Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Marinello, Jessica (2009) The Double Face of Nucleic Acids. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
10Mb

Abstract (inglese)

Nucleic acids have been the object of intense and thorough observations for more than a century, leading to the understanding of their structure and function. Their role as genetic information carriers is well established but there are evidences that they are also involved in a series of other less known processes. RNA for example is a single strand biopolymer that, dependently from the primary sequence, can assume complex three-dimensional foldings that allow binding to diverse target molecules or the involvement in catalysis. Being closely related to several cellular events, they are also useful therapeutic targets.
This work is essentially divided in two parts, aimed at studying two different and complementary aspects of nucleic acids. While the first project goes into the understanding of the “RNA world” and of the applicability of extraordinary RNA conformational variability in a diagnostic and therapeutic system, the second topic is addressed to study the ability of two compounds to interfere with DNA integration, a genetic process that allows the viral DNA to be inserted into the host genome. Therefore nucleic acids demonstrate their “double face” meaning their ability to be leading actors in diagnosis and therapy but also indispensable supporting actors, being the main targets for several drugs.
The first part of the PhD program was focused on the use of SELEX to discover a new diagnostic or therapeutic tool. A protocol for the selection of RNA aptamers binding folic acid was developed. In particular, after 12 cycles of SELEX using affinity chromatography, it was possible to select an enriched pool of single stranded RNA oligonucleotides with affinity for the target. Subcloning and sequencing of the above-mentioned pool allowed the subsequent analysis of the oligonucleotide three-dimensional structure and the determination of the minimum binding sequence to folic acid. Computer tools and RNase protection assay were associated in the experimental protocol to obtain the most probable outcome. A clear region of ligand interaction on RNA was identified; this minimum sequence was chemically synthesized and Isothermal Titration Calorimetry (ITC) used for the determination of the binding constant of folic acid, that resulted in the nanomolar range. The approval from FDA and EMEA of Macugen®, a pegylated aptamer selective for the binding to VEGF and used in the treatment of age-related macular degeneration, is a proof that SELEX can be used to develop good drugs and diagnostics. RNA aptamers against folic acid could now find their way for diagnostic or therapeutic application. Therefore further studies must be addressed to allow their applicability to the desired purpose.
The second part of the PhD program was carried out in the Laboratory of Molecular Pharmacology of the National Cancer Institute (National Institute of Health - Bethesda -Maryland - USA) and it takes into consideration DNA integration as target of anti-HIV drugs. HIV-1 integrase is one of the viral enzymes encoded from the POL gene, that catalyses the insertion of the viral DNA into host chromosomes. Using synthetic oligonucleotides mimicking the terminal portion of the U5 viral LTR, it was analyzed the effect of two important drugs (raltegravir, the first integrase inhibitor approved by FDA last year, and elvitegravir, in advanced stage of human clinical trials) on the recombinant wild type integrase and on a series of resistant mutants. The study was addressed to compare raltegravir and elvitegravir on the same in vitro system, with the aim to understand how different aminoacidic point mutations of the protein sequence are responsible in the onset of drug resistance.

Abstract (italiano)

Dal giorno della loro scoperta più di un secolo fa, gli acidi nucleici sono stati analizzati e studiati approfonditamente in tutti gli aspetti, cercando di svelare gli ancora numerosi segreti nascosti nella loro struttura per comprenderne appieno le funzioni. Il ruolo più assodato ed essi associato è sicuramente quello di trasportatori dell’informazione genetica ma numerose evidenze sperimentali confermano il coinvolgimento in una serie di altri processi meno noti. Basta pensare a come l’RNA, grazie alle complesse conformazioni tridimensionali che può assumere dipendentemente dalla sua sequenza primaria, risulti coinvolto nel legame a svariate molecole e risulti ancor più straordinariamente responsabile di processi catalitici. Essendo quindi correlati a numerosi eventi cellulari, gli acidi nucleici sono utili bersagli terapeutici.
Il presente lavoro è suddiviso essenzialmente in due parti ed è finalizzato alla comprensione di due aspetti differenti ma complementari legati agli acidi nucleici. Il primo progetto infatti si pone l’obiettivo di conoscere il vasto “mondo dell’RNA” e di applicare la straordinaria variabilità conformazionale di questo biopolimero ad un sistema terapeutico o diagnostico. La seconda parte della ricerca è invece indirizzata all’analisi dell’effetto di composti sul processo di integrazione del DNA, un meccanismo genetico che permette al DNA virale di essere correttamente inserito nel genoma dell’ospite. Gli acidi nucleici dimostrano quindi la loro “doppia faccia” intesa come la loro capacità di essere i protagonisti in sistemi di diagnosi o di terapia ma anche indispensabili attori co-protagonisti, essendo essi stessi i bersagli principali di numerosi farmaci.
La prima metà del ciclo di dottorato di ricerca si è concentrata sull’uso della tecnologia SELEX. Inizialmente si è sviluppato un protocollo per la selezione di aptameri contro l’acido folico. Un totale di 12 cicli di SELEX mediante cromatografia d’affinità, hanno condotto alla selezione di un pool di molecole di RNA a singolo filamento, aventi un’elevata predisposizione a legare il target d’interesse. Il subclonaggio e il sequenziamento del suddetto insieme di molecole ha poi permesso di approfondire l’analisi delle caratteristiche tridimensionali degli oligonucleotidi e della minima sequenza responsabile del legame all’acido folico. A questo scopo, è stata condotta un’analisi informatizzata elementare ed è stato sviluppato un protocollo per l’RNase protection assay. L’associazione dei risultati ottenuti con le due diverse metodiche ha permesso di definire una chiara regione di interazione tra RNA e ligando. Questa minima sequenza è stata quindi sintetizzata chimicamente e sottoposta, mediante Isothermal Titration Calorimetry (ITC), alla determinazione della costante di legame, che è risultata essere nell’intervallo nanomolare. L’approvazione da parte di EMEA e FDA di Macugen®, un aptamero peghilato selettivo per il legame a VEGF e usato nel trattamento della degenerazione maculare senile, è una prova di come la SELEX possa essere un utile strumento per lo sviluppo di farmaci e diagnostici. Gli aptameri ad RNA contro l’acido folico selezionati nel presente lavoro possono ora seguire la via dello sviluppo per l’applicazione desiderata e ulteriori studi saranno condotti a questo scopo.
La seconda metà del ciclo di dottorato di ricerca è stata invece svolta nel Laboratorio di Farmacologia Molecolare del National Cancer Institute (National Institute of Health - Bethesda - Maryland - USA) e ha preso in considerazione il processo di integrazione del DNA come bersaglio di farmaci anti-HIV. L’integrasi dell’HIV-1 è un enzima virale codificato dal gene POL e catalizza l’inserzione del DNA virale nei cromosomi della cellula ospite. Oligonucleotidi sintetici, con sequenza corrispondente alla porzione U5 terminale della LTR virale, sono stati utilizzati allo scopo di analizzare l’effetto di due importanti farmaci (raltegravir, il primo farmaco inibitore dell’integrasi approvato dall’FDA lo scorso anno, e elvitegravir, un composto in stadio avanzato di ricerca clinica) sull’enzima nativo ricombinante e su una serie di mutanti resistenti ai farmaci in questione. Lo studio è stato essenzialmente indirizzato a confrontare raltegravir e elvitegravir sullo stesso sistema in vitro, cercando di capire come differenti mutazioni aminoacidiche della proteina siano responsabili dell’insorgenza di resistenza al trattamento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Gatto, Barbara
Correlatore:Pommier, Yves
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE MOLECOLARI > SCIENZE FARMACEUTICHE
Data di deposito della tesi:27 Gennaio 2009
Anno di Pubblicazione:31 Gennaio 2009
Parole chiave (italiano / inglese):Nucleic Acids SELEX Folic Acid HIV-1 Integrase Raltegravir Elvitegravir
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/08 Chimica farmaceutica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Farmaceutiche
Codice ID:1459
Depositato il:27 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-10. Cerca con Google

2. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature, 1990. 346(6287): p. 818-22. Cerca con Google

3. Proske, D., et al., Aptamers--basic research, drug development, and clinical applications. Appl Microbiol Biotechnol, 2005. 69(4): p. 367-74. Cerca con Google

4. Lee, J.F., G.M. Stovall, and A.D. Ellington, Aptamer therapeutics advance. Curr Opin Chem Biol, 2006. 10(3): p. 282-9. Cerca con Google

5. Jayasena, S.D., Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem, 1999. 45(9): p. 1628-50. Cerca con Google

6. Tombelli, S., M. Minunni, and M. Mascini, Analytical applications of aptamers. Biosens Bioelectron, 2005. 20(12): p. 2424-34. Cerca con Google

7. Cox, J.C. and A.D. Ellington, Automated selection of anti-protein aptamers. Bioorg Med Chem, 2001. 9(10): p. 2525-31. Cerca con Google

8. Cox, J.C., et al., Automated acquisition of aptamer sequences. Comb Chem High Throughput Screen, 2002. 5(4): p. 289-99. Cerca con Google

9. Golden, M.C., et al., Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol, 2000. 81(2-3): p. 167-78. Cerca con Google

10. Shangguan, D., et al., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A, 2006. 103(32): p. 11838-43. Cerca con Google

11. Russell, R., et al., Rapid compaction during RNA folding. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4266-71. Cerca con Google

12. Heilig, J., Abstract Book 2nd Annual Nucleic Acid World Summit Boston. 2004. Cerca con Google

13. Fredriksson, S., et al., Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol, 2002. 20(5): p. 473-7. Cerca con Google

14. Hamaguchi, N., A. Ellington, and M. Stanton, Aptamer beacons for the direct detection of proteins. Anal Biochem, 2001. 294(2): p. 126-31. Cerca con Google

15. Yamamoto, R., T. Baba, and P.K. Kumar, Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells, 2000. 5(5): p. 389-96. Cerca con Google

16. Bock, C., et al., Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics, 2004. 4(3): p. 609-18. Cerca con Google

17. Petach, H. and L. Gold, Dimensionality is the issue: use of photoaptamers in protein microarrays. Curr Opin Biotechnol, 2002. 13(4): p. 309-14. Cerca con Google

18. Blank, M., et al., Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem, 2001. 276(19): p. 16464-8. Cerca con Google

19. Marro, M.L., et al., Identification of potent and selective RNA antagonists of the IFN-gamma-inducible CXCL10 chemokine. Biochemistry, 2005. 44(23): p. 8449-60. Cerca con Google

20. Blank, M. and M. Blind, Aptamers as tools for target validation. Curr Opin Chem Biol, 2005. 9(4): p. 336-42. Cerca con Google

21. Zhou, B. and B. Wang, Pegaptanib for the treatment of age-related macular degeneration. Exp Eye Res, 2006. 83(3): p. 615-9. Cerca con Google

22. Ng, E.W., et al., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 2006. 5(2): p. 123-32. Cerca con Google

23. Famulok, M., J.S. Hartig, and G. Mayer, Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev, 2007. 107(9): p. 3715-43. Cerca con Google

24. Cech, T.R., Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep, 1990. 10(3): p. 239-61. Cerca con Google

25. Altman, S., Nobel lecture. Enzymatic cleavage of RNA by RNA. Biosci Rep, 1990. 10(4): p. 317-37. Cerca con Google

26. Saldanha, R., et al., Group I and group II introns. Faseb J, 1993. 7(1): p. 15-24. Cerca con Google

27. Frank, D.N. and N.R. Pace, Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem, 1998. 67: p. 153-80. Cerca con Google

28. Lilley, D.M., RNA folding and catalysis. Genetica, 1999. 106(1-2): p. 95-102. Cerca con Google

29. Scott, W.G., Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme. Q Rev Biophys, 1999. 32(3): p. 241-84. Cerca con Google

30. Tanner, N.K., Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol Rev, 1999. 23(3): p. 257-75. Cerca con Google

31. Koizumi, M., et al., Allosteric ribozymes sensitive to the second messengers cAMP and cGMP. Nucleic Acids Symp Ser, 1999(42): p. 275-6. Cerca con Google

32. Pitkin, R.M., Folate and neural tube defects. Am J Clin Nutr, 2007. 85(1): p. 285S-288S. Cerca con Google

33. Westhof, E. and V. Fritsch, RNA folding: beyond Watson-Crick pairs. Structure, 2000. 8(3): p. R55-65. Cerca con Google

34. Chandrasekhar, K. and R. Malathhi, Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes -- a comparative study of group-I intron structures. J Biosci, 2003. 28(5): p. 547-55. Cerca con Google

35. Gilbert, W., Origin of life: the RNA world. Nature, 1986. 319: p. 618. Cerca con Google

36. Pace, P. and M. Rowley, Integrase inhibitors for the treatment of HIV infection. Curr Opin Drug Discov Devel, 2008. 11(4): p. 471-9. Cerca con Google

37. Van Heuverswyn, F., et al., Human immunodeficiency viruses: SIV infection in wild gorillas. Nature, 2006. 444(7116): p. 164. Cerca con Google

38. Taylor, B.S., et al., The challenge of HIV-1 subtype diversity. N Engl J Med, 2008. 358(15): p. 1590-602. Cerca con Google

39. Cohen, M.S., et al., The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest, 2008. 118(4): p. 1244-54. Cerca con Google

40. Scherer, L., J.J. Rossi, and M.S. Weinberg, Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther, 2007. 14(14): p. 1057-64. Cerca con Google

41. Sarafianos, S.G., et al., Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. Embo J, 2001. 20(6): p. 1449-61. Cerca con Google

42. Wu, Y., HIV-1 gene expression: lessons from provirus and non-integrated DNA. Retrovirology, 2004. 1: p. 13. Cerca con Google

43. Semenova, E.A., C. Marchand, and Y. Pommier, HIV-1 integrase inhibitors: update and perspectives. Adv Pharmacol, 2008. 56: p. 199-228. Cerca con Google

44. Pommier, Y., A.A. Johnson, and C. Marchand, Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov, 2005. 4(3): p. 236-48. Cerca con Google

45. Rice, P.A. and T.A. Baker, Comparative architecture of transposase and integrase complexes. Nat Struct Biol, 2001. 8(5): p. 302-7. Cerca con Google

46. Chiu, T.K. and D.R. Davies, Structure and function of HIV-1 integrase. Curr Top Med Chem, 2004. 4(9): p. 965-77. Cerca con Google

47. Wang, J.Y., et al., Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Embo J, 2001. 20(24): p. 7333-43. Cerca con Google

48. Cai, M., et al., Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol, 1997. 4(7): p. 567-77. Cerca con Google

49. Eijkelenboom, A.P., et al., The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol, 1997. 7(10): p. 739-46. Cerca con Google

50. Engelman, A. and R. Craigie, Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol, 1992. 66(11): p. 6361-9. Cerca con Google

51. Zheng, R., T.M. Jenkins, and R. Craigie, Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13659-64. Cerca con Google

52. Asante-Appiah, E. and A.M. Skalka, Molecular mechanisms in retrovirus DNA integration. Antiviral Res, 1997. 36(3): p. 139-56. Cerca con Google

53. Chen, J.C., et al., Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A, 2000. 97(15): p. 8233-8. Cerca con Google

54. Dyda, F., et al., Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science, 1994. 266(5193): p. 1981-6. Cerca con Google

55. Jenkins, T.M., et al., A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J Biol Chem, 1996. 271(13): p. 7712-8. Cerca con Google

56. Katzman, M. and M. Sudol, Nonspecific alcoholysis, a novel endonuclease activity of human immunodeficiency virus type 1 and other retroviral integrases. J Virol, 1996. 70(4): p. 2598-604. Cerca con Google

57. Engelman, A. and R. Craigie, Efficient magnesium-dependent human immunodeficiency virus type 1 integrase activity. J Virol, 1995. 69(9): p. 5908-11. Cerca con Google

58. Esposito, D. and R. Craigie, Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. Embo J, 1998. 17(19): p. 5832-43. Cerca con Google

59. Grobler, J.A., et al., Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6661-6. Cerca con Google

60. Bujacz, G., et al., Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem, 1997. 272(29): p. 18161-8. Cerca con Google

61. Beese, L.S. and T.A. Steitz, Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. Embo J, 1991. 10(1): p. 25-33. Cerca con Google

62. Johnson, A.A., et al., Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem, 2006. 281(1): p. 461-7. Cerca con Google

63. Marchand, C., et al., Mechanisms and inhibition of HIV integration. Drug Discovery Today:Disease Mechanisms, 2006. 3(2): p. 253-260. Cerca con Google

64. Van Maele, B., et al., Cellular co-factors of HIV-1 integration. Trends Biochem Sci, 2006. 31(2): p. 98-105. Cerca con Google

65. Guiot, E., et al., Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem, 2006. 281(32): p. 22707-19. Cerca con Google

66. Young, F.E., The role of the FDA in the effort against AIDS. Public Health Rep, 1988. 103(3): p. 242-5. Cerca con Google

67. Evering, T.H. and M. Markowitz, Raltegravir: an integrase inhibitor for HIV-1. Expert Opin Investig Drugs, 2008. 17(3): p. 413-22. Cerca con Google

68. Grim, S.A. and F. Romanelli, Tenofovir disoproxil fumarate. Ann Pharmacother, 2003. 37(6): p. 849-59. Cerca con Google

69. Kearney, B.P., J.F. Flaherty, and J. Shah, Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet, 2004. 43(9): p. 595-612. Cerca con Google

70. Modrzejewski, K.A. and R.A. Herman, Emtricitabine: a once-daily nucleoside reverse transcriptase inhibitor. Ann Pharmacother, 2004. 38(6): p. 1006-14. Cerca con Google

71. Arion, D., et al., Phenotypic mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry, 1998. 37(45): p. 15908-17. Cerca con Google

72. Quinones-Mateu, M.E., et al., Viral drug resistance and fitness. Adv Pharmacol, 2008. 56: p. 257-96. Cerca con Google

73. Kohlstaedt, L.A., et al., Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 1992. 256(5065): p. 1783-90. Cerca con Google

74. Hsiou, Y., et al., Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure, 1996. 4(7): p. 853-60. Cerca con Google

75. Nijhuis, M., S. Deeks, and C. Boucher, Implications of antiretroviral resistance on viral fitness. Curr Opin Infect Dis, 2001. 14(1): p. 23-8. Cerca con Google

76. Nijhuis, M., et al., Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. Aids, 1999. 13(17): p. 2349-59. Cerca con Google

77. Zhang, Y.M., et al., Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J Virol, 1997. 71(9): p. 6662-70. Cerca con Google

78. de la Carriere, L.C., et al., Effects of human immunodeficiency virus type 1 resistance to protease inhibitors on reverse transcriptase processing, activity, and drug sensitivity. J Virol, 1999. 73(4): p. 3455-9. Cerca con Google

79. Birk, M., V. Svedhem, and A. Sonnerborg, Kinetics of HIV-1 RNA and resistance-associated mutations after cessation of antiretroviral combination therapy. Aids, 2001. 15(11): p. 1359-68. Cerca con Google

80. De Clercq, E., Antiviral drugs in current clinical use. Journal of Clinical Virology, 2004. 30: p. 115-133. Cerca con Google

81. Hazuda, D.J., et al., Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000. 287(5453): p. 646-50. Cerca con Google

82. Svarovskaia, E.S., et al., Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at two-long-terminal-repeat-circle junctions. J Virol, 2004. 78(7): p. 3210-22. Cerca con Google

83. Fikkert, V., et al., Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol, 2003. 77(21): p. 11459-70. Cerca con Google

84. King, P.J. and W.E. Robinson, Jr., Resistance to the anti-human immunodeficiency virus type 1 compound L-chicoric acid results from a single mutation at amino acid 140 of integrase. J Virol, 1998. 72(10): p. 8420-4. Cerca con Google

85. Goldgur, Y., et al., Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc Natl Acad Sci U S A, 1999. 96(23): p. 13040-3. Cerca con Google

86. Fesen, M.R., et al., Inhibitors of human immunodeficiency virus integrase. Proc Natl Acad Sci U S A, 1993. 90(6): p. 2399-403. Cerca con Google

87. Johnson, A.A., et al., Probing HIV-1 integrase inhibitor binding sites with position-specific integrase-DNA cross-linking assays. Mol Pharmacol, 2007. 71(3): p. 893-901. Cerca con Google

88. Savarino, A., In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology, 2007. 4: p. 21. Cerca con Google

89. Little, S., et al., Protocol 004 study team. Antiviral effect of L-870810, a novel HIV-1 integrase inhibitor, in HIV-1 infected patients. 12th Conference on Retroviruses and Opportunistic Infections, 2005. Boston - MA. Cerca con Google

90. Sato, M., et al., Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem, 2006. 49(5): p. 1506-8. Cerca con Google

91. Zolopa, A.R., et al., The HIV integrase inhibitor GS-9137 demonstrates potent antiretroviral activity in treatment-experienced patients. 14th Conference on Retroviruses and Opportunistic Infections, 2007. Los Angeles - CA: p. [Abstract 143LB]. Cerca con Google

92. Summa, V., et al., HCV NS5b RNA-dependent RNA polymerase inhibitors: from alpha,gamma-diketoacids to 4,5-dihydroxypyrimidine- or 3-methyl-5-hydroxypyrimidinonecarboxylic acids. Design and synthesis. J Med Chem, 2004. 47(22): p. 5336-9. Cerca con Google

93. Summa, V., et al., 4,5-dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species. J Med Chem, 2006. 49(23): p. 6646-9. Cerca con Google

94. Kassahun, K., et al., Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos, 2007. 35(9): p. 1657-63. Cerca con Google

95. Markowitz, M., et al., Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr, 2006. 43(5): p. 509-15. Cerca con Google

96. Steigbigel, R.T., et al., Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med, 2008. 359(4): p. 339-54. Cerca con Google

97. Engelman, A. and P. Cherepanov, The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog, 2008. 4(3): p. e1000046. Cerca con Google

98. Al-Mawsawi, L.Q. and N. Neamati, Blocking interactions between HIV-1 integrase and cellular cofactors: an emerging anti-retroviral strategy. Trends Pharmacol Sci, 2007. 28(10): p. 526-35. Cerca con Google

99. Cherepanov, P., et al., HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem, 2003. 278(1): p. 372-81. Cerca con Google

100. Cherepanov, P., et al., Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A, 2005. 102(48): p. 17308-13. Cerca con Google

101. Poeschla, E.M., Integrase, LEDGF/p75 and HIV replication. Cell Mol Life Sci, 2008. 65(9): p. 1403-24. Cerca con Google

102. Shun, M.C., et al., LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev, 2007. 21(14): p. 1767-78. Cerca con Google

103. Molteni, V., et al., Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain. Acta Crystallogr D Biol Crystallogr, 2001. 57(Pt 4): p. 536-44. Cerca con Google

104. Walker, B.D. and D.R. Burton, Toward an AIDS vaccine. Science, 2008. 320(5877): p. 760-4. Cerca con Google

105. Steinbrook, R., One step forward, two steps back--will there ever be an AIDS vaccine? N Engl J Med, 2007. 357(26): p. 2653-5. Cerca con Google

106. Gottlieb, M.S., et al., Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med, 1981. 305(24): p. 1425-31. Cerca con Google

107. Masur, H., et al., An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med, 1981. 305(24): p. 1431-8. Cerca con Google

108. Siegal, F.P., et al., Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med, 1981. 305(24): p. 1439-44. Cerca con Google

109. Hazuda, D.J., et al., Resistance to the HIV-integrase inhibitor raltegravir: analysis of protocol 005, a Phase II study in patients with triple-class resistant HIV-1 infection. Antiviral Therapy, 2007. 12: p. Abstract 8. Cerca con Google

110. Marchand, C., N. Neamati, and Y. Pommier, In vitro human immunodeficiency virus type 1 integrase assays. Methods Enzymol, 2001. 340: p. 624-33. Cerca con Google

111. Craigie, R., et al., A rapid in vitro assay for HIV DNA integration. Nucleic Acids Res, 1991. 19(10): p. 2729-34. Cerca con Google

112. Maignan, S., et al., Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol, 1998. 282(2): p. 359-68. Cerca con Google

113. Marchand, C., et al., Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol, 2003. 64(3): p. 600-9. Cerca con Google

114. Malet, I., et al., Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother, 2008. 52(4): p. 1351-8. Cerca con Google

115. Cooper, D.A., et al., Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. New England Journal Medicine, 2008. 359(4): p. 355-365. Cerca con Google

116. Mascolini, M., Early clues from raltegravir failure in clinical practice; diverse patterns of resistance mutations. XVII International HIV Drug Resistance Workshop - Sitges - Spain, 2008. Brief Report. Cerca con Google

117. Kobayashi, M., et al., Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Research, 2008. 80: p. 213-222. Cerca con Google

118. Jones, G., et al., Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). 14th Conference on Retroviruses and Opportunistic Infections - Los Angeles, 2007. [Abstract]. Cerca con Google

119. Shimura, K., et al., Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol, 2008. 82(2): p. 764-74. Cerca con Google

120. Garvey, E.P., et al., The naphthyridinone GSK364735 is a novel, potent human immunodeficiency virus type 1 integrase inhibitor and antiretroviral. Antimicrobial Agents and Chemotherapy, 2007. 52(3): p. 901-908. Cerca con Google

121. Goethals, O., et al., Resistance mutations in HIV-1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J. Virol, 2008. Cerca con Google

122. Goodman, D., et al., Integrase inhibitor resistance involves complex interactions among primary and secondary resistance mutations: a novel mutation L68V/I associates with E92Q and increases resistance. XVII International HIV Drug Resistance Workshop - Sitges - Spain, 2008. [Abstract 13]. Cerca con Google

123. Schiff, R.D. and D.P. Grandgenett, Virus-coded origin of a 32,000-dalton protein from avian retrovirus cores: structural relatedness of p32 and the beta polypeptide of the avian retrovirus DNA polymerase. J Virol, 1978. 28(1): p. 279-91. Cerca con Google

124. Grandgenett, D.P., A.C. Vora, and R.D. Schiff, A 32,000-dalton nucleic acid-binding protein from avian retravirus cores possesses DNA endonuclease activity. Virology, 1978. 89(1): p. 119-32. Cerca con Google

125. Chow, S.A., et al., Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science, 1992. 255(5045): p. 723-6. Cerca con Google

126. Pommier, Y. and C. Marchand, Interfacial inhibitors of protein-nucleic acid interactions. Curr Med Chem Anticancer Agents, 2005. 5(4): p. 421-9. Cerca con Google

127. Pommier, Y. and J. Cherfils, Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Trends Pharmacol Sci, 2005. 26(3): p. 138-45. Cerca con Google

128. Nicastri, E., et al., Replication capacity, biological phenotype, and drug resistance of HIV strains isolated from patients failing antiretroviral therapy. J Med Virol, 2003. 69(1): p. 1-6. Cerca con Google

129. Mammano, F., C. Petit, and F. Clavel, Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol, 1998. 72(9): p. 7632-7. Cerca con Google

130. Martinez-Picado, J., et al., Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol, 1999. 73(5): p. 3744-52. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record