Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Martinez-Sañudo, Isabel (2009) Phylogenetic studies of tephritid flies (Diptera, Tephritidae)
and their symbiotic bacteria.
[Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

Tephritidae, commonly known as “fruit flies” is a large and complex family. Most, particularly the frugivorous species, are notorious pests. These include Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera oleae (Rossi) (olive fly), Rhagoletis cerasi (L.) (cherry fly), Rhagoletis completa (Cresson) (walnut husk fly) and other exotic species. Other species, however, live on the flower heads of Asteraceae. Since the beginning of the last century, some authors (Petri 1909, Stammer, 1929) report
the presence of symbiotic bacteria in flies belonging to the subfamily Tephritinae. Recently the olive fly symbiont has been described and designated as ‘Candidatus Erwinia dacicola’ by (Capuzzo et al., 2005). The present work aims to study the relationships between species of the family Tephritidae
and their symbiotic bacteria. It is based upon three main studies, the first of which has already been published.
1.- The first study is the continuation of Alessia Piscedda PhD. thesis and deals with the identity of symbiotic bacteria, in 25 flies belonging to the subfamily Tephritinae (Diptera: Tephritidae), which were collected mainly in northern Italy. In order to detect and identify symbiotic bacteria, the first tract of the midgut of flies emerging from previously sterilized pupae, was plated on different microbiological media, LIVE/DAD BacLight staining was performed and biomolecular techniques were used. According to Stammer, (1929) the presence of non culturable symbiotic bacteria has been detected in species of genera Tephritis, Campiglossa, Trupanea, Acanthiophilus, Sphenella, and Oxyna. Symbiotic bacteria have also been found in other genera (Capitites, Dioxyna, Noeeta), which were not
studied by Stammer. Sequencing 1000 bp of the small subunit rDNA gene from these symbiotic bacteria has indicated that they belong to the family Enterobacteriaceae and a novel candidate organism has been proposed for the symbiotic bacteria of the genus Tephritis, under the designation ‘Candidatus Stammerula tephritidis’. These analyses have been extended to other tribes of the subfamily Tephritinae (Xyphosiini, Myopitini e Terellini), using the same techniques reported above, but non symbiotic bacteria have been detected in these tribes, as suggested by Stammer (1929).
2.- The second study of the present work analyzes the phylogenetic relationships between tephritid flies of the subfamily Tephritinae. Two regions of the mitochondrial DNA, 16S rDNA e COI-tRNALeu-COII, were examined. The phylogenetic trees obtained from a Bayesian Inference and a Maximum-Likelihood analysis have suggested, as a rule, the presence of five monophyletic clusters corresponding to the fives tribes of this subfamily: Tephritini, Myopitini, Xyphosiini, Noeetini e Terellini. The phylogenetic tree obtained from the analysis of the COI-tRNALeu-COII showed more highly resolved trees and the internal nodes more highly supported than the phylogeny inferred from the 16S data set, and defined the relationships among the tribes better. Cophylogenetic analysis has been carried out, and the presence of congruence between hosts and symbionts, even if imperfect, has been suggested. The reconstructions obtained showed two principal events. The most important and probably earliest event corresponds with the acquisition of symbiotic bacteria by the common ancestor of the tribe. The presence of non-strict congruence is probably due to other events such as losses, duplications and hostswitchings. Indeed, these bacteria are extracellular symbionts and some opportunities for host-switching occur during the biological cycle of the fly. In the larval stadium, for instance, bacteria are located in the intestinal caeca (Petri 1909; Stammer, 1929), without the protection of the peritrophic membrane and are thus, in contact with free living bacteria present in the intestinal lumen. The contemporaneous presence of different species in the same host plant could also be an opportunity for host-switching. Considering all of these aspects, the presence of congruence, even if not strict, results particularly interesting and a physiological compatibility between host and symbiont seems to appear.
3.- In the third part of my PhD. thesis, the phylogenetic analysis of insects has been extended to Paleartic species belonging to other subfamilies (Trypetinae e Dacinae). It has been based on the analysis of two regions of the mitochondrial DNA: 16S e COI-tRNALeu-COII. The availability of sequences of the 16S rDNA of several species in GenBank, has allowed extending this data set. These phylogenetic analysis still in progress, confirms the traditional classification based on a morphological approach but suggests also interesting relationships among the tribes. I have also attempted to associate the phylogeny obtained with morphological symbiotic arrangements and biological characteristics. Interestingly, it was pointed out that all the species of the subfamily Tephritinae that overwinter as adults, present symbiotic bacteria in the first tract of the midgut. The presence of these bacteria seems to be essential for the overwintering adults. Indeed, while the diet of larval stages includes relatively rich substrates such as flower tissue and seeds, glyciphagous adults have access to less resources. Thus the presence of bacteria could be more critical for their survival than that in the earlier stages.

Abstract (italiano)

I tefritidi costituiscono un’importante famiglia di ditteri fitofagi molti dei quali rivestono un notevole interesse economico in quanto dannosi alle colture agrarie. Le specie di maggior importanza sono quelle che si riproducono a carico del frutto tra cui Ceratitis capitata (Wiedemann) (mosca mediterranea della frutta), Bactrocera oleae (Rossi) (olivo), Rhagoletis cerasi (L.) (ciliegia), Rhagoletis completa (Cresson) (noce) e altre specie esotiche. Altre specie invece, come quelle appartenenti alla sottofamiglia Tephritinae vivono soprattutto a carico dei capolini fiorali delle Composite (Asteraceae). Nella famiglia dei tefritidi sono presenti simbiosi batteriche note per alcune specie da quasi un secolo (Petri, 1909; Stammer, 1929). Recentemente, grazie alle tecniche biomolecolari, è stata identificata e sequenziata la specie batterica simbionte della mosca dell’olivo. Per tale simbionte, che è risultato appartenere alle Enterobacteriaceae è stato proposto il nome “Candidatus Erwinia dacicola”. Il presente lavoro ha come obiettivo l’approfondimento delle conoscenze sulle relazioni tra i ditteri tefritidi e i loro batteri simbionti e si articola in tre parti la prima delle quali
è già stata oggetto di una pubblicazione.
1. In continuazione della tesi di dottorato della dottoressa Alessia Piscedda, l’identità dei batteri simbionti è stata studiata in 25 specie della sottofamiglia Tephritinae (Diptera: Tephritidae) provenienti da diverse zone del nordest d’Italia e da paesi limitrofi. Per queste specie si è provveduto alla coltivazione del contenuto del mesointestino di mosche provenienti da pupe preventivamente sterilizzate, all’osservazione di preparati microscopici di questo stesso tratto dell’intestino con LIVE/DAD BacLight e all’utilizzo di tecniche biomolecolari. In accordo con quanto riportato da Stammer (1929) le indagini hanno consentito di accertare la presenza di batteri simbionti non
coltivabili in numerose specie dei generi: Tephritis, Campiglossa., Trupanea, Acanthiophilus, Sphenella, e Oxyna. Simbiosi batteriche sono state rinvenute anche in alcuni generi non considerati da Stammer (Capitites, Dioxyna, Noeeta). I batteri, di cui è stato sequenziato un frammento del 16S rDNA di oltre 1000 bp, risultano specifici per ogni specie di insetto ospite e, come il simbionte della mosca dell’olivo (Bactrocera oleae), appartengono tutti alla famiglia delle Enterobacteriaceae. I batteri simbionti riscontrati nelle specie del genere Tephritis per la loro affinità filogenetica sono stati designati come “Candidatus Stammerula tephritidis”. L’estensione dell’indagine ad altre tribù paleartiche della sottofamiglia Tephritinae (Xyphosiini, Myopitini e Terellini) con le medesime tecniche, sia tradizionali che biomolecolari, non ha evidenziato la presenza di batteri simbionti come suggerito da Stammer (1929).
2. Nella seconda parte del lavoro sono state studiate le relazioni filogenetiche tra i tefritidi, appartenenti alla sottofamiglia Tephritinae, analizzando due regioni del DNA mitocondriale, 16S rDNA e COI-LeutRNA-COII. Gli alberi filogenetici risultati da una analisi bayesiana e di maximum-likelihood hanno evidenziato la presenza di 5 cluster monofilettici e di regola altamente supportati corrispondenti alle 5 tribù della sottofamiglia Tephritinae: Tephritini, Myopitini, Xyphosiini, Noeetini e Terellini. La ricostruzione filogenetica ottenuta dal COI-tRNALeu-COII data set è risultata più risolta e supportata nei nodi interni rispetto a quella del 16S rDNA, contribuendo maggiormente a definire i rapporti di parentela tra le tribù. La disponibilità di una filogenesi dei batteri simbionti e dei loro insetti ospiti ha consentito inoltre lo studio della congruenza filogenetica. I diversi test di cofilogenesi addottati hanno evidenziato la presenza di una congruenza, seppur imperfetta, tra ospiti e simbionti. Dalle ricostruzioni si riconoscono due principali eventi di acquisizione il più importante e antico dei quali è quello avvenuto a carico dell’antenato comune della Tribù Tephritini. La causa di una non perfetta congruenza è da imputare all’esistenza di perdite, riacquisizioni e trasferimenti orizzontali. È importante ricordare che, essendo tali simbionti extracellulari, il ciclo biologico di questi insetti potenzialmente offre parecchie occasioni per trasferimenti orizzontali accidentali. Essendo nello stadio larvale i simbionti presenti nei cechi gastrici, parzialmente a contatto con il bolo alimentare, risulterebbero vulnerabili e sostituibili da altri batteri. Anche la frequentazione, da parte di specie diverse, delle stesse piante ospiti potrebbe essere occasione per trasferimenti orizzontali e sostituzioni. A fronte di queste molteplici possibilità la congruenza filogenetica riscontrata, seppure imperfetta, risulta a maggior ragione particolarmente interessante e va probabilmente spiegata con il coinvolgimento di altri fattori quali l’esistenza di una compatibilità fisiologica tra l’insetto ospite ed il battere.
3. Nella terza parte del lavoro l’analisi filogenetica degli insetti è stata ampliata a specie paleartiche appartenenti ad altre sottofamiglie (Trypetinae e Dacinae) sempre basandosi su due regione del DNA mitocondriale (16S e COI-LeutRNA-COII). La disponibilità in GenBank di sequenze del 16S di altre specie appartenenti a diverse regioni zoogeografiche ha consentito di allargare almeno per questo gene il data set. L’elaborazione dei dati, ancora parzialmente in corso, conferma in generale la tradizionale classificazione condotta su base morfologica ma offre anche spunti di discussione per eventuali riarrangiamenti di alcuni taxa. É stato realizzato anche un tentativo di affiancare alla ricostruzione filogenetica, oltre agli aspetti legati al ciclo biologico della specie, anche le diverse caratteristiche morfologiche degli organi adibiti ad ospitare i batteri simbionti nell’adulto. Risulta interessante notare come, tutte le specie paleartiche analizzate che svernano come adulti, ospitano batteri simbionti. Al
contrario (tranne in un caso), tutte le specie che non svernano come adulto, sono risultate prive di batteri simbionti. Tali acquisizioni lasciano supporre che la presenza dei simbionti a livello del mesointestino, più che una opportunità per integrare la dieta larvale probabilmente già relativamente ricca, possano rappresentare, per quelle specie che hanno scelto di svernare allo stadio di adulto, una componente indispensabile.



Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Girolami, Vincenzo
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > PROTEZIONE DELLE COLTURE
Data di deposito della tesi:28 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):Molecular phylogeny, symbiosis, coevolution, cospeciation, fruit flies, Tephritidae.
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/11 Entomologia generale e applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Ambientale e Produzioni Vegetali
Codice ID:1564
Depositato il:28 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aluja S., M. (1994) Bionomics and management of Anastrepha. Annu Rev Entomol, 39, 155-178. Cerca con Google

Aksoy, S. (1995) Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol, 4, 23–29. Cerca con Google

Baker, R.H. & Dessalle, R. (1997) Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol , 46, 654-73. Cerca con Google

Bandi, C., Damiani, G., Magrassi, L., Grigolo, A., Fani, R. & Sacchi, L. (1994) Flavobacteria as intracellular symbionts in cockroaches. Proc R Soc Lond B Biol Sci, 257, 43–48. Cerca con Google

Bateman, M. A. (1972) The ecology of fruit flies. Annu Rev Entomol, 17, 493-518. Cerca con Google

Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA. (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol, 49, 55–94. Cerca con Google

Baumann, P. & Moran, N. A. (1997) Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie van Leeuwenhoek, 72, 39–48. Cerca con Google

Berlocher, S. H., & Bush, G. L. (1982) An electrophoretic analysis of Rhagoletis (Diptera: Tephritidae) phylogeny. Syst Zool, 31, 136–155. Cerca con Google

Buchner, P. (1965) Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers, Inc. Cerca con Google

Buckley TR, Simon C, Flook PK & Misof PK. (2000) Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene Insect Mol Biol, 9 , 565–580. Cerca con Google

Bush, G. L. (1965) The genus Zonosemata, with notes on the cytology of two species (Diptera–Tephritidae). Psyche 72, 307–323. Cerca con Google

Cannone, J.J., Subramanian, S., Schnare, M.N. et al. (14 co-authors), (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed. Central Bioinformat. 3, 2. Cerca con Google

Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A. & Girolami, V. (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol, 55, 1641–1647. Cerca con Google

Charleston, M. A. (1998) Jungles: A new solution to the host/parasite phylogeny reconciliation problem. Math Biosci, 149, 191–223. Cerca con Google

Chen XA, Li S & Aksoy S. (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol, 48, 49–58. Cerca con Google

Clark, M. A., Baumann, L., Munson, M. A., Baumann, P., Campbell, B. C., Duffus, J. E., Osborne, L. S. & Moran, N. A. (1992) The eubacterial endosymbionts of whiteflies (Homoptera:Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol, 25, 119–123. Cerca con Google

Clark, M. A., N. A. Moran, P. Baumann, & J. J. Wernegreen. (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution, 54, 517– 525 Cerca con Google

Charleston, M.A., Page, R.D.M., 2002. TREEMAP (v2.0) Applications for Apple Macintosh. University of Oxford, Oxford. Cerca con Google

Christenson, L.D. & R.H. Foote. (1960) Biology of fruit flies. Annu Rev Entomol, 5, 171-192. Cerca con Google

Cogan, B. H. & H. K. Munro. (1980) Family Tephritidae, p. 518-554. In R. W. Crosskey, ed. (B. H. Cogan, P. Freeman, A. C. Pont, K. G. V. Smith & H. Oldroyd, assist. eds.), Catalogue of the Diptera of the Afrotropical Region. British Museum (Natural History), Cerca con Google

London. 1437 p. Cerca con Google

Condon, M. A. & A. L. Norrbom. (1994) Three sympatric species of Blepharoneura (Diptera: Tephritidae) on a single species of host (Gurania spinulosa (Cucurbitaceae): new species and new taxonomic methods. Syst Entomol, 19, 279-304. Cerca con Google

Daser U. & Brandl R. (1992) Microbial gut floras of eight species of tephritids. Biological Journal of the Linnean Sociey , 45, 155-165. Cerca con Google

Dean R. W (1935) Morphology of the digestve tract of the apple maggot fly, Rhagoletis pomonella Walsh, N. Y. State Agr. Exp.Station (Geneva, N.Y.) Bull. 229. Cerca con Google

Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ. (2004) Host symbiont stability and fast evolutionary rates in an antbacterium association: cospeciation of Camponotus species Cerca con Google

and their endosymbionts, Candidatus Blochmannia. Syst Biol, 53, 95–110. Cerca con Google

Dillon R.J. & Dillon V.M. (2004) The gut bacteria of insects: Nonpathogenic Interactions. Annu Rev Entomol, 49, 71-92. Cerca con Google

Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol, 70, 3884–3892. Cerca con Google

Downie DA & Gullan PJ. (2005) Phylogenetic congruence of mealybugs and their primary endosymbionts. J Evol Biol, 18, 315–324. Cerca con Google

Drew, R.A.I. & Lloyd, A.C. (1987) Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am, 80, 629-636. Cerca con Google

Drew, R. A. I. & Lloyd A.C. (1991) Bacteria in the life cycle of tephritid fruit flies, p. 441-465. In P. Barbosa, V. A. Krischik & C. G. Jones, eds., Microbial mediation of plant-herbivore interactions. John Wiley & Sons, New York. 625 p. Cerca con Google

Drew, R.A.I., & Hancock, D.L. (2000). Phylogeny of the tribe Dacini (Dacinae) based on morphological, distributional and biological data, p 491-504. In Aluja, M., and Norrbom, A.L. (eds), Fruit flies (Tephritidae): Phylogeny and Evoution behaior CRC Press, Boca raton, FL. Cerca con Google

Fitt, G. P. & R. W. O’Brien. (1985) Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia, 67, 447-454. Cerca con Google

Foote, R. H., Blanc, F. L., & Norrbom, A. L. (1993) Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico, Comstock Publishing Associates, Ithaca. Cerca con Google

Freidberg, A. (1984) Gall Tephritidae (Diptera), p. 129-167. In T. N. Ananthakrishnan, ed., Biology of gall insects. Oxford&IBH Publishing Co., New Delhi. Cerca con Google

Freidberg A. (1987) Orthoncathoides aristae, a remarkable new genus and species of Tephritidae (Diptera) from Mount Kenya. Ann. Natal Mus, 33, 51-94. Cerca con Google

Fukatsu T, & Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol, 68, 389–396. Cerca con Google

Gil R., Latorre A., & Moya A., (2004) Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol , 6, 1109–1122. Cerca con Google

Girolami, V. (1973) Reperti morfo-istologici sulle batteriosimbiosi del Dacus oleae Gmelin e di altri ditteri tripetidi, in natura e negli allevamenti su substrati artificiali. Redia, 54, 269–294 (in Italian). Cerca con Google

Girolami, V. (1983) Fruit fly symbiosis and adult survival: general aspects. In Fruit Flies of Economic Importance, pp. 74–76. Edited by R. Cavalloro, Rotterdam. Proc CEC/IOBC Int Symp, Athens November 1982. Cerca con Google

Goeden, R. D. (1992) Analysis of known and new host records for Trupanea from California (Diptera: Tephritidae). Proc Entomol Soc Wash, 94, 107-118. Cerca con Google

Goeden, R. D. (1993) Analysis of known and new host records for Tephritis from California, and description of a new species, T. joanae (Diptera: Tephritidae). Proc Entomol Soc Wash, 95, 425-434. Cerca con Google

Goeden, R. D. (1994) Analysis of known and new host records for Paroxyna from California (Diptera: Tephritidae). Proc Entomol Soc Wash, 96, 281-287. Cerca con Google

Goldman, N., Anderson, J.P., Rodrigo, A.G., (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol, 49, 652–670. Cerca con Google

Gruwell., M.E., Morse G.E. & Normak, B.B. (2007) Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the Phylum Bacteriodetes. Mol Phylogenet Evol, 44, 267-280. Cerca con Google

Guindon, S. & Gascuel, O. (2003) A simple , fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52, 696-704. Cerca con Google

Hagen, K.S. (1958) Honeydew as an adult fruit fly diet affecting reproduction. In proceedings, 10th International Congress of Entomolgy. (E.C. Becker, ed.), pp. 25-30. Mortimer. Ottawa. Cerca con Google

Han, H.Y. (2000) Molecular phylogenetic study of the tribe Trypetini (Diptera: Tephritidae), using mitochondrial 16S ribosomal DNA sequences. Biochem Syst Ecol, 28, 501?513. Cerca con Google

Han, H.Y. & McPheron, B. A. (1997) Molecular phylogenetic study of Tephritidae (Insecta: Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Mol Phylogent Evol, 7, 17?32. Cerca con Google

Han, H.Y. & McPheron, B. A. (1999) Nucleotide sequence data as a tool to test phylogenetic relationships among higher groups of Tephritidae: a case study using mitochondrial ribosomal DNA. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior, Aluja, M. and Norrbom, A. L. (eds.), pp. 115?132, CRC Press. Cerca con Google

Han, HY., Ro K.E. (2005) Molecular phylogeny of the superfamily Tephritoidea (Insecta: Diptera): new evidence from the mithocondrial 12S, 16S and COII genes. Mol Phylogent Evol, 39, 416-430. Cerca con Google

Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125, 887–901. Cerca con Google

Hancock, D. L. (1986) Classification of the Trypetinae (Diptera: Tephritidae), with a discussion of the Afrotropical fauna. J Entomol Soc South Afr, 49, 275-305. Cerca con Google

Hardy, D. E. (1957) Austromyia neglecta Hardy, a new synonym of Neo- toxura discoidalis (Bezzi) (Diptera: Pyrgotidae), with a discussion of some family relationships. Proc Hawaii Entomol Soc, 16, 259-260. Cerca con Google

Harris P., Myers J.H., (1984) Centaurea diffusa Lam. And C.maculosa Lam. S. lat., diffused and spotted knapweed (Compositae), in Keller, J.S. & Hulme M. A. (eds). Biological Control Programmes against insects and weeds in Canada 1969-1080.pp.127-137- Slough. Cerca con Google

Hendrichs, J. P. & M. A. Hendrichs. (1990) Mediterranean fruit fly (Diptera: Tephritidae) in nature: 2123 location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann Entomol Soc Am, 83, 632-641. Cerca con Google

Hendrichs, J. P., B. I. Katsoyannos, D. R. Papaj & R. J. Prokopy. (1991) Sex differences in movement between natural feeding and mating sites and tradeoffs between food consumption, mating success and predator evasion in Mediterranean fruit flies (Diptera: Tephritidae). Oecologia, 86, 223-231. Cerca con Google

Hendrichs, J. P., B. I. Katsoyannos & R. J. Prokopy. (1993) Bird faeces in the nutrition of adult Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) in nature. Mitt Dtsch Ges Allg Angew Entomol, 8, 703-707. Cerca con Google

Hendrichs, J. P. & R. J. Prokopy. (1994) Food foraging behavior of frugivorous fruit flies, p. 37-55. In C. O. Calkins, W. Klassen & P. Liedo, eds., Fruit flies and the sterile insect technique. CRC Press, Boca Raton. 258 p. Cerca con Google

Hering, E. M. (1947). Neue Gattungen und Arten der Fruchtfliegen. Siruna 2213 Seva, 6, 1-16. Cerca con Google

Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol, 4, e337. Cerca con Google

Howard, D. J. (1989) Nutrition: the symbionts of Rhagoletis, p. 121-129. In 2318 Cerca con Google

A. S. Robinson & G. Hooper, eds., Fruit flies, their biology, natural enemies and control. W. Helle, ed., World crop pests, Vol. 3(A). Elsevier Science Publishers, Amsterdam. Cerca con Google

Hudelot C., Gowri-Shankar V., Jow H., Rattray M., and Higgs P.G. (2003) RNA-based Phylogenetic Methods: Application to Mammalian Mitochondrial RNA Sequences. Mol Phylogenet Evol, 28, 241-252. Cerca con Google

Freidberg, A. & A. L. Norrbom. 1999 A generic reclassification and phylogeny of the tribe Myopitini (Tephritidae), pp. 581-637. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Martin Aluja and Allen L. Norrbom, editors. CRC Press, Boca Raton, FL. 944 pp. Cerca con Google

Jobb, G . TREEFINDER, version of October 2005, www.treefinder.de Munich, Germany: Distributed by the author. Vai! Cerca con Google

Jobb, G., A. von Haeseler, & K. Strimmer. (2004) TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology. Cerca con Google

Jow H., Gowri-Shankar V., & Guillard B. (2005) PHASE: a Software Package for Phylogenetics And Sequenze Evolution. Available http://www.bioinf.man.ac.uk/resources/phase. Vai! Cerca con Google

Korneyev, V.A. (1999) Phylogeny of the subfamily Tephritinae: relationships of the tribes and subtribes. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (ed. by M. Aluja and A. L. Norrbom), pp. 549-580. CRC Press, Boca Raton. Cerca con Google

Korneyev, V. A. (1999) Phylogenetic relationships among the families of the superfamily Tephritoidea; in Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior, Aluja, Cerca con Google

M. and Norrbom, A. L. (eds.), pp. 3?22, CRC Press. Cerca con Google

Lauzon CR (2003) Symbiotic relationships of Tephritids. In: Bourtzis K,Miller TA (eds) Insect symbiosis. Boca Raton, FL: CRC Press, pp 115–129 Cerca con Google

Lefèvre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A. (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol, 21, 965–973. Cerca con Google

Legendre, P., Anderson, M.J., (1998) Program DistPCoA. Département de Sciences Biologiques, Université de Montréal, Montréal. Cerca con Google

Legendre, P. (2001) Test of host-parasite coevolution: program PARAFIT user’s guide. Département de sciences biologiques, Université de Montréal. Cerca con Google

Legendre, P., Y. Desdevises & E. Bazin. (2002) A statistical test for host-parasite coevolution. Systematic Biology 51(2): (in press). A preprint is available on the WWWeb site http://www.fas.umontreal.ca/biol/legendre/. Vai! Cerca con Google

Light J.E. and Hafner M.S. (2007) Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers. Mol Phylogenetics Evol, 45, 997–1013. Cerca con Google

Liquido, N. J., L. A. Shinoda & R. T. Cunningham. (1991) Host plants of Mediterranean fruit fly (Diptera: Tephritidae). An annotated world review. Misc Publ Entomol Soc Am, 77, 52. Cerca con Google

Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T (2003) Evidence for cocladogenesis between diverse dictyopteran liniages and their intracellular endosymbionts. Mol Biol Evol, 20, 907–913. Cerca con Google

Loew, H. (1850) Zwei neue Fliegen und zwei systematische Bedenken. Stettin Entomol Ztg, 11, 378-382. Cerca con Google

Loew, H. (1862) Monographs of the Diptera of North America. Part I. Smithson. Misc. Collect. 6, 221 p Cerca con Google

Loew, H. (1873) Monographs of the Diptera of North America. Part III. Smithson. Misc. Collect. 11. Cerca con Google

Lloyd, A. C., Drew, R. A. I., Teakle, D. S. & Hayward, A. C. (1986) Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust J Biol Sci, 39, 361–368. Cerca con Google

Marchini D., Rosetto M., Dallai R., Marri L., (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera:Tephritidae). Curr Microbiol, 44, 120-124. Cerca con Google

Mazzon L., Piscedda A., Simonato M., Martinez-Sañudo I., Squartini A., & Girolami V. (2008) Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis’. Int J Syst Evol Micr, 58, 1277–1287 Cerca con Google

McAlpine, J. F. (1989) Phylogeny and classification of the Muscomorpha, p. 1397-1518. In J. F. McAlpine, ed.; (B. V. Peterson, G. E. Shewell, H. J. Teskey, J. R. Vockeroth & D. M.Woodcoords.), Manual of Nearctic Diptera. Volume 3. Monograph of the Biosystema tic Research Centre, Ottawa, No. 32. Agriculture Canada, Ottawa. Cerca con Google

Merz, B. (1994) Diptera: Tephritidae. Insecta Helvetica Fauna 10, 198 p. Cerca con Google

Merz, B. M. (1999) Phylogeny of the Palearctic and Afrotropical genera of the Tephritis group (Tephritinae: Tephritini); Aluja, M. and Norrbom, A. L. (eds.), pp. 629?669, CRC Press. in : Aluja, M., and Norrbom, A.L. (eds), Fruit flies (Tephritidae): Phylogeny and Evoution behaior CRC Press, Boca raton, FL. Cerca con Google

Moran, N.A. (2001) The Coevolution of Bacterial Endosymbionts and Phloem-Feeding Insects Ann Mo Bot Gard, 88, 35-44. Cerca con Google

Moran, N.A., & Baumann, P. (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol, 3, 270–275. Cerca con Google

Moran NA, Dale C, Dunbar H, Smith WA, Ochman H. (2003) Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) from a distinct clade with a small genome. Environ Microbiol , 5, 116–126. Cerca con Google

Munro H.K. (1938) A revision of the African species of the genus Spathulina Rond. (Diptera, Trypetidae). Trans R Entomol Soc Lond, 87, 417 – 429. Cerca con Google

Munro H.K. (1957) Trypetidae. Ruwenzori Expedition 1934-35, 2, 853-1054. Cerca con Google

Munro H.K. (1957) Sphenella and some allied genera (Trypetidae, Diptera). J entomol Soc South Afr, 20, 14-57. Cerca con Google

Munro, H. K. (1984) A taxonomic treatise on the Dacidae (Tephritoidea, Diptera) of Africa. Entomol Mem S Afr Dep Agric. Cerca con Google

Munson, M. A., Baumann, P. & Moran, N. A. (1992) Phylogenetic relationships of endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogenet Evol, 1, 26–30. Cerca con Google

Newman, E. (1834) Attempted division of British insects into natural orders. Entomol Mag, 2, 379-431. Cerca con Google

Nishida, T. (1980) Food system of tephritid fruit flies in Hawaii. Proc 3641 Hawaii Entomol Soc, 23, 245-253. Cerca con Google

Norrbom, A. L. & K. C. Kim. (1988) A list of the reported host plants of the species of Anastrepha (Diptera: Tephritidae). U.S. Dep. Agric. Animal Plant Health Insp. Serv. APHIS 81-52: 114 p. Cerca con Google

Norrbom, A. L. (1994) New genera of Tephritidae (Diptera) from Brazil and Dominican Amber, with phylogenetic analysis of the tribe Ortalotrypetini. Insecta Mundi, 8, 1-15. Cerca con Google

Norrbom, A. L., Carroll, L. E., Thompson, F. C., White, I. M., and Freidberg, A. (1999) Systematic database of name; in Fruit Fly Expert System and Systematic Information Database, Thompson, F. C. (ed.), pp. 65-251, Diptera Data Dissemination Disk 1 & Myia. Cerca con Google

Norrbom, A. L., Carroll, L. E., Thompson, F. C., White, I. M., and Freidberg, A. (1999). Status of Knowledge. In Fruit Fly Expert System and Systematic Information Database, Thompson, F. C. (ed.), pp 9-47. Mya (1998) 9, 54 pp. Cerca con Google

Noda, H., Nakashima, N. & Koizumi, M. (1995). Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem Mol Biol, 25, 639–646. Cerca con Google

Page, R. D. M. (1994) Parallel phylogenies: Reconstructing the history of host-parasite assemblages. Cladistics, 10,155–173. Cerca con Google

Page, R. D. M., & M. S. Hafner. (1996) Molecular phylogenies of host–parasite cospeciation: Gophers and lice as a model system. Pages 255–270 in New uses for new phylogenies (P. H. Harvey, A. J. L. Brown, J. Maynard Smith, and S. Nee, eds.). Oxford Univ. Press, Oxford, U.K. Cerca con Google

Patwary MU, Kenchington EL, Bird CJ, Zouros E. (1994) The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J.Shellfish Res, 13, 547-553. Cerca con Google

Petri, L. (1909) Ricerche Sopra i Batteri Intestinali della Mosca Olearia. Roma: Memorie della Regia Stazione di Patologia Vegetale di Roma. Cerca con Google

Piscedda A. & Girolami V. (2005) Ghiandola faringea e produzione di agglomerati membranosi nei tefritidi: prima quantificazione in Bactrocera oleae (Gmelin). Proceedings del XX Congresso Nazionale Italiano di Entomologia p.50. Cerca con Google

Piscedda A., (2006) Identificazione e filogenesi di batteri simbionti nella sottofamiglia Tephritine (Diptera, Tephritidae). PhD thesis. Cerca con Google

Posada, D. & Buckley, T. R. (2004) Model selection and model averaging in phylogenetics: advantages of AIC and BAyesian approaches over likelyhood ratio tests. Syst. Biol, 53, 793-808. Cerca con Google

Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817-818. Cerca con Google

Prokopy, R. J. (1976) Feeding, mating, and oviposition activities of Rhagoletis fausta flies in nature. Ann Entomol Soc Am, 69, 899-904. Cerca con Google

Ratner SS & Stoffolano JG (1984) Ultrastructural changes of the esophageal bulb of the adult female apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Int J Insect Morphol Embryol, 13, 191–208. Cerca con Google

Ricklefs, R. E., S. M. Fallon, & E. Bermingham. (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol, 53, 111–119. Cerca con Google

Ronquist, F., & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. Cerca con Google

Rossiter, M. C., D. J. Howard & G. L. Bush. (1983) Symbiotic bacteria of Rhagoletis pomonella, p. 77-84. 4223 In R. Cavalloro, ed., Fruit flies of economic importance. Proceedings of the CEC/IOBC International Symposium, Athens, Greece, November 16-19, 1982. A. A. Balkema, Rotterdam. Cerca con Google

Rouhbakhsh, D., Lai, C.-Y., von Dohlen, C. D., Baumann, L., Baumann, P., Moran, N. A. & Voegtlin, D. J. (1996) The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): genetics and evolution of plasmid-associated trpEG within the Aphididae. J Mol Evol, 42, 414–421. Cerca con Google

Roy B.A. (2001) Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation. Evolution, 55, 41–53. Cerca con Google

Schrank, F. von Paula.(1795) Naturhistorische und okonomische Briefe uber das Donaumoor. Schwan und Götz, Mannheim. Cerca con Google

Schröder, D., Deppisch, H., Obermayer, M., Krohne, G., Stackebrandt, E., Hölldobler, B., Goebel, W. & Gross, R. (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural analysis. Mol Microbiol, 21, 479–489. Cerca con Google

Shaw, J. G. (1962) Species of the spatulata group of Anastrepha (Diptera: Tephritidae). J. Kans Entomol Soc, 35, 408-414. Cerca con Google

Shaw, J. G., M. Sanchez-Riviello, L. M. Spishakoff, P. Trujillo-G. & F. Lopez D. (1967) Dispersal and migration of Tepa-sterilized Mexican fruit flies. J Econ Entomol, 60, 992-994. Cerca con Google

Shimodaira, H., Hasegawa, M. (1999) Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol Biol Evol, 16, 1114–1116. Cerca con Google

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 87, 651-704. Cerca con Google

Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol S, 37, 545-579. Cerca con Google

Smith, P. T., Kambhampati & S., Armstrong, K. (2005) A Phylogenetic relationships and character evolution among selected species of Bactrocera (Diptera: Tephritidae) based on multiple mitochondrial genes. Insect Syst Evol, 36, 343-360. Cerca con Google

Spanos, L., Koutroumbas, G., Kotsyfakis, M. and Louis, C. (2000) The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Mol Biol, 9, 139–144. Cerca con Google

Stammer, H. J. (1929) Die bakteriensymbiose der trypetiden (Diptera). Zoomorphology, 15, 481–523. Cerca con Google

Tamura, K., Nei M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol, 24, 1596-1599. Cerca con Google

Takiya DM, Tran PL, Dietrich CH, Moran NA. (2006) Cocladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol, 15, 4175–4191. Cerca con Google

Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. (2000) Cospeciation of psyllids and their primari prokaryotic endosymbionts. Appl Environ Microbiol, 66, 2898–2905. Cerca con Google

Tsitsipis, J. A. (1989) Nutrition: requirements, p. 103-119. In A. S. Robinson & G. Hooper, eds., Fruit flies, their biology, natural enemies and control. W. Helle, ed., World crop pests, Cerca con Google

Vol. 3(A). Elsevier Science Publishers, Amsterdam. 372 p. Cerca con Google

Thompson C. F. (1999) Introduction in Fruit Fly Expert System and Systematic Information Database, Thompson, F. C. (ed.), pp 9-47. Cerca con Google

Warburg & Yuval. (1997) Effects of energetics reserves on behavioral patterns of Mediterranean fruit flies (Diptera:Tephritidae). Oceologia, 112, 314-319. Cerca con Google

Weiblen, G. D., AND Bush G.L. (2002) Speciation in fig pollinators and parasites. Mol Ecol, 11, 1573–1578. Cerca con Google

White I.M., (1988) Tephritid flies (Diptera: Tephritidae). Handbooks for identification on British insects. Royal Entomological Society of London. Vol. 10, Part. 5°. Cerca con Google

White IM, (2006) Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the Middle East. Afr Entomol Mem, 2, 1–156. Cerca con Google

White, I. M., & Elson-Harris, M. M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. CAB International, Wallingford, UK. Cerca con Google

Xia, X., & Xie Z. (2001) DAMBE: Software package for data analysis in molecular biology and evolution. J Hered, 92, 371–373. Cerca con Google

Xia, X., Xie, Z., Salemi M., Chen L., and Wang Y. (2003) An index of substitution saturation and its application. Mol Phylogenet Evol, 26, 1–7. Cerca con Google

Xiong B., & Kocher, T.D. (1991) Comparison of mitochondrial DNA sequences of seven morphospecies of blak flies (Diptera: Simuiidae). Genome, 34, 306-311. Cerca con Google

Wernegreen JJ. (2004) Endosymbiosis: Lessons in Conflict Resolution. PLoS Biol 2: e68 Cerca con Google

Zwickl , D. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas at Austin, Austin, Texas, USA. GARLI version 0.951-1. Cerca con Google

Website http://www.molecularevolution.org/mbl/software/garli/. Vai! Cerca con Google

Zwölfer H. (1983) Life systems and strategies of resource exploitation in tephritids. Fruit flies of economic importance. IOBC Symposium . Athens. Pag 16-29. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record