Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Magnabosco, Anna (2009) Il mutanteSply IN Drosophila melanogaster: modello per lo studio di alterazioni del metabolismo sfingolipidico. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
21Mb

Abstract (inglese)

The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. In fact, this class of lipids is a ubiquitous component of cell membranes and some metabolites: ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival.
Recently the role of sphingolipids in neural cell biology has also become a topic of investigation leading to the recognition that sphingolipids seem to play a key role in neuronal signalling, in particular through their presence in membrane lipid rafts which are involved in numerous cellular processes such as signal transduction, membrane trafficking, cytoskeletal organization, neural adhesion, axon guidance and synaptic transmission.
Homologs of key enzymes belonging to the sphingolipid metabolic pathway have been discovered in Drosophila melanogaster, making this an optimal model to study
the effects of dysregulation of sphingolipid metabolism on nervous system development, function and integrity.
In particular, our attention focused on sphingosine-1-phosphate lyase gene (Sply) null mutants. These animals, in the adult stages, show a profound reduction in flight performance which is probably related to the degeneration of flight muscle fibers and their mitochondria. On the other hand, larvae show locomotor impairments, although their muscles appear morphologically intact. . However, the neuromuscular junctions (NMJ) show significant morphological alterations at the level of the pre-and post synaptic complexes. Moreover, functional imaging studies using the lipophilic strylyl dye FM1-43, highlight anomalous synaptic vesicle recycling, which is confirmed by the electrophysiological analysis of synaptic function. These results suggest that the locomotion defects could be, at least in part, ascribed to the observed NMJ alterations.

Abstract (italiano)

L’importanza degli sfingolipidi quali componenti delle membrane biologiche è stata rivalutata esclusivamente nel ventesimo secolo, quando diverse patologie congenite umane del metabolismo sono state finalmente correlate a difetti ed alterazioni nella degradazione degli sfingolipidi. Infatti, questa classe di lipidi è una componente ubiquitaria di tutte le membrane cellulari ed alcuni metaboliti, quali la Ceramide (Cer), la Sfinghosina (Sph) e la Sfingosina-1 fosfato (S1P) svolgono importanti funzioni fisiologiche, tra le quali la regolazione della crescita e la sopravvivenza cellulare.
Recentemente, si sta, inoltre, sviluppando notevolmente un interesse volto alla comprensione del ruolo degli sfingolipidi nella biologia cellulare-neuronale. Infatti, gli sfingolipidi sembrano giocare un ruolo chiave nel signalling neuronale. In particolare, questa specifica funzionalità sembra essere svolta dagli sfingolipidi grazie alla loro presenza ed organizzazione in definite ed ordinate piattaforme lipidiche di membrana, le quali sono direttamente responsabili e coinvolte in numerosi processi cellulari, quali la trasduzione del segnale, il trafficking di membrana, l’organizzazione del citoscheletro, l’adesione neurale, la guida assonica e la trasmissione sinaptica.
In Drosophila melanogaster, sono stati scoperti ed individuati gli omologhi degli enzimi chiave appartenenti alla via metabolica sfingolipidica, rendendo quindi questo animale un ottimo modello per lo studio e l’analisi di tutti gli effetti funzionali e strutturali derivanti da alterazioni del metabolismo sfingolipidico, soprattutto a carico dello sviluppo, della funzionalità e dell’integrità dell’intero sistema nervoso.
In particolare, la nostra attenzione si è focalizzata sul mutante nullo per il gene sfingosina-1 fosfato liasi (Sply). Questi animali, durante lo stadio adulto, sono caratterizzati da una notevole riduzione nelle performance di volo, la quale sembra essere probabilmente correlata ad una importante degenerazione dei muscoli del volo e dei loro mitocondri.
Al contrario, durante lo stadio larvale, questi animali non evidenziano alcun deterioramento o anomalia a carico dell’apparato muscolare, essendo dotati di muscoli morfologicamente intatti e nella norma, ma mostrano comunque una chiara riduzione della capacità locomotoria. Inoltre, le giunzioni neuromuscolari (NMJ) sono caratterizzate da notevoli alterazioni morfologiche a livello dei loro complessi pre- e post-sinaptici. Infine, studi di imaging funzionale, realizzati mediante l’impiego del colorante lipofilico FM1-43, sottolineano delle modificazioni nel recycling delle vescicole sinaptiche. Questi risultati, suggeriscono quindi una possibile relazione, almeno parziale, tra difetti locomotori e le alterazioni riscontrate a carico della giunzioni neuromuscolari.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zordan, Mauro
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:28 Gennaio 2009
Anno di Pubblicazione:31 Gennaio 2009
Informazioni aggiuntive:Questa tesi di dottorato raccoglie alcuni dei risultati ottenuti durante il periodo di Dottorato di Ricerca in Bioscienze, Indirizzo Genetica e biologia molecolare dello sviluppo, svolto durante il triennio 2006-2008 presso l'Università di Padova
Parole chiave (italiano / inglese):sply drosophila melanogaster sfingolipidi sistema nervoso fibra muscolare giunzione neuromuscolare
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:1516
Depositato il:28 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Rubin GM. (1988) Drosophila melanogaster as an experimental organism. Science Jun 10;240(4858):1453-9 Cerca con Google

[2] Marsh JL, Thompson LM.(2006) Drosophila in the study of neurodegenerative disease. Neuron Oct 5;52(1):169-78. Cerca con Google

[3] Rockenstein E, Crews L, Masliah E.(2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev Sep 30;59(11):1093-102. Cerca con Google

[4] Schwarzel M. Locating engrams of olfactory memories in Drosophila. (2003) Tesi di dottorato; Università Julius-Maximilian di Bayer. Cerca con Google

[5] Sang TK, Jackson GR. (2005) Drosophila models of neurodegenerative disease. NeuroRx Jul;2(3):438-46. Cerca con Google

[6] Demerec M. (1950) Biology of Drosophila. CSHL press. Cerca con Google

[7] Bate M, Martinez Arias A. (1993) The development of Drosophila melanogaster. CSHL press. Cerca con Google

[8] Clark KA, Bland JM, Beckerle MC.(2007) The Drosophila muscle LIM protein, Mlp84B, cooperates with D-titin to maintain muscle structural integrity. J Cell Sci Jun 15;120(Pt 12):2066-77. Cerca con Google

[9] Peron S, Zordan M, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. In fase di pubblicazione. Cerca con Google

[10] Hoang B, Chiba A. (2001) Single-Cell Analysis of Drosophila Larval Neuro-muscular Synapses. Developmental Biology 229, 55-70. Cerca con Google

[11] Budnik V, Gorczyca M, Prokop A. (2006) Selected methods for the anatomical study of Drosophila embryonic and larval neuromuscular junctions. Int Rev Neurobiol 75:323-65. Cerca con Google

[12] Budnik V. (1996) Synapse assembly and structural plasticity at Drosophila neuromuscular junctions. Current Opinion in Neurobiology 6, 858-867. Cerca con Google

[13] Keshishian H, Brodie K, Chiba A, Bate M. (1996) The Drosophila neuromuscular junction: a model system for studing synaptic development and function. Annu. Rev. Neurosci. 19, 545-575. Cerca con Google

[14] Broadie K, Bate M. (1993) Development of the embryonic neuromuscular synapse of Drosophila melanogaster. Journal of Neuroscience 13, 144-166. Cerca con Google

[15] Monastriani M, Gorczyca M, Rapus J, Eckert M, White K., Budnik V. (1995) Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. Journal of Comparative Neurology 356, 275-287. Cerca con Google

[16] Cantera R, Nassel DR. (1992) Segmental peptidergic innervation of abdominal targets in larval and adult dipterian insects revealed with an antiserum against leukokinin I. Cell and Tissue Research 269, 459-471. Cerca con Google

[17] Zhong Y, Pena L. (1995) A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron 15, 2354-2366. Cerca con Google

[18] Jia X.-X., Gorczyca M, Budnik V. (1993) Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology 24, 1025-1044. Cerca con Google

[19] Johansen J, Halpern ME, Johansen KM, Keshishian H. (1989) Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. Journal of Neuroscience 9, 710-725. Cerca con Google

[20] Budnik JV, Gorczyca M. (1992) SSB, an antigen that selectively labels morphologically distinct synaptic boutons at the Drosophila larval neuromuscular junction. Journal of Neurobiology 23, 1054-1066. Cerca con Google

[21] Gorczyca M, Augart C, Budnik V. (1993) Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila. Journal of Neuroscience 13, 3692-3704. Cerca con Google

[22] Gramates LS, Budnik V. (1999) Synapse assembly and maturation. International review of neurobiology 43. Cerca con Google

[23] Prokop A, Meinertzhagen IA. (2006) Development and structure of synaptic contacts in Drosophila. Semin Cell Dev Biol 17, 20-30. Cerca con Google

[24] Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ. (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 19;312(5776):1051-4. Cerca con Google

[25] Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E. (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron Mar 16;49(6):833-44. Cerca con Google

[26] Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P. (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci. Feb 28;354(1381):269-79. Cerca con Google

[27] Schwarz TL. (2006) Transmitter release at the neuromuscular junction. Int Rev Neurobiol.75:105-44 Cerca con Google

[28] Chen K, Featherstone DE. (2005) Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila. BMC Biol. Jan 8;3:1. Cerca con Google

[29] Atwood HL, Govind CK, Wu C-F. (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology 24, 1009-1024. Cerca con Google

[30] Fertuck HC, Salpeter MM. (1974) Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc, Natr, Acad. Sci USA 71, 1376-1378. Cerca con Google

[31] Rheuben MB. (1985) Quantitative comparison of the structural features of slow and fast neuromuscular junctions in Manduca. Journal of Neuroscience 5, 1704-1716. Cerca con Google

[32] Rheuben MB, Reese TS. (1978). Three-dimensional structure and membrane specializations of moth excitatory neuromuscular synapse. Journal of Ultrastrucure Research 65, 95-111. Cerca con Google

[33] Atwood HL, Wojtowicz JM. (1986) Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Internationa Review of Neurobiology 28, 275-362. Cerca con Google

[34] Pearce J, Govind CK, Shivers RR. (1986) Intramembranous organization of lobster excitatory neuromuscular synapses. Journal of Neurocytology 15, 241-252. Cerca con Google

[35] Rheuben MB, Yoshihara M, Kidokoro Y. (1999). Ultrastructural correlates of neuromuscular junction development. In: Press, A. (Ed.) Neuromuscular Junction in Drosophila, pp. 69-92 Cerca con Google

[36] Guan B, Hartmann B, Kho Y-H, Gorczyca M, Budnik V. (1996). The drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse. Curr. Biol. 6, 695-706. Cerca con Google

[37] Faeder I, Salpeter M. (1970) Glutamate uptake by a stimulated insect nerve muscle preparation. Journal of Cell Biology 46, 300-307. Cerca con Google

[38] Pielage J, Fetter RD, Davis GW. (2007) A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol. Nov 6;175(3):491-503 Cerca con Google

[39] Rohrbough J, Broadie K. (2005) Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci. Feb;6(2):139-50 Cerca con Google

[40] Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan AJ, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H, Sherkhane PD, Siddiqi K, Silva E, Carlson JR, Goodwin SF, Heisenberg M, Krishnan K, Kyriacou CP, Partridge L, Riesgo-Escovar J, Rodrigues V, Tully T, O'Kane CJ. (2005) Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet. 2005 Apr-Jun;19(2):57-85. Cerca con Google

[41] Hoekstra D, Maier O, van der Wouden JM, Slimane TA, van IJzendoorn SC. (2003) Membrane dynamics and cell polarity: the role of sphingolipids. J Lipid Res. May;44(5):869-77 Cerca con Google

[42] Kidokoro Y, Kuromi H, Delgado R, Maureira C, Oliva C, Labarca P. (2004) Synaptic vesicle pools and plasticity of synaptic transmission at the Drosophila synapse. Brain Res Brain Res Rev. Dec;47(1-3):18-32. Cerca con Google

[43] Bodstein D. (1950) “The postembryonic development of Drosophila” da Biology of Drosophila. CSHL Press. Cerca con Google

[44] Pereanu W, Shy D, Hartenstein V. (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol. Jul 1;283(1):191-203 Cerca con Google

[45] Futerman AH, Hannun YA. (2004) The complex life of simple sphingolipids. EMBO Rep. Aug;5(8):777-82 Cerca con Google

[46] Acharya U, Acharya JK. (2005) Enzymes of sphingolipid metabolism in Drosophila melanogaster. Cell Mol Life Sci. Jan;62(2):128-42. Cerca con Google

[47] Ogretmen B, Hannun YA. (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. Aug;4(8):604-16. Cerca con Google

[48] Chalfant CE, Spiegel S. (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci. Oct 15;118(Pt 20):4605-12 Cerca con Google

[49] Spiegel S, Milstien S. (2002) Sphingosine 1-phosphate, a key cell signaling molecule. Biol Chem. Jul 19;277(29):25851-4. Cerca con Google

[50] Payne SG, Milstien S, Spiegel S. (2002) Sphingosine-1-phosphate: dual messenger functions. FEBS Lett. Oct 30;531(1):54-7. Cerca con Google

[51] Pyne S, Pyne NJ. (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. Jul 15;349(Pt 2):385-402 Cerca con Google

[52] Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL. (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. Oct;6(10):1109-14 Cerca con Google

[53] Prieschl EE, Csonga R, Novotny V, Kikuchi GE, Baumruker T. (1999) The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. J Exp Med. Jul 5;190(1):1-8. Cerca con Google

[54] Toman RE, Spiegel S. (2002) Lysophospholipid receptors in the nervous system. Neurochem Res. Aug;27(7-8):619-27. Cerca con Google

[55] Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, Acharya U, Acharya JK, Broadie K. (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci. Sep 8;24(36):7789-803. Cerca con Google

[56] Hoekstra D, Maier O, van der Wouden JM, Slimane TA, van IJzendoorn SC. (2003) Membrane dynamics and cell polarity: the role of sphingolipids. J Lipid Res. May;44(5):869-77. Cerca con Google

[57] Pagano RE, Puri V, Dominguez M, Marks DL. (2000) Membrane traffic in sphingolipid storage diseases. Traffic. 2000 Nov;1(11):807-15. Cerca con Google

[58] Chen M, Wang J. (2008) Gaucher disease: review of the literature. Arch Pathol Lab Med. May;132(5):851-3. Cerca con Google

[59] de Fost M, Aerts JM, Hollak CE. (2003) Gaucher disease: from fundamental research to effective therapeutic interventions. Neth J Med. Jan;61(1):3-8. Cerca con Google

[60] Schuchman EH.(2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis. Oct;30(5):654-63. Cerca con Google

[61] Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH Jr, Holleran WM, Hanada K. (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest. Nov;110(9):1301-8. Cerca con Google

[62] Fortini ME, Skupski MP, Boguski MS, Hariharan IK. (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. Jul 24;150(2):F23-30. Cerca con Google

[63] Rietveld A, Neutz S, Simons K, Eaton S. (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem. Apr 23;274(17):12049-54. Cerca con Google

[64] Dennis RD, Geyer R, Egge H, Menges H, Stirm S, Wiegandt H. (1985) Glycosphingolipids in insects. Chemical structures of ceramide monosaccharide, disaccharide, and trisaccharide from pupae of Calliphora vicina (Insecta: Diptera). Eur J Biochem. 1985 Jan 2;146(1):51-8 Cerca con Google

[65] Rao RP, Acharya JK. (2008) Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat. Feb;85(1-2):1-16. Cerca con Google

[66] Acharya U, Patel S, Koundakjian E, Nagashima K, Han X, Acharya JK.(2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science. Mar 14;299(5613):1740-3. Cerca con Google

[67] Renault AD, Starz-Gaiano M, Lehmann R. (1980) Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. Mech Dev. 2002 Dec;119 Cerca con Google

[68] Herr DR, Fyrst H, Phan V, Heinecke K, Georges R, Harris GL, Saba JD. (2003) Sply regulation of sphingolipid signaling molecules is essential for Drosophila development. Development. Jun;130(11):2443-53 Cerca con Google

[69] Ikeda M, Kihara A, Igarashi Y. (2004)Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5'-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun. Dec 3;325(1):338-43. Cerca con Google

[70] Li G, Foote C, Alexander S, Alexander H. (2001) Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development. Sep;128(18):3473-83. Cerca con Google

[71] Mendel J, Heinecke K, Fyrst H, Saba JD. (2003) Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem. Jun 20;278(25):22341-9. Cerca con Google

[72] Phan VH, Herr DR, Panton D, Fyrst H, Saba JD, Harris GL. (2007) Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. Dev Biol. Sep 15;309(2):329-41. Cerca con Google

[73] Macleod GT, Hegström-Wojtowicz M, Charlton MP, Atwood HL. (2002) Fast calcium signals in Drosophila motor neuron terminals. J Neurophysiol. Nov;88(5):2659-63. Cerca con Google

[74] Haines N, Seabrooke S, Stewart BA. (2007) Dystroglycan and protein O-mannosyltransferases 1 and 2 are required to maintain integrity of Drosophila larval muscles. Mol Biol Cell. Dec;18(12):4721-30. Cerca con Google

[75] Haines N, Stewart BA. (2007) Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Genetics. Feb;175(2):671-9. Cerca con Google

[76] Scaduto RC Jr, Grotyohann LW. (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. Jan;76(1 Pt 1):469-77. Cerca con Google

[77] Floryk D, Houst?k J. (1999) Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep. Feb;19(1):27-34. Cerca con Google

[78] Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P. (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet. Dec;35(4):367-71. Cerca con Google

[79] Pagano RE, Martin OC, Kang HC, Haugland RP. (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol. Jun;113(6):1267-79. Cerca con Google

[80] Marks DL, Bittman R, Pagano RE. (2008) Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol. Nov;130(5):819-32. Cerca con Google

[81] Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, Acharya U, Acharya JK, Broadie K. (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci. Sep 8;24(36):7789-803. Cerca con Google

[82] Kohyama-Koganeya A, Kim YJ, Miura M, Hirabayashi Y. (2008) A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: loss of boss causes abnormal energy metabolism. Proc Natl Acad Sci U S A. Oct 7;105(40):15328-33. Cerca con Google

[83] Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, Das S. (2007) Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol. Jan;37(1):21-32. Cerca con Google

[84] Snow PM, Patel NH, Harrelson AL, Goodman CS. (1987) Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci. Dec;7(12):4137-44. Cerca con Google

[85] Ruiz-Canada C, Ashley J, Moeckel-Cole S, Drier E, Yin J, Budnik V. (2004) New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron. May 27;42(4):567-80. Cerca con Google

[86] Ashley J, Packard M, Ataman B, Budnik V. (2005) Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci. Jun 22;25(25):5943-55. Cerca con Google

[87] Torroja L, Packard M, Gorczyca M, White K, Budnik V. (1999) The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci. Sep 15;19(18):7793-803. Cerca con Google

[88] Koh YH, Ruiz-Canada C, Gorczyca M, Budnik V. (2002) The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion. J Neurosci. Apr 1;22(7):2496-504. Cerca con Google

[89] Packard M, Koo ES, Gorczyca M, Sharpe J, Cumberledge S, Budnik V. (2002) The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell. Nov 1;111(3):319-30. Cerca con Google

[90] Hebbar S, Fernandes JJ. (2005) A role for Fas II in the stabilization of motor neuron branches during pruning in Drosophila. Dev Biol. Sep 1;285(1):185-99. Cerca con Google

[91] Wucherpfennig T, Wilsch-Bräuninger M, González-Gaitán M. (2003) Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol. May 12;161(3):609-24. Cerca con Google

[92] Huntwork S, Littleton JT. (2007) A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci. Oct;10(10):1235-7. Cerca con Google

[93] Betz WJ, Mao F, Bewick GS. (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci. Feb;12(2):363-75. Cerca con Google

[94] Ramaswami M, Krishnan KS, Kelly RB. (1984) Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron. Aug;13(2):363-75. Cerca con Google

[95] Kuromi H, Kidokoro Y. (1999) The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. J Neurosci. Mar 1;19(5):1557-65. Cerca con Google

[96] Fergestad T, Broadie K. (2001) Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. Feb 15;21(4):1218-27. Cerca con Google

[97] Delgado R, Maureira C, Oliva C, Kidokoro Y, Labarca P. (2000) Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron. Dec;28(3):941-53 Cerca con Google

[98] Gutierrez E, Wiggins D, Fielding B, Gould AP. (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature. Jan 18;445(7125):275-80. Cerca con Google

[99] Bilderback TR, Chan JR, Harvey JJ, Glaser M. (1997) Measurement of the Rate of Myelination Using a Fluorescent Analogue of Ceramide. Journal of Neuroscience Research 49:497–507. Cerca con Google

[100] Ellen Gielen E, Vercammen J, Sýkora J, Humpolickova J, vandeVen M, Benda A, Hellings N, Hof M, Engelborghs Y, Steels P, Ameloot M. (2005) Diffusion of sphingomyelin and myelin oligodendrocyte glycoprotein in the membrane of OLN-93 oligodendroglial cells studied by fluorescence correlation spectroscopy. C. R. Biologies 328 1057–1064. Cerca con Google

[101] Watanabe R, Asakura K, Rodriguez M, Pagano RE. (1999) Internalization and Sorting of Plasma Membrane Sphingolipid Analogues in Differentiating Oligodendrocytes. J. Neurochem., Vol. 73, No. 4, 1375-1383. Cerca con Google

[102] Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. Dec;25(24):11113-21. Cerca con Google

[103] Teng H, Wilkinson RS. ( 2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. J Neurosci. Nov 1;20(21):7986-93. Cerca con Google

[104] Akbergenova Y, Bykhovskaia M. (2008) Enhancement of the endosomal endocytic pathway increases quantal size. Mol Cell Neurosci. Nov 5. Cerca con Google

[105] Budnik V. (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol. Dec;6(6):858-67. Cerca con Google

[106] Fernandes J, Keshishian H. (1995) Neuromuscular development in Drosophila: insights from embryos and pupae. Curr Opin Neurobiol. Feb;5(1):10-8. Cerca con Google

[107] Cash S, Chiba A, Keshishian H (1992) Alterate neuromuscular target selection following the loss of single muscle fibers in Drosophila. Neurosci. Jun;12(6):2051-64. Cerca con Google

[108] Broadie K, Bate M. (1993) Muscle development is independent of innervation during Drosophila embryogenesis. Development. Oct;119(2):533-43. Cerca con Google

[109] Keshishian H, Chang TN, Jarecki J. (1994) Precision and plasticity during Drosophila neuromuscular development. FASEB J. Jul;8(10):731-7. Cerca con Google

[110] Prokop A, Landgraf M, Rushton E, Broadie K, Bate M. ( 1996) Presynaptic development at the Drosophila neuromuscular junction: assembly and localization of presynaptic active zones. Neuron. Oct;17(4):617-26. Cerca con Google

[111] Reid PC, Urano Y, Kodama T, Hamakubo T. (2007) Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med. May-Jun;11(3): 383-92. Cerca con Google

[112] Canevari L, Clark JB. (2007) Alzheimer's disease and cholesterol: the fat connection. Neurochem Res. Apr-May;32(4-5):739-50. Cerca con Google

[113] Morgan AR, Turic D, Jehu L, Hamilton G, Hollingworth P, Moskvina V, Jones L, Lovestone S, Brayne C, Rubinsztein DC, Lawlor B, Gill M, O'Donovan MC, Owen MJ, Williams J. (2007) Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer's disease. Am J Med Genet B Neuropsychiatr GenetSep 5;144B(6):762-70. Cerca con Google

[114] Puglielli L, Ellis BC, Saunders AJ, Kovacs DM. (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem. May 30;278(22):19777-83. Cerca con Google

[115] Han X, M Holtzman D, McKeel DW Jr, Kelley J, Morris JC. (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis. J Neurochem. Aug;82(4):809-18. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record