., 2006. Pulverized Rocks in the Mojave section of the San Andreas Fault Zone. EPSL, 245, 642-654. Cerca con Google

DRESEN, G., WANG, Z., BAI, Q., 1996. Kinetics of grain growth in anorthite. Tectonophysiscs, 258, 251-262. Cerca con Google

ELLIS, S., STÖCKHERT, B., 2004. Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust. J. Geoph. Res., 109, B05407, doi:10.1029/2003JB002744. Cerca con Google

FABBRI, O., LIN, A., TOTSUSHIGE, H., 2000. Pseudachylytes found in the Middle Miocene granodiorite, Osumi Peninsula, southwest Japan. J. Struct. Geol., 22, 1015-1026. Cerca con Google

FIALKO, Y., KHAZAN, Y., 2005. Fusion by earthquake fault friction: stick or slip? J.Geophys.Res., 110, doi: 10.1029/2005JB003869 Cerca con Google

GANGULY, J., SAXENA, S.K., 1984. Mixing properties of aluminosilicate garnets. Constraints from natural and experimental data and applications to geothermobarometry. Am. Min., 69, 88–97. Cerca con Google

GIESE, P. 1968 Die struktur der Erdkruste im Bereich der Ivrea-Zone. Schweitz. Mineral. Petrogr. Mitt., 4-8. Cerca con Google

HANDY, M.R., FRANZ, L., HELLER, F., JANOTT, B., ZURBRIGGEN, R., 1999. Multistage accretion and exhumation of continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics, 18, 1154–1177. Cerca con Google

HARRIS, C.C., 1966. On the role of energy in comminution: a review of physical and mathematical principles. Trans. Inst. Min. Metall., C 75, C37– C56. Cerca con Google

HEILBRONNER, R., KEULEN, N., 2006. Grain size and grain shape analysis of fault rocks, Tectonophysics, 427, 199-216. Cerca con Google

HIROSE, T., SHIMAMOTO, T., 2005. Growth of molten zone as a mechanism of slip weackening of simulated faults in gabbro during frictional melting. J. Geophys. Res., 110, 1-19. Cerca con Google

HOBBS, B.E., ORD, A., TEYSSIER, C., 1986 Earthquakes in the ductile regime? Pageoph., 124, 309-336. Cerca con Google

HOLLAND, T., BLUNDY, J., 1992. Non-ideal interaction in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol., 116, 433-447. Cerca con Google

JOHN, T., SCHENK, V., 2006. Interrelation between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: contraints from eclogite facies pseudotachylytes. Geology, 34, 557-560. Cerca con Google

KANAMORI, H., 2004. The diversity of the physics of earthquakes. Proc. Jpn. Acad. Ser. B. Cerca con Google

KANAMORI, H., HEATON, T.H., 2000. Microscopic and macroscopic physics of earthqukes, in: Rundle, J., Turcotte, D.L. & Klein, W. (Eds.), GeoComplexity and the Physics of Earthquakes, AGU Monograph Series 120, Washington D.C., pp.147-163 Cerca con Google

KANAMORI, H., RIVERA, L., 2004. Energy partitioning during an earthquake, AGU Monograph Series 170, Washington D.C., pp. 3-14. Cerca con Google

KELEMEN, P.B., HIRTH, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 446, 787-790. Cerca con Google

KENDALL, K., 1978. The impossibility of comminuting small particles by compression. Nature, 272, 710-711. Cerca con Google

KENKMANN, T., DRESEN, G., 2002. Dislocation microstructure and phase distribution in a lower crustal shear zone – an example from the Ivrea Zone, Italy. Int. J. Earth Sc., 91, 445-458. Cerca con Google

KEULEN, N., HEILBRONNER, R., STÜNITZ, H., BOULLIER, A.M., ITO, H, 2007. Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids, J. Struct. Geol., doi:10.1016/j.jsg.2007.04.003. Cerca con Google

KOCH, N., MASCH, L., 1992. Formation of Alpine mylonites and pseudotachylytes at the base of the Silvretta nappe, Eastern Alps. Tectonophysics, 204, 289-306. Cerca con Google

KOSTROV, B., DAS, S. Principles of earthquake source mechanics (Cambridge Univ. Press, London, 1988). Cerca con Google

LAIRD, J., ALBEE, A.L., 1981. Pressure temperature and time indicators in mafic schists. Their application to reconstructing the polymetamorphic history of Vermont. Am. J. Sci., 281, 127–175. Cerca con Google

LEE, W.H., KANAMORI, H., JENNINGS, P.C., KISSLINGER, C., 2002. Earthquake & Engineering Seismology, Vol. 1 & 2, Academic Press, Amsterdam. Cerca con Google

LI, V.C., 1989. in: Atkinson, B.K. (Ed.) Fracture Mechanics of Rocks, 2nd ed., Academic, London, pp.351-428. Cerca con Google

LIN, A., 1994. Glassy pseudotachylyte veins from the Fuyun fault zone, nortwest China. J. Struct. Geol., 16, 71-83. Cerca con Google

LIN, A., 2001. S-C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implication for tectonic history. J. Struct. Geol., 23, 1167-1178. Cerca con Google

LIN, A., 2008. Fossil Earthquakes: the formation and preservation of pseudotachylytes. Springer Verlag. Cerca con Google

LIN, A., MARUYAMA, T., STALLARD, A., MICHIBAYASHI, K., CAMACHO, A., KANO, K., 2005. Propagation of seismic slip from brittle to ductile regimes: evidence from the pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics, 402, 21–35. Cerca con Google

LIN, A., SUN, Z., YANG, Z., 2003. Multiple generations of pseudotachylyte in the brittle to ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic complex, central China. Island Arc, 12, 423–435. Cerca con Google

LUND, M.G., AUSTRHEIM, H., 2003. High-pressure metamorphism and deep-crustal seismicity: evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas. Tectonophyscs, 37, 59–83. Cerca con Google

MA, K.F., SONG, S.R., TANAKA, H., WANG, C.Y., HUNG, J.H., TSAI, Y.B., MORI, J., SONG, Y.F., YEH, E.C., SONE, H., KUO, L.W., WU, H.Y., 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project (TCDP), Nature, 444, 473-476. Cerca con Google

MADDOCK, R.H., GROCOTT, J., VAN NES, M., 1987. Vesicles, amygdales and similar structures in fault-generated pseudotachylytes. Lithos, 20, 419–432. Cerca con Google

MAGLOUGHLIN, J.F., 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crust levels: the cataclasite-pseudotachylyte connection. Tectonophysics, 204, 243–260. Cerca con Google

MALCAI, O., LIDAR, D.A., BIHAM, O., AVNIR, D., 1997. Scaling range and cutoffs in empirical fractals. Physical Review, E 56, 2817-2828. Cerca con Google

MANCKTELOW, N.S., PENNACCHIONI, G., 2005 The control of precursor brittle fracture and fluid-rock interaction in the development of single and paired ductile shear zones. J. Struct. Geol., 27, 645-661. Cerca con Google

MATSUMOTO, H., YAMANAKA, C., IKEYA, M., 2001. ESR analysis of the Nojima fault gouge, Japan, from the DPRI 500 m borehole. The Island Arc, 10, 479-485. Cerca con Google

MATTONI, A., COLOMBO, L., CLERI, F., 2005. Atomic scale origin of crack resistance in brittle fracture. Pysical Review Letters, 95, 115501,1-4. Cerca con Google

MCGARR, A., 1999. On relating apparent stress to the stress causing earthquake fault slip. J. Geophys. Res., 104, 3003–3011. Cerca con Google

MCKENZIE, D., BRUNE, J.N., 1972. Melting on fault planes during large earthquakes. R. Astro. Soc. Geophys. J., 29, 65–78. Cerca con Google

MCNULTY, B.A., 1995. Pseudotachylyte generated in semi-brittle and brittle regimes, Bench Canyon shear zone, central Sierra Nevada. J. Struct. Geol., 11, 1507–1521. Cerca con Google

MORSE, S.A., NOLAN, K.M, 1984. Origin of strongly reversed rims on plagioclase in cumulates. EPSL, 68, 485-498. Cerca con Google

NIELSEN, S., DI TORO, G:, HIROSE, T. SHIMAMOTO, T. 2008. Frictional Melt and Seismic Slip, J. Geophys. Res., 113, B01308, doi: 10.1029/2007JB005122. Cerca con Google

O’HARA, K.D., MIZOGUCHI, K., SHIMAMOTO, T., HOWER, J., 2006. Experimental frictional heating of coal guuge at seismic slip rates: Evidence for devolatilization and thermal pressurization of gouge fluids. Tectonophysics, 424, 109–118. Cerca con Google

OHTOMO, Y., SHIMAMOTO, T., 1994. Significance of thermal fracturing in the generation of fault gouge during rapid fault motion: An experimental verification (in Japanese with English abstract), Struct. Geol., 39, 135 – 144. Cerca con Google

PASSCHIER, C.W. 1982 Pseudotachylyte and the development of ultramylonite bands in the Saint Barthélemy Massif, French Pyrenees. J.Struct. Geol., 4, 69-79. Cerca con Google

PASSCHIER, C.W., TROUW, R.A.J., 1996. Microtectonics. Springer-Verlag, Berlin, pp.189. Cerca con Google

PENNACCHIONI, G., CESARE, B. 1997 Ductile-brittel transition in the pre-Alpine amphibolite facies mylonites during evolution from water-present to water-deficient conditions (Mont Mary nappe, Italian Western Alps). J. Metamorph. Geol., 15, 777-791. Cerca con Google

PENNACCHIONI, G., DI TORO, G., BRACK, P., MENEGON, L., VILLA, I.M., 2006. Brittle-ductile-brittle deformation during cooling of tonalite (Adamello, Southern Italian Alps), Tectonophysics, 427, 171-197. Cerca con Google

PENNACCHIONI, G., MANCKTELOW, N.S., 2007. Nucleation and initial growth of a shear zone network within compositionally and structurally heteregeneous granitoids under amphibolite facies conditions. J. Struct. Geol., 29, 1757-1780. Cerca con Google

PHILPOTTS, A.R., 1964. Origin of pseudotachylites. Am. J. Sci., 262, 1008–1035. Cerca con Google

PHILPOTTS, A.R., 1990. Principles of igneous and metamorphic petrology, Prentice Hall, Englewood Cliffs, New Jersey. Cerca con Google

PITTARELLO, L., DI TORO, G., BIZZARRI, A., PENNACCHIONI, G., HADIZADEH, J., COCCO, M., 2008. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). EPSL, 269, 131-139. Cerca con Google

PLYUSNINA, L.P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contrib. Mineral. Petrol., 80 pp.140-146 Cerca con Google

RABINOWICZ, E., 1965. Friction and Wear of Materials, John Wiley, New York. Cerca con Google

RAY, S.K., 1999. Transformation of cataclastically deformed rocks to pseudotachylyte by pervasion of frictional melt: inference from clast-size analysis. Tectonophysics, 301, 283–304. Cerca con Google

RAY, S.K., 2004. Melt-clast interaction and power-law size distribution of clasts in pseudotachylytes. J. Struct. Geol., 26, 1831–1834. Cerca con Google

RECHES, Z., DEWERS, T.A., 2005. Gouge formation by dynamic pulverization during earthquake rupture. EPSL, 235, 361-374. Cerca con Google

RICE, J.R., SAMMIS, C.G., PARSONS, R., 2005. Off-fault secondary failure induced by a dynamic slip-pulse. Bull. Seismol. Soc. Am. 95, 109-134. Cerca con Google

SAMMIS C., BEN-ZION, Y., 2008. Mechanics of grain-size reduction in fault zones. J. Geoph. Res., 113, B02306, doi:10.1029/2006JB004892. Cerca con Google

SAMMIS, C. G., KING, G.C.P., 2007. Mechanical origin of power law scaling in fault zone rock, Geophys. Res. Lett., 34, L04312, doi:10.1029/2006GL028548. Cerca con Google

SAMMIS, C.G., OSBORNE, R.H., ANDERSON, J.L., BANERDT, M., WHITE, P., 1986. Self-similar cataclasis in the formation of fault gouge. Pure and Applied Geophysics, 124, 53-78. Cerca con Google

SCHMID, R., 1967 Zur petrographie und struktur der Zone Ivrea-Verbano zwischen Valle d’Ossola und Val Grande. Schweitz. Mineral.Petr. Mitt., 47, 935-1117. Cerca con Google

SCHMID, S.M., ZINGG, A., HANDY, M., 1987. The kinematics of movements along the Insubric Line and the emplacement of the Ivrea Zone. Tectonophysics, 135, 47-66. Cerca con Google

SCHOLZ, C. H., 2002. The Mechanics of Earthquakes and Faulting (2nd ed.). Cambridge Univ. Press, London. Cerca con Google

SCHOLZ, C.H., 1988. The brittle-plastic transition and the depth of seismic faulting. Geol. Rundschau, 77, 319–328. Cerca con Google

SHAND, S.J., 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘trap-shotten gneiss’ and ‘flinty crush rock’. Quart. J. Soc. London, 72, 198–221. Cerca con Google

SHIMAMOTO, T., NAGAHAMA, H., 1992. An argument against the crush origin of pseudotachylytes based on the analysis of clast size distribution. J. Struct. Geol., 14, 999-1006. Cerca con Google

SIBSON, R.H., 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. R.. Astron. Soc. 43, 775-794. Cerca con Google

SIBSON, R.H., 1977. Fault rocks and fault mechanisms. J. Geol. Soc. London, 133, 191-213. Cerca con Google

SIBSON, R.H., 1980. Transient discontinuities in ductile shear zones. J. Struct. Geol., 2, 165-171. Cerca con Google

SIBSON, R.H., 1989. Earthquake faulting as a structural process. J. Struct. Geol., 11, 1-14. Cerca con Google

SKINNER, B.J., 1966. Thermal expansion. In S. P. Clark, Jr., Ed., Handbook pf Physical Constants. Geological Society of America Memoir., 97,75-96. Cerca con Google

SPEAR, F.S., 1980 NaSi-CaAl exchange equilibrium between plagioclase and amphibole. An empirical model. Contrib. Mineral. Petrol., 72, pp.33-41. Cerca con Google

SPRAY, J.G., 1992. A physical basis for the frictional melting of some rock forming minerals. Tectonophysics, 204, 205-221. Cerca con Google

SPRAY, J.G., 1995. Pseudotachylyte controversy: fact or friction? Geology 23, 1119-1122. Cerca con Google

SPRAY, J.G., 2005. Evidence for melt lubrication during large earthquakes. Geoph. Res. Lett.. 32, doi:10.1029/2004GL022293. Cerca con Google

SPUDICH, P., GUATTERI, M., OTSUKI, K., MINAGAWA, J., 1998. Use of fault striations and dislocations models to infer tectonic shear stress during the 1995 Hyogo-ken (Kobe) earthquake. Bull. Seism.Soc. Am., 88, 413-427. Cerca con Google

STÜNITZ, H., 1998. Syndeformational recrystallization – dynamic or compositionally induced? Contrib. Minerl. Petrol., 131, 219-236. Cerca con Google

SWANSON, M.T., 1988. Pseudotachylytes-bering strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. J. Struct. Geol., 10, 813–828. Cerca con Google

SWANSON, M.T., 1992. Fault structure, wear mechanisms and rupture processes in pseudotachylytes generation. Tectonophysics, 204, 223–242. Cerca con Google

TECHMER, K.S., AHRENDT, H., WEBER, K., 1992. The development of pseudotachylyte in the Ivrea-Verbano zone of the Italian Alps. Tectonophysics, 204, 307–322. Cerca con Google

TINTI, E., SPUDICH, P., COCCO, M., 2005. Earthquake fracture energy inferred from kinematic rupture models on extended faults. J. Geophys. Res., 110, B12303, doi:10.1029/2005JB003644. Cerca con Google

TSE, S.T., RICE, J.R., 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res., 91, 9452–9472. Cerca con Google

TSUTSUMI A., 1999. Size distribution of clasts in experimentally produced pseudotachylyte. J. Struct. Geol., 21, 305-312. Cerca con Google

TSUTSUMI, A., SHIMAMOTO, T., 1997. High-velocity frictional properties of gabbro. Geophys. Res. Lett., 24, 699–702. Cerca con Google

UEDA T., OBATA M., DI TORO G., KANAGAWA K., OZAWA K., 2008. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies. Geology, 36, 607-610. Cerca con Google

UNDERWOOD, E.E., 1970. Quantitative stereology. Addison Wesley Publishing Company, Reading, Massachusetts Cerca con Google

VAVRA, G., SCHMID, R., GEBAUER, D., 1999 Intenal morphology, habit and U-Th-Pb microanalysis of amphibolite to granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol., 134, 380-404. Cerca con Google

VOGLER, R., 1992 Die Ivrea Zone zwischen Val Grande un Val Pogallo (Provinz Novara, Italien). Schweiz. Mineral. Petrogr. Mitt., 72, 241-249. Cerca con Google

WENK, H.R., 1978. Are pseudotachylites products of fracture or fusion? Geology, 6, 507–511. Cerca con Google

WENK, H.R., JOHNSON, L.R., RATSCHBACHER, L., 2000. Pseudotachylites in the Eastern Peninsula Ranges of California. Tectonophysics, 321, 253–277. Cerca con Google

WHITE, J.C., 1996 Transient discontinuities revisited: pseudotachylyte, plastic instability and the influence of low pore fluid pressure on deformation process in the mid-crust. J. Struct. Geol., 18, 1471-1486. Cerca con Google

WILSON, B., DEWERS, T., RECHES, Z., BRUNE, J., 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature, 434, 749-752. Cerca con Google

WILSON, J.E., CHESTER, J.S., CHESTER, F.M., 2003 Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California. J. Struct. Geol., 25, 1855–1873. Cerca con Google

WISE, D.U., DUNN, D.E., ENGELDER, J.T., GEISER, P.A., HATCHER, R.D., KISH, S.A., ODEM, A.L., SCHAMEL, S., 1984. Fault-related rocks: suggestions for terminology. Geology, 12, 391–394. Cerca con Google

YOSHIOKA, N., 1986 Fracture energy and the variation of gouge and surface roughness during frictional sliding of rocks. J. Phys. Earth, 34, 335-355. Cerca con Google

ZINGG, A., 1983. The Ivrea and Strona and Ceneri zones (Southern Alps, Ticino and North Italy): a review. Schez. Mineral. Petrogr. Mitt., 63, 361-392. Cerca con Google

ZINGG, A., HANDY, M.R., HUNZIKER, J.C., SCHMID, S.M., 1990 Tectonometamorphic hystory of the Ivrea Zone and its relationship to the crustal evolution of the Southern Alps. Tectonophysics, 182, 169-192. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record