Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

PORZIONATO, ANDREA (2009) Studio neuroanatomico dei centri di regolazione cardiorespiratoria: bulbo encefalico e glomo carotideo. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

INTRODUCTION – Central and peripheral structures, as the medullary nuclei and the carotid body, strictly cohoperate for cardiovascular and respiratory regulation. In the literature, comprehensive and unbiased analyses of morphometric parameters and apoptosis phenomena in infant and adult medullary nuclei are still lacking. Data about local expression of different phosphodiesterase isoforms are also still poor. In the carotid body, many different neurotransmitters/neuromodulators, adhesion molecules and signalling transduction components have been identified but data are still lacking about the presence of some of these, such as adrenomedullin (AM), neurotensin receptors, Neural Cell Adhesion Molecule (NCAM), extracellular signal-regulated kinase (ERK), AKT. The aim of the present work was to give a comprehensive analysis of morphometric parameters and apoptosis phenomena in human medullary nuclei and to analyse the presence of the above components in the carotid body.
MATERIALS AND METHODS – Materials consisted of medullae oblongatae sampled at autopsy from 22 adults and 10 infants, and carotid bodies sampled at autopsy from 16 adult subjects and 6 foetuses. A morphometric analysis with the optical disector method was performed to calculate the neuronal densities, nuclear volumes and total neuron numbers of medullary nuclei. Apoptosis was also studied by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) and the mean percentages (± Standard Deviation) of TUNEL-positive neurons were morphometrically analysed. The regional distribution and cellular localization of four isozyme forms of the phosphodiesterase 4 (PDE4A, PDE4B, PDE4C and PDE4D) were also studied in 8 of the above adult subjects by in situ hybridization. In the study of the carotid body, we analysed by immunocytochemistry and double immunofluorescence the expression of AM, neurotensin receptor 1 (NTR1), NCAM, ERK and pERK, AKT and pAKT. AM, ERK/pERK and AKT/pAKT were also studied in foetal samples.
RESULTS – In both adults and infants, higher neuronal densities were found in the more ventrally located nuclei of the spinal trigeminal tract (NSTT) (mean values ± Standard Deviation: 9217±2146 n/mm3 and 21347±5006 n/mm3, respectively) and inferior olivary complex (PION: 9149±1341 n/mm3 and 20910±1582 n/mm3; MION: 10102±3024 n/mm3 and 19267±3475 n/mm3; DION: 11318±3704 n/mm3 and 23124±6740 n/mm3, respectively) than in the nuclei of the medullary tegmentum, i.e., hypoglossal nucleus (XII) (1070±343.4 n/mm3 and 2799±1292 n/mm3), dorsal motor nucleus of the vagus (DMNV) (1663±431.4 n/mm3 and 2915±568.1 n/mm3), nucleus tractus solitarii (NTS) (2982±639.9 n/mm3 and 8150±1735 n/mm3), medial vestibular nucleus (MedVe) (2964±380.8 n/mm3 and 6958±1076 n/mm3) and cuneate nucleus (Cu) (1061±238.7 n/mm3 and 2686±843.6 n/mm3). All the medullary nuclei showed higher volumes and lower neuronal densities in adults than in infants, without statistically significant differences in total neuron numbers. Statistically significant differences between adults and infants were found in the neuronal apoptotic indexes of the Cu (28.2±16.3% vs. 6.9±8.7%), MedVe (24.7±15.0% vs. 11.3±11.4%), NTS (11.2±11.2% vs. 2.3±2.4%), DMNV (6.8±8.5% vs. 0.1±0.2%) and XII (6.6±5.7% vs. 0.1±0.2%). Differences in neuronal apoptotic index were also statistically significant among nuclei, those with higher neuronal apoptotic indexes being the Cu, MedVe and NSTT. In the medullary nuclei PDE4B and PDE4D mRNA expression was abundant and distributed not only in neuronal cells, but also in glial cells, especially on and around blood vessels. The hybridization signals for PDE4B and PDE4D mRNAs in the AP were stronger than in any other nucleus considered. They were also found in vomiting-related nuclei such as NTS and DMNV. In the carotid body, no AM, NTR1, and NCAM immunoreactivities were visible in type II cells. Anti-NTR1 and -NCAM immunohistochemistries showed positivity in 45.6 ± 9.2% and 78.3 ± 7.2% of adult type I cells, respectively. Higher percentages of positive type I cells were found in adult than foetal subjects for anti-AM (32.3 ± 7.7% vs 11.8 ± 2.7%, P<0.001), -ERK (32.3 ± 7.7% vs 11.8 ± 2.7%, P<0.001), -pERK (32.3 ± 7.7% vs 11.8 ± 2.7%, P<0.001), -AKT (32.3 ± 7.7% vs 11.8 ± 2.7%, P<0.001) and -pAKT (32.3 ± 7.7% vs 11.8 ± 2.7%, P<0.001) immunohistochemistries.
DISCUSSION – The higher nuclear volumes and lower neuronal densities in adults may be ascribed to postnatal development of the neuropil and microvascularization. The higher apoptotic indexes in adults indicate higher resistance of infant neuronal populations to terminal hypoxic-ischaemic injury or post-mortem changes. Moreover, nuclei with higher apoptotic indexes are located in the lateral medullary tegmentum and share the same vascular supply from the posterior inferior cerebellar artery, suggesting different characteristics of survival on vascular basis. High PDE4 expression in the AP suggests that cAMP signaling modification could mediate the emetic effects of PDE4 inhibitors in human brainstem. Immunohistochemical findings in the carotid body suggest that AM and NT may play a role in the regulation of chemoreceptor discharge. The high expression level of NCAM in the carotid body indicates a role in regulating adhesion between type I cells. It may be hypothetized that the ERK and AKT signalling pathways in the carotid body are activated by neuromodulator/neurotrophic factors and plays a role in producing long-term cellular modifications. The lower expression of AM, ERK/pERK, and AKT/pAKT in foetuses may be ascribed to the absence of pulmonary respiration with lack of regulatory role of the carotid body during the prenatal period.

Abstract (italiano)

INTRODUZIONE – Strutture nervose centrali e periferiche, quali i nuclei bulbari ed il glomo carotideo, cooperano alla regolazione cardiovascolare e respiratoria. Le conoscenze dei parametri morfometrici e dei fenomeni apoptotici nei nuclei bulbari di adulti e bambini, così come quelle relative all’espressione locale delle isoforme delle fosfodiesterasi, sono ancora limitate. Nel glomo carotideo sono stati individuati molti neurotrasmettitori/neuromodulatori differenti, molecole di adesione e componenti di vie di trasduzione del segnale ma non ci sono ancora dati sulla presenza di alcuni di essi, quali l’adrenomedullina (AM), i recettori della neurotensina, la molecola di adesione cellulare neurale (NCAM), la chinasi regolata da segnale extracellulare (ERK) ed AKT. Scopo del presente lavoro è fornire un’analisi completa dei parametri morfometrici e dei fenomeni apoptotici dei nuclei bulbari umani e analizzare la presenza delle componenti sovrariportate nel glomo carotideo.
MATERIALI E METODI – I materiali usati sono stati bulbi encefalici prelevati in corso di autopsia da 22 adulti e 10 bambini e glomi carotidei prelevati da 16 adulti e 6 feti. E’ stata effettuata un’analisi morfometrica con il metodo del dissettore ottico per calcolare le densità neuronali, i volumi nucleari e i numeri totali di neuroni dei nuclei bulbari. E’ stata altresì studiata l’apoptosi mediante terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) e sono state analizzate morfometricamente le percentuali medie (± Deviazione Standard) dei neuroni TUNEL-positivi. E’ stata studiata la distribuzione regionale e cellulare delle quattro isoforme della fosfodiesterasi 4 (PDE4A, PDE4B, PDE4C e PDE4D) in 8 dei soggetti adulti mediante ibridazione in situ. Per quanto riguarda l’analisi dei glomi carotidei si è proceduto allo studio con immunoistochimica ed immunofluorescenza doppia dell’espressione di AM, recettore della neurotensina di tipo 1 (NTR1), NCAM, ERK e pERK, AKT e pAKT. L’analisi d’espressione di AM, ERK/pERK e AKT/pAKT è stata altresì effettuata su prelievi fetali.
RISULTATI – Sia negli adulti che nei bambini densità neuronali maggiori sono state trovate nei nuclei localizzati ventralmente, ossia il nucleo del tratto spinale del trigemino (NSTT) (valori medi ± Deviazione Standard: 9217±2146 n/mm3 e 21347±5006 n/mm3, rispettivamente) ed il complesso olivare inferiore (PION: 9149±1341 n/mm3 e 20910±1582 n/mm3; MION: 10102±3024 n/mm3 e 19267±3475 n/mm3; DION: 11318±3704 n/mm3 e 23124±6740 n/mm3, rispettivamente), che nei nuclei del tegmento bulbare, cioè il nucleo ipoglosso (XII) (1070±343,4 n/mm3 e 2799±1292 n/mm3), il nucleo motore dorsale del vago (DMNV) (1663±431,4 n/mm3 e 2915±568,1 n/mm3), il nucleo del tratto solitario (NTS) (2982±639,9 n/mm3 e 8150±1735 n/mm3), il nucleo vestibolare mediale (MedVe) (2964±380,8 n/mm3 e 6958±1076 n/mm3) ed il nucleo cuneato (Cu) (1061±238,7 n/mm3 e 2686±843,6 n/mm3). Tutti i nuclei bulbari presentavano volumi maggiori e densità neuronali minori negli adulti rispetto ai bambini, senza differenze statisticamente significative nel numero totale di neuroni. Differenze statisticamente significative tra adulti e bambini sono state trovate negli indici apoptotici neuronali del Cu (28,2±16,3% vs. 6,9±8,7%), MedVe (24,7±15,0% vs. 11,3±11,4%), NTS (11,2±11,2% vs. 2,3±2,4%), DMNV (6,8±8,5% vs. 0,1±0,2%) e XII (6,6±5,7% vs. 0,1±0,2%). Differenze statisticamente significative erano altresì presenti per quanto riguarda il confronto tra i diversi nuclei, con il Cu, il MedVe ed il NSTT che mostravano i maggiori indici apoptotici neuronali. Nei nuclei bulbari l’mRNA di PDE4B e PDE4D era abbondante e distribuito non solo nelle cellule neuronali ma anche nelle cellule gliali, soprattutto in vicinanza dei vasi sanguigni. I segnali di ibridazione per PDE4B e PDE4D erano più intensi nell’AP che in ogni altro nucleo considerato. Sono stati altresì trovati in nuclei implicati nei meccanismi del vomito come il NTS ed il DMNV. Nel glomo carotideo non sono state rilevate immunoreattività per AM, NTR1, e NCAM a carico delle cellule di tipo II di entrambe le casistiche. Analisi immunoistochimiche anti-NTR1 ed –NCAM hanno evidenziato positività del 45,6±9,2% e 78,3±7,2% delle cellule di I tipo dei soggetti adulti, rispettivamente. Percentuali maggiori di cellule di tipo I positive sono state trovate negli adulti rispetto ai feti all’esame immunoistochimico per AM (32,3±7,7% vs 11,8±2,7%, P<0,001), ERK (32,3±7,7% vs 11,8±2,7%, P<0,001), pErk (32,3±7,7% vs 11,8±2,7%, P<0,001), Akt (32,3±7,7% vs 11,8±2,7%, P<0,001) e pAkt (32,3±7,7% vs 11,8±2,7%, P<0,001).
DISCUSSIONE – I maggiori volumi nucleari e le minori densità neuronali rilevati negli adulti possono essere ascritti allo sviluppo postnatale del neuropilo e delle microvascolarizzazione. I maggiori indici apoptotici neuronali rilevati negli adulti indicano una maggiore resistenza delle popolazioni neuronali infantili agli insulti ipossico-ischemici o ai cambiamenti postmortali. Inoltre i nuclei con maggiori indici apoptotici sono localizzati nel tegmento bulbare laterale e condividono la stessa irrorazione vascolare dall’arteria cerebellare posteriore inferiore, suggerendo differenti caratteristiche di sopravvivenza su base vascolare. L’elevata espressione di PDE4 nell’AP suggerisce che modificazioni delle vie del segnale che coinvolgono cAMP possano mediare gli effetti emetici degli inibitori di PDE4 nei tronchi encefalici umani. I reperti immunoistochimici nel glomo carotideo suggeriscono che l’AM e la NT possano svolgere un ruolo nella regolazione dell’attività chemorecettoriale del glomo. L’elevato livello di espressione di NCAM nel glomo carotideo indica un ruolo nella regolazione dell’adesione tra cellule di tipo I. Si può altresì ipotizzare l’attivazione delle vie di trasduzione del segnale ERK e AKT da parte di neuromodulatori/fattori neurotrofici, con possibile ruolo nella produzione di modificazioni cellulari a lungo termine. La minore espressione di AM, ERK/pERK, ed AKT/pAKT nei feti può essere ricondotta all’assenza di respirazione polmonare con mancanza del ruolo regolatorio del glomo carotideo durante il periodo prenatale.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:REGGIANI, CARLO - DE CARO, RAFFAELE
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:29 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):BULBO ENCEFALICO, GLOMO CAROTIDEO, AREA POSTREMA, NEUROMODULATORI, APOPTOSI
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/16 Anatomia umana
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Anatomia e Fisiologia Umana
Codice ID:1604
Depositato il:29 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abercrombie M. (1946). Estimation of nuclear population from microtome sections. Anat Rec 94, 239-247. Cerca con Google

2. Abramovici A, Pallot DJ, Polak JM. (1991). Immunohistochemical approach to the study of the cat carotid body. Acta Anat 140, 70-74. Cerca con Google

3. Adle-Biassette H, Levy Y, Colombel M, Poron F, Natchev S, Keohane C, Gray F. (1995). Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21, 218-227. Cerca con Google

4. Allen AM. (1998). Angiotensin AT1 receptor-mediated excitation of rat carotid body chemoreceptor afferent activity. J Physiol 510, 773-781. Cerca con Google

5. Allen MA, Smith PM, Ferguson AV. (1997). Adrenomedullin microinjection into the area postrema increases blood pressure. Am J Physiol 272, R1698-1703. Cerca con Google

6. Alvarez JC, Diaz C, Suarez C, Fernandez JA, Gonzalez del Rey C, Navarro A, Tolivia J. (1998). Neuronal loss in human medial vestibular nucleus. Anat Rec 251, 431-438. Cerca con Google

7. Alvarez JC, Diaz C, Suarez C, Fernandez JA, Gonzalez del Rey C, Navarro A, Tolivia J. (2000). Aging and the human vestibular nuclei: morphometric analysis. Mech Ageing Dev 114, 149-172. Cerca con Google

8. Anastasi A, Erspamer V, Bucci M. (1971). Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27, 166-167. Cerca con Google

9. Anderson JM, Hubbard BM, Coghill GR, Slidders W. (1983). The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J Neurol Sci 58, 235-246. Cerca con Google

10. Anderson DJ. (1993). Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16, 129-158. Cerca con Google

11. Anglade P, Vyas S, Hirsch EC, Agid Y. (1997). Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12, 603-610. Cerca con Google

12. Aoki M, Fukunaga M, Sugimoto T, Hirano Y, Kobayashi M, Honda K, Yamada T. (2001). Studies on mechanisms of low emetogenicity of YM976, a novel phosphodiesterase type 4 inhibitor. J Pharmacol Exp Ther 298, 1142-1149. Cerca con Google

13. Arias-Stella J, Valcarcel J. (1973). The human carotid body at high altitudes. Pathol Microbiol 39, 292-297. Cerca con Google

14. Arias-Stella J, Valcarcel J. (1976). Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7, 361-373. Cerca con Google

15. Asrari M, Lobner D. (2001). Calcitonin potentiates oxygen-glucose deprivation-induced neuronal death. Exp Neurol 167, 183-188. Cerca con Google

16. Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, Camdeviren H, Oral U. (2004). Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci 114, 1001-1011. Cerca con Google

17. Bachoo M, Polosa C. (1988). Cardioacceleration produced by close intra-arterial injection of neurotensin into the stellate ganglion of the cat. Can J Physiol Pharmacol 66, 408-412. Cerca con Google

18. Bairam A, Carroll JL. (2005). Neurotransmitters in carotid body development. Respir Physiol Neurobiol 149, 217-232. Cerca con Google

19. Balasubramanian S, Teissere JA, Raju DV, Hall RA. (2004). Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem 279, 18840-18850. Cerca con Google

20. Bamford OS, Sterni LM, Wasicko MJ, Montrose MH, Carroll JL. (1999). Postnatal maturation of carotid body and type I cell chemoreception in the rat. Am J Physiol 276, L875-884. Cerca con Google

21. Barnette MS, Christensen SB, Essayan DM, Grous M, Prabhakar U, Rush JA, Kagey-Sobotka A, Torphy TJ. (1998). SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: in vitro anti-inflammatory actions. J Pharmacol Exp Ther 284, 420-426 Cerca con Google

22. Basheer R, Yang J, Tempel A. (1992). Chronic prenatal morphine treatment decreases G alpha s mRNA levels in neonatal frontal cortex. Brain Res Dev Brain Res 70, 145-148. Cerca con Google

23. Bavis RW. (2005). Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia and hypoxia. Respir Physiol Neurobiol 149, 287-299. Cerca con Google

24. Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, Borrelli E, Caron MG. (2007). Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27, 881-885. Cerca con Google

25. Belloni AS, Trejter M, Malendowicz LK, Nussdorfer GG. (2003). Adrenomedullin stimulates proliferation and inhibits apoptosis of immature rat thymocytes cultured in vitro. Peptides 24, 295-300. Cerca con Google

26. Bencini C, Pulera N. (1991). The carotid bodies in bronchial asthma. Histopathology 18, 195-200. Cerca con Google

27. Benvenuti LA, Reis MM, de Lourdes Higuchi M. (1996). Immunohistochemical detection of atrial natriuretic peptide (ANP) in the chief cells of human carotid bodies. Acta Histochem 98, 89-92. Cerca con Google

28. Beom S, Cheong D, Torres G, Caron MG, Kim KM. (2004). Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J Biol Chem 279, 28304-28314. Cerca con Google

29. Berardi M, Hindelang C, Laurent-Huck FM, Langley K, Rougon G, Félix JM, Stoeckel ME. (1995). Expression of neural cell adhesion molecules, NCAMs, and their polysialylated forms, PSA-NCAMs, in the developing rat pituitary gland. Cell Tissue Res 280, 463-472. Cerca con Google

30. Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre M, Schratzer M. (1988). Rolipram versus imipramine in inpatients with major, "minor" or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3, 245-253 Cerca con Google

31. Biscoe TJ, Bradley GW, Purves MJ. (1969). The relation between carotid body chemoreceptor activity and carotid sinus pressure in the cat. J Physiol 203, 40P. Cerca con Google

32. Biscoe TJ, Stehbens WE. (1966). Ultrastructure of the carotid body. J Cell Biol 30, 563-578. Cerca con Google

33. Blanco CE, Dawes GS, Hanson MA, McCooke H.B. (1984). The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J. Physiol. 351, 25-37. Cerca con Google

34. Blanco CE, Hanson MA, McCooke HB. (1988). Effects on carotid chemoreceptor resetting of pulmonary ventilation in the fetal lamb in utero. J Dev Physiol 10, 167-174. Cerca con Google

35. Borinson HL, Wang SC. (1953). Physiology and pharmacology of vomiting. Pharmacol Rev 5, 193-230. Cerca con Google

36. Bourrat F, Sotelo C. (1984). Postnatal development of the inferior olivary complex in the rat. III. A morphometric analysis of volumetric growth and neuronal cell number. Brain Res 318, 241-251. Cerca con Google

37. Branchek TA, Smith KE, Gerald C, Walker MW. (2000). Galanin receptor subtypes. Trends Pharmacol Sci 21, 109-117. Cerca con Google

38. Brun P, Mastrotto C, Beggiao E, Stefani A, Barzon L, Sturniolo GC, Palu G, Castagliuolo I. (2005). Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 288, G621-629. Cerca con Google

39. Bureau Y, Handa M, Zhu Y, Laliberte F, Moore CS, Liu S, Huang Z, Macdonald D, Xu DG, Robertson GS. (2006). Neuroanatomical and pharmacological assessment of Fos expression induced in the rat brain by the phosphodiesterase-4 inhibitor 6-(4-pyridylmethyl)-8-(3-nitrophenyl) quinoline. Neuropharmacology 51, 974-985 Cerca con Google

40. Caillaud T, Opstal WY, Scarceriaux V, Billardon C, Rostene W. (1995). Treatment of PC12 cells by nerve growth factor, dexamethasone, and forskolin. Effects on cell morphology and expression of neurotensin and tyrosine hydroxylase. Mol Neurobiol 10, 105-114. Cerca con Google

41. Canals M, Angulo E, Casado V, Canela EI, Mallol J, Vinals F, Staines W, Tinner B, Hillion J, Agnati L, Fuxe K, Ferre S, Lluis C, Franco R. (2005). Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. J Neurochem 92, 337-348. Cerca con Google

42. Carpenter DO, Briggs DB, Knox AP, Strominger N. (1988) Excitation of area postrema neurons by transmitters, peptides, and cyclic nucleotides. J Neurophysiol 59, 358-369 Cerca con Google

43. Carraway R, Leeman SE. (1973). The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248, 6854-6861. Cerca con Google

44. Carraway RE, Mitra SP. (1994). Binding and biologic activity of neurotensin in guinea pig ileum. Peptides 15, 1451-1459. Cerca con Google

45. Castagliuolo I, Wang CC, Valenick L, Pasha A, Nikulasson S, Carraway RE, Pothoulakis C. (1999). Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J Clin Invest 103, 843-849. Cerca con Google

46. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P. (2007). ERK implication in cell cycle regulation. Biochim Biophys Acta 1773, 1299-1310. Cerca con Google

47. Chan WY, Yew DT. (1998). Apoptosis and bcl-2 oncoprotein expression in the human fetal central nervous system. Anat Rec 252, 165-175. Cerca con Google

48. Chattergoon NN, D'Souza FM, Deng W, Chen H, Hyman AL, Kadowitz PJ, Jeter JR Jr. (2005). Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 288, L202-211. Cerca con Google

49. Chavarría T, Valenciano AI, Mayordomo R, Egea J, Comella JX, Hallböök F, de Pablo F, de la Rosa EJ. (2007). Differential, age-dependent MEK-ERK and PI3K-Akt activation by insulin acting as a survival factor during embryonic retinal development. Dev Neurobiol 67, 1777-1788. Cerca con Google

50. Chen II, Yates RD, Hansen JT. (1986). Substance P-like immunoreactivity in rat and cat carotid bodies: light and electron microscopic studies. Histol Histopathol 1, 203-212. Cerca con Google

51. Cheng L, Khan M, Mudge AW. (1995). Calcitonin gene-related peptide promotes Schwann cell proliferation. J Cell Biol 129, 789-796. Cerca con Google

52. Cheng S, Yuan CG. (2007). Differential effect of galanin on proliferation of PC12 and B104 cells. Neuroreport 18, 1379-1383. Cerca con Google

53. Chung KF. (2006). Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 533, 110-117. Cerca con Google

54. Clarke JA, Daly MD. (1985). The volume of the carotid body and periadventitial type I and type II cells in the carotid bifurcation region of the fetal cat and kitten. Anat Embryol 173, 117-127. Cerca con Google

55. Clarke JA, de Burgh Daly M, Ead HW. (1990). Comparison of the size of the vascular compartment of the carotid body of the fetal, neonatal and adult cat. Acta Anat 138, 166-174. Cerca con Google

56. Clarke PG. (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181, 195-213. Cerca con Google

57. Compton CH, Gubb J, Nieman R, Edelson J, Amit O, Bakst A, Ayres JG, Creemers JP, Schultze-Werninghaus G, Brambilla C, Barnes NC. (2001). Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. Lancet 358, 265-270. Cerca con Google

58. Conlon JM. (2004). The tachykinin peptide family, with particular emphasis on mammalian tachykinins and tachykinin receptor agonists. In “Handbook of Experimental Pharmacology - Tachykinins” (P. Holzer, Ed.), pp. 25-61. Springer-Verlag, Berlin Heidelberg. Cerca con Google

59. Connat JL, Schnüriger V, Zanone R, Schaeffer C, Gaillard M, Faivre B, Rochette L. (2001). The neuropeptide calcitonin gene-related peptide differently modulates proliferation and differentiation of smooth muscle cells in culture depending on the cell type. Regul Pept 101, 169-178. Cerca con Google

60. Cosenza MA, Zhao ML, Lee SC. (2004). HIV-1 expression protects macrophages and microglia from apoptotic death. Neuropath Appl Neurobiol 30, 478-490. Cerca con Google

61. Cowen DS. (2007). Serotonin and neuronal growth factors - a convergence of signaling pathways. J Neurochem 101, 1161-1171. Cerca con Google

62. Crowder RE. (1957). The development of the adrenal gland in man, with special reference to origin and ultimate location of cell types and evidence in favour of the ‘cell migration’ theory. Contrib Embryol Carnegie Inst Washington 36, 193-210. Cerca con Google

63. Cuello AC, McQueen DS. (1980). Substance P: a carotid body peptide. Neurosci Lett 17, 215-219. Cerca con Google

64. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJ. (2004). Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea. J Physiol 555, 15-26. Cerca con Google

65. Dambska M, Dydyk L, Szretter T, Wozniewicz J, Myers RE. (1976). Topography of lesions in newborn and infant brains following cardiac arrest and resuscitation: damage to brainstem and hemispheres. Biol Neonate 29, 194-206. Cerca con Google

66. De Caro R, Parenti A, Montisci M, Guidolin D, Macchi V. (2000). Solitary tract nuclei in acute heart failure. Stroke 31, 1187-1193. Cerca con Google

67. De Caro R, Parenti A, Montisci M, Guidolin D, Macchi V. (2003). Symmetrical selective neuronal necrosis in solitary tract nuclei. Int J Legal Med 117, 253-254. Cerca con Google

68. Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267, 682-685. Cerca con Google

69. Diaz C, Suarez C, Navarro A, Gonzalez Del Rey C, Alvarez JC, Mendez E, Tolivia J. (1996). Rostrocaudal and ventrodorsal change in neuronal cell size in human medial vestibular nucleus. Anat Rec 246, 403-409. Cerca con Google

70. Di Giulio C, Huang W, Waters V, Mokashi A, Bianchi G, Cacchio M, Macri MA, Lahiri S. (2003). Atrial natriuretic peptide stimulates cat carotid body chemoreceptors in vivo. Comp Biochem Physiol A Mol Integr Physiol 134, 27-31. Cerca con Google

71. Dubé PE, Rowland KJ, Brubaker PL. (2008). Glucagon-like peptide-2 activates {beta}-catenin signaling in the mouse intestinal crypt: Role of insulin-like growth factor-1. Endocrinology 149, 291-301. Cerca con Google

72. e Silva MJ, Lewis DL. (1995). L- and N-type Ca2+ channels in adult rat carotid body chemoreceptor type I cells. J Physiol 489, 689-699. Cerca con Google

73. Engelman JA, Luo J, Cantley LC. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7, 606-619. Cerca con Google

74. Erickson JT, Brosenitsch TA, Katz DM. (2001). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21, 581-589. Cerca con Google

75. Evdokiou A, Raggatt LJ, Atkins GJ, Findlay DM. (1999). Calcitonin receptor-mediated growth suppression of HEK-293 cells is accompanied by induction of p21WAF1/CIP1 and G2/M arrest. Mol Endocrinol 13, 1738-1750. Cerca con Google

76. Evers BM. (2006). Neurotensin and growth of normal and neoplastic tissues. Peptides 27, 2424-2433. Cerca con Google

77. Feldberg RS, Cochrane DE, Carraway RE, Brown E, Sawyer R, Hartunian M, Wentworth D. (1998). Evidence for a neurotensin receptor in rat serosal mast cells. Inflamm Res 47, 245-250. Cerca con Google

78. Findlay DM, Raggatt LJ, Bouralexis S, Hay S, Atkins GJ, Evdokiou A. (2002). Calcitonin decreases the adherence and survival of HEK-293 cells by a caspase-independent mechanism. J Endocrinol 75, 715-725. Cerca con Google

79. Fishman MC, Schaffner AE. (1984). Carotid body cell culture and selective growth of glomus cells. Am J Physiol 246, C106-113. Cerca con Google

80. Flood DG, Finn JP, Walton KM, Dionne CA, Contreras PC, Miller MS, Bhat RV. (1998). Immunolocalization of the mitogen-activated protein kinases p42MAPK and JNK1, and their regulatory kinases MEK1 and MEK4, in adult rat central nervous system. J Comp Neurol 398, 373-392. Cerca con Google

81. Foix C, Hillemand P. (1925). Les artères de l’axe encéphalique jusqu’au diencéphale inclusivement. Rev Neurol 11, 705-739. Cerca con Google

82. Fujii M, Goto N, Onagi S, Okada A, Kida A. (1997). Development of the human lateral vestibular nucleus: a morphometric evaluation. Early Hum Dev 48, 23-33. Cerca con Google

83. Fung ML, Lam SY, Chen Y, Dong X, Leung PS. (2001). Functional expression of angiotensin II receptors in type-I cells of the rat carotid body. Pflugers Arch 441, 474-480. Cerca con Google

84. Fung ML, Lam SY, Dong X, Chen Y, Leung PS. (2002). Postnatal hypoxemia increases angiotensin II sensitivity and up-regulates AT1a receptors in rat carotid body chemoreceptors. J Endocrinol 173, 305–313. Cerca con Google

85. Ganong WF. Review of medical physiology. 21th ed, New York-London: McGraw-Hill, 2003. Cerca con Google

86. Gauda EB, Bamford O, Gerfen CR. (1996). Developmental expression of tyrosine hydroxylase, D2-dopamine receptor and substance P genes in the carotid body of the rat. Neuroscience 75, 969-977. Cerca con Google

87. Gauda EB, McLemore GL, Tolosa J, Marston-Nelson J, Kwak D. (2004). Maturation of peripheral arterial chemoreceptors in relation to neonatal apnoea. Semin Neonatol 9, 181-194. Cerca con Google

88. Gauda EB, Northington FJ, Linden J, Rosin DL. (2000). Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 872, 1-10. Cerca con Google

89. Gelbard HA, James HJ, Sharer LR, Perry SW, Saito Y, Kazee AM, Blumberg BM, Epstein LG. (1995). Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol Appl Neurobiol 21, 208-217. Cerca con Google

90. Gilles FH. (1969). Hypotensive brain stem necrosis: selective symmetrical necrosis of tegmental neuronal aggregates following cardiac arrest. Arch Pathol 88, 32-41. Cerca con Google

91. Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka KV, Lassmann H. (1994). Differentation between cellular apoptosis and necrosis by combined use of in situ tailing and nick translation techniques. Lab Invest 71, 219-225. Cerca con Google

92. Goldman R, Bar-Shavit Z, Shezen E, Terry S, Blumberg S. (1982). Enhancement of phagocytosis by neurotensin, a newly found biological activity of the neuropeptide. Adv Exp Med Biol 155, 133-141. Cerca con Google

93. Goswami R, Dawson SA, Dawson G. (1998). Cyclic AMP protects against staurosporine and wortmannin-induced apoptosis and opioid-enhanced apoptosis in both embryonic and immortalized (F-11kappa7) neurons. J Neurochem 70, 1376-1382. Cerca con Google

94. Gottschalk W, Pozzo-Miller LD, Figurov A, Lu B. (1998). Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. J Neurosci 18, 6830-6839. Cerca con Google

95. Grant NJ, Leon C, Aunis D, Langley K. (1992). Cellular localization of the neural cell adhesion molecule L1 in adult rat neuroendocrine and endocrine tissues: comparisons with NCAM. J Comp Neurol 325, 548-558. Cerca con Google

96. Gray SL, Cummings KJ, Jirik FR, Sherwood NM. (2001). Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocrinol 15, 1739-1747. Cerca con Google

97. Gray SL, Yamaguchi N, Vencova P, Sherwood NM. (2002). Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 143, 3946-3954. Cerca con Google

98. Gross PM, Wall KM, Wainman DS, Shaver SW. (1991). Subregional topography of capillaries in the dorsal vagal complex of rats: II. Physiological properties. J Comp Neurol 306, 83-94. Cerca con Google

99. Gross PM. (1991). Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Can J Physiol Pharmacol 69, 1010-1025. Cerca con Google

100. Gubkina O, Cremer H, Rougon G. (2001). Mutation in the neural cell adhesion molecule interferes with the differentiation of anterior pituitary secretory cells. Neuroendocrinology 74, 335-346. Cerca con Google

101. Gundersen HJG, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ. (1988). The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96, 857-881. Cerca con Google

102. Gundersen HJG, Jensen EB. (1987). The efficiency of systematic sampling in stereology and its prediction. J Microsc 147, 229-263. Cerca con Google

103. Gundersen HJG, Jensen EBV, Kieu K, Nielsen J. (1999). The efficiency of systematic sampling in stereology - reconsidered. J Microsc 193, 199-211. Cerca con Google

104. Gundersen HJG. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompsen. J Microsc 143, 3-45. Cerca con Google

105. Habeck JO. (1986). Morphological findings at the carotid bodies of humans suffering from different types of systemic hypertension or severe lung diseases. Anat Anz 162, 17-27. Cerca con Google

106. Haegerstrand A, Dalsgaard CJ, Jonzon B, Larsson O, Nilsson J. (1990). Calcitonin gene-related peptide stimulates proliferation of human endothelial cells. Proc Natl Acad Sci U S A 87, 3299-3303. Cerca con Google

107. Hall TC, Miller KH, Corsallis JAN. (1975). Variation in the human Purkinje cell population according to age and sex. Neuropathol Appl Neurobiol 1, 267-292. Cerca con Google

108. Hamano S, Goto N, Nara T, Okada A, Maekawa K. (1997). Development of the human principal sensory trigeminal nucleus: a morphometric analysis. Early Hum Dev 48, 225-235. Cerca con Google

109. Hansen SM, Berezin V, Bock E. (2008). Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-Cadherin. Cell Mol Life Sci 65, 3809-3821. Cerca con Google

110. Hansen JT, Brokaw J, Christie D, Karasek M. (1982). Localization of enkephalin-like immunoreactivity in the cat carotid and aortic body chemoreceptors. Anat Rec 203, 405-410. Cerca con Google

111. Hanson G, Jones L, Fidone S. (1986). Physiological chemoreceptor stimulation decreases enkephalin and substance P in the carotid body. Peptides 7, 767-769. Cerca con Google

112. Harlan RE, Song DD. (1994). Prenatal morphine treatment and the development of the striatum. Regul Pept 54, 117-118. Cerca con Google

113. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50, 265-270. Cerca con Google

114. Hassan S, Dobner PR, Carraway RE. (2004). Involvement of MAP-kinase, PI3-kinase and EGF-receptor in the stimulatory effect of Neurotensin on DNA synthesis in PC3 cells. Regul Pept 120, 155-166. Cerca con Google

115. He L, Dinger B, Fidone S. (2000). Cellular mechanisms involved in carotid body inhibition produced by atrial natriuretic peptide. Am J Physiol Cell Physiol 278, C845-C852. Cerca con Google

116. Heaslip RJ, Evans DY. (1995). Emetic, central nervous system, and pulmonary activities of rolipram in the dog. Eur J Pharmacol 286, 281-290 Cerca con Google

117. Heath D, Khan Q, Smith P. (1990). Histopathology of the carotid bodies in neonates and infants. Histopathology 17, 511-519. Cerca con Google

118. Heath D, Quinzanini M, Rodella A, Albertini A, Ferrari R, Harris P. (1988). Immunoreactivity to various peptides in the human carotid body. Res Commun Chem Pathol Pharmacol 62, 289-293. Cerca con Google

119. Heath D, Smith P, Hurst G. (1986). The carotid bodies in coarctation of the aorta. Br J Dis Chest 80, 122-130. Cerca con Google

120. Heath D, Smith P, Jago R. (1982). Hyperplasia of the carotid body. J Pathol 138, 115-127. Cerca con Google

121. Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Sastre Schony W, Schratzer M, Soukop W. (1989). Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22, 156-160. Cerca con Google

122. Helen P, Panula P, Yang HYT, Rapoport S. (1984). Bombesin/gastrin-releasing peptide (GRP)- and Met5-enkephalin-Arg6-Gly7-Leu8-like immunoreactivities in small intensely fluorescent (SIF) cells and nerve fibers of rat sympathetic ganglia. J Histochem Cytochem 32, 1131-1138. Cerca con Google

123. Hempleman SC. (1995). Sodium and potassium current in neonatal rat carotid body cells following chronic in vivo hypoxia. Brain Res 699, 42-50. Cerca con Google

124. Hempleman SC. (1996). Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia. J Neurophysiol 76, 1880-1886. Cerca con Google

125. Henry JL. (1987). Discussions of nomenclature for tachykinins and tachykinin receptors. In “Substance P and neurokinins” (J. L. Henry, R. Couture, A. C. Cuello, R. Pelletier, R. Quiron and D. Regoli, Eds.), pp. 17-18. Springer-Verlag, New York. Cerca con Google

126. Hertzberg T, Fan G, Finley JC, Erickson JT, Katz DM. (1994a). BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Dev Biol 166, 801-811. Cerca con Google

127. Hertzberg T, Finley JC, Katz DM. (1994b). Trophic regulation of carotid body afferent development. Adv Exp Med Biol 360, 305-307. Cerca con Google

128. Heym C, Kummer W. (1989). Immunohistochemical distribution and colocalization of regulatory peptides in the carotid body. J Electron Microsc Tech 12, 331-342. Cerca con Google

129. Holgert H, Hokfelt T, Hertzberg T, Lagercrantz H. (1995). Functional and developmental studies of the peripheral arterial chemoreceptors in rat: effects of nicotine and possible relation to sudden infant death syndrome. Proc Natl Acad Sci USA 92, 7575-7579. Cerca con Google

130. Honda Y. (1992). Respiratory and circulatory activities in carotid body-resected humans. J Appl Physiol 73, 1-8. Cerca con Google

131. Hu S, Sheng WS, Lokensgard JR, Peterson PK. (2002). Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42, 829-836. Cerca con Google

132. Huang XF, Törk I, Paxinos G. (1993). Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J Comp Neurol 330, 158-182. Cerca con Google

133. Hurst G, Hearth D, Smith P. (1985). Histological changes associated with ageing of the human carotid body. J Pathol 147, 181-187. Cerca con Google

134. Ichikawa H, Helke CJ. (1993). Distribution, origin and plasticity of galanin-immunoreactivity in the rat carotid body. Neuroscience 52, 757-767. Cerca con Google

135. Ichikawa H, Schulz S, Höllt V, Sugimoto T. (2005). Delta-opioid receptor-immunoreactive neurons in the rat cranial sensory ganglia. Brain Res 1043, 225-230. Cerca con Google

136. Izal-Azcárate A, Belzunegui S, San Sebastián W, Garrido-Gil P, Vázquez-Claverie M, López B, Marcilla I, Luquin MA. (2008). Immunohistochemical characterization of the rat carotid body. Respir Physiol Neurobiol 161, 95-99. Cerca con Google

137. Jansen AH, Ioffe S, Russell BJ, Chernick V. (1981). Effect of carotid chemoreceptor denervation on breathing in utero and after birth. J Appl Physiol 51, 630-633. Cerca con Google

138. Janzer RC, Friede RL. (1980). Hypotensive brain stem necrosis or cardiac arrest encephalopathy? Acta Neuropathol 50, 53-56. Cerca con Google

139. Joels N, Neil E. (1963). The excitation mechanisms of the carotid body. Br Med Bull 19, 21-24. Cerca con Google

140. Jones MW, French PJ, Bliss TV, Rosenblum K. (1999). Molecular mechanisms of long-term potentiation in the insular cortex in vivo. J Neurosci 19, RC36. Cerca con Google

141. Kameda Y, Nishimaki T, Takeichi M, Chisaka O. (2002). Homeobox gene hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247, 197-209. Cerca con Google

142. Kameda Y. (1989). Distribution of CGRP-, somatostatin-, galanin-, VIP-, and substance P-immunoreactive nerve fibers in the chicken carotid body. Cell Tissue Res 257, 623-629. Cerca con Google

143. Kameda Y. (2005). Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283, 128-139. Cerca con Google

144. Kameda Y. (1999). VIP-, galanin-, and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies after various types of denervation. Cell Tissue Res 298, 437-447. Cerca con Google

145. Kamme F, Salunga R, Yu J, Tran DT, Zhu J, Luo L, Bittner A, Guo HQ, Miller N, Wan J, Erlander M. (2003). Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 23, 3607-3615. Cerca con Google

146. Kapas S, Martinez A, Cuttitta F, Hinson JP. (1998). Local production and action of adrenomedullin in the rat adrenal zona glomerulosa. J Endocrinol 156, 477-484. Cerca con Google

147. Kato T, Ohtani-Kaneko R, Ono K, Okado N, Shiga T. (2005). Developmental regulation of activated ERK expression in the spinal cord and dorsal root ganglion of the chick embryo. Neurosci Res 52, 11-19. Cerca con Google

148. Kawase T, Okuda K, Wu CH, Yoshie H, Hara K, Burns DM. (1999). Calcitonin gene-related peptide acts as a mitogen for human Gin-1 gingival fibroblasts by activating the MAP kinase signalling pathway. J Periodontal Res 34, 160-168. Cerca con Google

149. Kelly A, Lynch MA. (2000). Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology 39, 643-651. Cerca con Google

150. Kerr JFT, Wyllie AH, Currie AR. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257. Cerca con Google

151. Kholwadwala D, Donnelly DF. (1992). Maturation of carotid chemoreceptor sensitivity to hypoxia: in vitro studies in the newborn rat. J Physiol 453, 461-473. Cerca con Google

152. Kinney HC, McHugh T, Miller K, Belliveau RA, Assmann SF. (2002). Subtle developmental abnormalities in the inferior olive: an indicator of prenatal brainstem injury in the sudden infant death syndrome. J Neuropathol Exp Neurol 61, 427-441. Cerca con Google

153. Kirby GC, McQueen DS. (1984). Effects of the antagonists MDL 7222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine. Br J Pharmacol 83, 259-269. Cerca con Google

154. Kirby GC, McQueen DS. (1986). Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Br J Pharmacol 88, 889-898. Cerca con Google

155. Kiryu-Seo S, Hirayama T, Kato R, Kiyama H. (2005). Noxa is a critical mediator of p53-dependent motor neuron death after nerve injury in adult mouse. J Neurosci 25, 1442-1447. Cerca con Google

156. Kis B, Abraham CS, Deli MA, Kobayashi H, Wada A, Niwa M, Yamashita H, Ueta Y. (2001). Adrenomedullin in the cerebral circulation. Peptides 22, 1825-1834. Cerca con Google

157. Kishi H, Mishima HK, Sakamoto I, Yamashita U. (1996). Stimulation of retinal pigment epithelial cell growth by neuropeptides in vitro. Curr Eye Res 15, 708-713. Cerca con Google

158. Kitabgi P. (2006). Functional domains of the subtype 1 neurotensin receptor (NTS1). Peptides 27, 2461-2468. Cerca con Google

159. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T. (1993). Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192, 553-560. Cerca con Google

160. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. (1993). Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun 194, 720-725. Cerca con Google

161. Koh YH, Ruiz-Canada C, Gorczyca M, Budnik V. (2002). The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion. J Neurosci 22, 2496-2504. Cerca con Google

162. Kondo H, Iwasa H. (1996). Re-examination of the carotid body ultrastructure with special attention to intercellular membrane appositions. Adv Exp Med Biol 410, 45-50. Cerca con Google

163. Kondo H. (1975). A light and electron microscopic study on the embryonic development of the rat carotid body. Am J Anat 144, 275-293. Cerca con Google

164. Kondo H, Yamamoto M. (1988). Occurrence, ontogeny, ultrastructure and some plasticity of CGRP (calcitonin gene-related peptide)-immunoreactive nerves in the carotid body of rats. Brain Res 473, 283-293. Cerca con Google

165. Konigsmark BW, Murphy EA. (1972). Volume of the ventral cochlear nucleus in man: its relationship to neuronal population and age. J Neuropathol Exp Neurol 31, 304-316. Cerca con Google

166. Konrat G, Halliday G, Sullivan C, Harper C. (1992). Preliminary evidence suggesting delayed development in the hypoglossal and vagal nuclei of SIDS infants: a necropsy study. J Child Neurol 7, 44-49. Cerca con Google

167. Krieg T, Qin Q, McIntosh EC, Cohen MV, Downey JM. (2002). ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am J Physiol Heart Circ Physiol 283, H2322-H2330. Cerca con Google

168. Kummer W, Gibbins IL, Heym C. (1989). Peptidergic innervation of arterial chemoreceptors. Arch Histol Cytol 52S, 361-364. Cerca con Google

169. Kummer W. (1990). Three types of neurochemically defined autonomic fibres innervate the carotid baroreceptor and chemoreceptor regions in the guinea-pig. Anat Embryol 181, 477-489. Cerca con Google

170. Kummer W, Habeck JO. (1991). Substance P- and calcitonin gene-related peptide-like immunoreactivities in the human carotid body studied at light and electron microscopical level. Brain Res 554, 286-292. Cerca con Google

171. Kummer W, Habeck JO. (1992). Chemoreceptor A-fibres in the human carotid body contain tyrosine hydroxylase and neurofilament immunoreactivity. Neuroscience 47, 713-725. Cerca con Google

172. Kusakabe T, Anglade P, Tsuji S. (1991). Localization of substance P, CGRP, VIP, neuropeptide Y, and somatostatin immunoreactive nerve fibers in the carotid labyrinths of some amphibian species. Histochemistry 96, 255-260. Cerca con Google

173. Kusakabe T, Hirakawa H, Matsuda H, Kawakami T, Takenaka T, Hayashida Y. (2003). Peptidergic innervation in the rat carotid body after 2, 4, and 8 weeks of hypocapnic hypoxic exposure. Histol Histopathol 18, 409-418. Cerca con Google

174. Kusakabe T. (1992). Ontogeny of substance P-, CGRP-, and VIP-containing nerve fibers in the amphibian carotid labyrinth of the bullfrog, Rana catesbeiana. An immunohistochemical study. Cell Tissue Res 269, 79-85. Cerca con Google

175. Kusakabe T, Hayashida Y, Matsuda H, Gono Y, Powell FL, Ellisman MH, Kawakami T, Takenaka T. (1998). Hypoxic adaptation of the peptidergic innervation in the rat carotid body. Brain Res 806, 165-174. Cerca con Google

176. Kusakabe T, Hirakawa H, Oikawa S, Matsuda H, Kawakami T, Takenaka T, Hayashida Y. (2004). Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia. Histol Histopathol 19, 1133-1140. Cerca con Google

177. Kusakabe T, Kawakami T, Takenaka T. (1995). Peptidergic innervation in the amphibian carotid labyrinth. Histol Histopathol 10, 185-202. Cerca con Google

178. Lack EE. (1978). Hyperplasia of vagal and carotid body paraganglia in patients with chronic hypoxemia. Am J Pathol 91, 497-516. Cerca con Google

179. Laduron PM. (1992). Toward genomic pharmacology: from membranal to nuclear receptors. Adv Drug Res 22, 107–148. Cerca con Google

180. Lam SY, Leung PS. (2002). A locally generated angiotensin system in rat carotid body. Regul Pept 107, 97-103. Cerca con Google

181. Lam SY, Leung PS. (2003). Chronic hypoxia activates a local angiotensin-generating system in rat carotid body. Mol Cell Endocrinol 203, 147-153. Cerca con Google

182. Lam SY, Fung ML, Leung PS. (2004). Regulation of the angiotensin-converting enzyme activity by a time-course hypoxia in the carotid body. J Appl Physiol 96, 809–813. Cerca con Google

183. Lamont P, Murray N, Halliday G, Hilton J, Pamphlett R. (1995). Brain stem nuclei in sudden infant death syndrome (SIDS): volumes, neuronal numbers and positions. Neuropathol Appl Neurobiol 21, 262-268. Cerca con Google

184. Lamontagne S, Meadows E, Luk P, Normandin D, Muise E, Boulet L, Pon DJ, Robichaud A, Robertson GS, Metters KM, Nantel F. (2001). Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res 920, 84-96. Cerca con Google

185. Langley OK, Aletsee-Ufrecht MC, Grant NJ, Gratzl M. (1989). Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 37, 781-791. Cerca con Google

186. Lasn H, Winblad B, Bogdanovic N. (2006). Neuroglia in the inferior olivary nucleus during normal aging and Alzheimer's disease. J Cell Mol Med 10, 145-156. Cerca con Google

187. Lazorthes G. (1961). Vascularisation et circulation cérébrales. Paris: Masson & Cie Editeurs. Cerca con Google

188. Le Douarin N, Le Lièvre C, Fontaine J. (1972). Recherches experimentales sur l’origine embryologique du corps carotidien chez les oiseaux. CR Acad Sci Ser D 275, 583-586. Cerca con Google

189. Leech RW, Alvord ECJr. (1977). Anoxic-ischaemic encephalopathy in the human neonatal period: the significance of brain stem involvement. Arch Neurol 34, 109-113. Cerca con Google

190. Lemke G. (2001). Glial control of neuronal development. Ann Rev Neurosci 24, 87-105. Cerca con Google

191. Lerner UH. (2006). Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. J Musculoskelet Neuronal Interact 6, 87-95. Cerca con Google

192. Leslie RA, Gwyn DG, Hopkins DA. (1982). The ultrastructure of the subnucleus gelatinosus of the nucleus of the tractus solitarius in the cat. J Comp Neurol 206, 109-118. Cerca con Google

193. Leung PS, Lam SY, Fung ML. (2000). Chronic hypoxia upregulates the expression and function of AT1 receptor in rat carotid body. J Endocrinol 167, 517–524. Cerca con Google

194. Li YL, Schultz HD. (2006). Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: role of angiotensin II. J Physiol 575, 215-227. Cerca con Google

195. Li YL, Gao L, Zucker ICH, Schultz HD. (2007). NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75, 546-554. Cerca con Google

196. Li YL, Xia XH, Zheng H, Gao L, Li YF, Liu D, Patel KP, Wang W, Schultz HD. (2006). Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res 71, 129-138. Cerca con Google

197. Li Y, Fiscus RR, Wu J, Yang L, Wang X. (1997). The antiproliferative effects of calcitonin gene-related peptide in different passages of cultured vascular smooth muscle cells. Neuropeptides 31, 503-509. Cerca con Google

198. Lipworth BJ. (2005). Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365, 167-175 Cerca con Google

199. Lloyd RV, Qian X, Jin L, Ruebel K, Bayliss J, Zhang S, Kobayashi I. (2005). Analysis of pituitary cells by laser capture microdissection. Methods Mol Biol 293, 233-241. Cerca con Google

200. Lopez I, Honrubia V, Baloh RW. (1997). Aging and the human vestibular nucleus. J Vestib Res 7, 77-85. Cerca con Google

201. López J, Martínez A. (2002). Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol 221, 1-92. Cerca con Google

202. Lundberg JM, Hokfelt T, Fahrenkrug J, Nilsson G, Terenius L. (1979). Peptides in the cat carotid body (glomus caroticum): VIP-, enkephalin-, and substance P-like immunoreactivity. Acta Physiol Scand 107, 279-281. Cerca con Google

203. Ma X, Goto N, Goto J, Ezure H, Nonaka N. (2002). Development of the human lateral cuneate nucleus: a morphometric evaluation. Brain Res Dev Brain Res 131, 69-75. Cerca con Google

204. Ma X, Goto N, Goto J, Ezure H, Nonaka N. (2005). Development of the human cuneatus medialis nucleus: a morphometric evaluation. Early Hum Dev 81, 369-377. Cerca con Google

205. Ma X, Goto N, Goto J, Nonaka N, Shibata M. (2006). Morphometric development of the posterior funicular nucleus in the human medulla oblongata. Okajimas Folia Anat Jpn 83, 35-42. Cerca con Google

206. Macchi V, Porzionato A, Parenti A, De Caro R. (2004). The course of the posterior inferior cerebellar artery may be related to its level of origin. Surg Radiol Anat 26, 60-65. Cerca con Google

207. Macchi V, Porzionato A, Guidolin D, Parenti A, De Caro R. (2005). Morphogenesis of the posterior inferior cerebellar artery with three-dimensional reconstruction of the late embryonic vertebrobasilar system. Surg Radiol Anat 27, 56-60. Cerca con Google

208. Macchi V, Porzionato A, Belloni AS, Stecco C, Parenti A, De Caro R. (2006). Immunohistochemical mapping of adrenomedullin in the human medulla oblongata. Peptides 27, 1397-1404. Cerca con Google

209. Macchi V, Porzionato A, De Caro R, Clemente A, Parenti A. (2008). Comment on "the relationship of the posterior inferior cerebellar artery to the cranial nerves VII-XII". Clin Anat 21, 218-220; Cerca con Google

210. Machaalani R, Waters KA. (2003). Increased neuronal cell death after intermittent hypercapnic hypoxia in the developing piglet brainstem. Brain Res 985, 127-134. Cerca con Google

211. Malanga CJ 3rd, Kosofsky BE. (1999). Mechanisms of action of drugs of abuse on the developing fetal brain. Clin Perinatol 26, 17-37. Cerca con Google

212. Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, Becker LE, Pei L, Liu F, Wymann MP, MacDonald JF, Wang YT. (2003). Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38, 611-624. Cerca con Google

213. Mann DM, Yates PO, Hawkes J. (1983). The pathology of the human locus ceruleus. Clin Neuropathol 2, 1-7. Cerca con Google

214. Manning BD, Cantley LC. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. Cerca con Google

215. Markowska A, Nussdorfer GG, Malendowicz LK. (1994). Different effects of neurotensin and neuromedin-N on the proliferative activity of rat adrenal cortex. Histol Histopathol 9, 449-452. Cerca con Google

216. Martin S, Navarro V, Vincent JP, Mazella J. (2002). Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology 123, 1135-1143. Cerca con Google

217. Martinez A, Saldise L, Ramirez MJ, Belzunegui S, Zudaire E, Luquin MR, Cuttitta F. (2003). Adrenomedullin expression and function in the rat carotid body. J Endocrinol 176, 95-102. Cerca con Google

218. Martini C, Trincavelli ML, Tuscano D, Carmassi C, Ciapparelli A, Lucacchini A, Cassano GB, Dell'Osso L. (2004). Serotonin-mediated phosphorylation of extracellular regulated kinases in platelets of patients with panic disorder versus controls. Neurochem Int 44, 627-639. Cerca con Google

219. Maxwell DL, Chahal P, Nolop KB, Hughes JM. (1986). Somatostatin inhibits the ventilatory response to hypoxia in humans. J Appl Physiol 60, 997-1002. Cerca con Google

220. Mazella J, Vincent JP. (2006). Internalization and recycling properties of neurotensin receptors. Peptides 27, 2488-2492. Cerca con Google

221. Mazella J, Zsurger N, Navarro V, Chabry J, Kaghad M, Caput D, Ferrara P, Vita N, Gully D, Maffrand JP, Vincent JP. (1998). The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J Biol Chem 273, 26273-26276. Cerca con Google

222. McDonald DM, Mitchell RA. (1975). The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative structural analysis. J Neurocytol 4, 17-23. Cerca con Google

223. McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V. (1979). Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90, 227-233. Cerca con Google

224. McGeer PL, McGeer EG, Suzuki JS. (1977). Aging and extrapyramidal function. Arch Neurol 34, 33-35. Cerca con Google

225. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. (1998). RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333-339. Cerca con Google

226. McLemore GL, Cooper RZ, Richardson KA, Mason AV, Marshall C, Northington FJ, Gauda EB. (2004). Cannabinoid receptor expression in peripheral arterial chemoreceptors during postnatal development. J Appl Physiol 97, 1486-1495. Cerca con Google

227. McQueen DS, Ribeiro JA. (1981a). Effects of beta-endorphin, vasoactive intestinal polypeptide and cholecystokinin octapeptide on cat carotid chemoreceptor activity. Q J Exp Physiol 66, 273-284. Cerca con Google

228. McQueen DS, Ribeiro JA. (1980). Inhibitory actions of methionine-enkephalin and morphine on the cat carotid chemoreceptors. Br J Pharmacol 71, 297-305. Cerca con Google

229. McQueen DS, Ribeiro JA. (1981b). Effect of adenosine on carotid chemoreceptor activity in the cat. Br J Pharmacol 74, 129-136. Cerca con Google

230. McRitchie DA, Tork I. (1993). The internal organization of the human solitary nucleus. Brain Res Bull 31, 171-193. Cerca con Google

231. Miller AD, Leslie RA. (1994). The area postrema and vomiting. Front Neuroendocrinol 15, 301-320 Cerca con Google

232. Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Cuttitta F. (1996). Adrenomedullin expression in human tumor cell lines: its potential role as an autocrine growth factor. J Biol Chem 271, 23345-23351. Cerca con Google

233. Miller AD, Ruggiero DA. (1994). Emetic reflex arc revealed by expression of the immediate-early gene c-fos in the cat. J Neurosci 14, 871-888. Cerca con Google

234. Millhorn DE, Conforti L, Beitner-Johnson D, Zhu W, Raymond R, Filisko T, Kobayashi S, Peng M, Genter MB. (1996). Regulation of ionic conductances and gene expression by hypoxia in an oxygen sensitive cell line. Adv Exp Med Biol 410, 135-142. Cerca con Google

235. Minamino N, Kangawa K, Matsuo H. (1983). Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 114, 541-548. Cerca con Google

236. Mitsuhashi M, Payan DG. (1987). The mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines. Life Sci 40, 853-861. Cerca con Google

237. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164, 567-574. Cerca con Google

238. Moatamed F. (1966). Cell frequencies in the human inferior olivary nuclear complex. J Comp Neurol 128, 109-116. Cerca con Google

239. Moftaquir A, Langley K, Boutroy MJ. (1996). Immunocytochemical localization of NCAM and catecholamine-synthesizing enzymes in rabbit intra- and extra-adrenal chromaffin tissue. Histochem J 28, 661-669. Cerca con Google

240. Mori F, Perez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavalda A, Palacios JM, Mengod G. (2009). cAMP phosphodiesterases 4 (PDE4) isoform expression in the area postrema and the nuclei related with the emetic reflex in human brainstem. Eur J Neurosci In press. Cerca con Google

241. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. (1991). Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 16, 233-236. Cerca con Google

242. Nara T, Goto N, Hamano S. (1991). Development of the human dorsal nucleus of vagus nerve: a morphometric study. J Auton Nerv Syst 33, 267-275. Cerca con Google

243. Nara T, Goto N, Yamaguchi K. (1989). Development of the human hypoglossal nucleus: a morphometric study. Dev Neurosci 11, 212-220. Cerca con Google

244. Navarro V, Martin S, Mazella J. (2006). Internalization-dependent regulation of HT29 cell proliferation by neurotensin. Peptides 27, 2502-2507. Cerca con Google

245. Ng KW, Livesey SA, Larkins RG, Martin TJ. (1983). Calcitonin effects on growth and on selective activation of type II isoenzyme of cyclic adenosine 3':5'-monophosphate-dependent protein kinase in T 47D human breast cancer cells. Cancer Res 43, 794-800. Cerca con Google

246. Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. (2001). Immunolocalization of the mitogen-activated protein kinase signaling pathway in Hassall's corpuscles of the human thymus. Acta Histochem 103, 89-98. Cerca con Google

247. Nurse CA, Fearon IM. (2002). Carotid body chemoreceptors in dissociated cell culture. Microsc Res Tech 59, 249-255. Cerca con Google

248. Nurse CA. (2005). Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci 120, 1-9. Cerca con Google

249. Nussdorfer GG. (2001). Proadrenomedullin-derived peptides in the paracrine control of the hypothalamo-pituitary-adrenal axis. Int Rev Cytol 206, 249-284. Cerca con Google

250. Ohki-Hamazaki H, Iwabuchi M, Maekawa F. (2005). Development and function of bombesin-like peptides and their receptors. Int J Dev Biol 49, 293-300. Cerca con Google

251. O'Kusky JR, Norman MG. (1992). Sudden infant death syndrome: postnatal changes in the numerical density and total number of neurons in the hypoglossal nucleus. J Neuropathol Exp Neurol 51, 577-584. Cerca con Google

252. O'Kusky JR, Norman MG. (1995). Sudden infant death syndrome: increased number of synapses in the hypoglossal nucleus. J Neuropathol Exp Neurol 54, 627-634. Cerca con Google

253. Olney JW. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719-721. Cerca con Google

254. Olney JW. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: an electron microscopic study. J Neuropathol Exp Neurol 30, 75-90. Cerca con Google

255. Olszewski J, Baxter DW. (1954). Cytoarchitecture of the human brainstem. Basel, Switzerland, JB Lippincott. Cerca con Google

256. Oomori Y, Ishikawa K, Satoh Y, Matsuda M, Ono K. (1991). Neuropeptide-Y-immunoreactive chief cells in the carotid body of young rats. Acta Anat 140, 120-123. Cerca con Google

257. Oomori Y, Murabayashi H, Ishikawa K, Miyakawa K, Nakaya K, Tanaka H. (2002). Neuropeptide Y- and catecholamine-synthesizing enzymes: immunoreactivities in the rat carotid body during postnatal development. Anat Embryol 206, 37-47. Cerca con Google

258. Opazo P, Watabe AM, Grant SG, O'Dell TJ. (2003). Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23, 3679-3688. Cerca con Google

259. Pakkenberg B, Gundersen HJG. (1988). Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J Microsc 150, 1-20. Cerca con Google

260. Pallot DJ. (1987). The Mammalian Carotid Body. Springer-Verlag. Berlin. Cerca con Google

261. Pallot DJ, Al Neamy K, Blakeman N. (1986). Quantitative studies of the rat carotid body Type I cells. Acta Anat 126, 187-191. Cerca con Google

262. Pallot DJ, Seker M, Abramovici A. (1992). Post-mortem changes in the normal rat carotid body: possible implications for human histopathology. Virchows Arch A Pathol Anat Histopathol 420, 31-35. Cerca con Google

263. Pamphlett R, Treloar L. (1996). Astrocytes in the hypoglossal nuclei of sudden infant death syndrome (SIDS) infants: a quantitative study. Neuropathol Appl Neurobiol 22, 136-143. Cerca con Google

264. Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J. (2007). Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131, 364-377. Cerca con Google

265. Parenti A, Macchi V, Snenghi R, Porzionato A, Scaravilli T, Ferrara SD, De Caro R. (2005). Selective stroke of the solitary tract nuclei in two cases of central sleep apnoea. Clin Neuropathol 24, 239-246. Cerca con Google

266. Patacchini R, Maggi CA. (2004). The nomenclature of tachykinin receptors. In “Handbook of Experimental Pharmacology - Tachykinins” (P. Holzer, Ed.), pp. 121-139. Springer-Verlag, Berlin Heidelberg. Cerca con Google

267. Paxinos G, Huang XF. (1995). Atlas of the Human Brainstem. San Diego: Academic Press. Cerca con Google

268. Peers C, O'Donnell J. (1990). Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents. Brain Res 522, 259-266. Cerca con Google

269. Pelaprat D. (2006). Interactions between neurotensin receptors and G proteins. Peptides 27, 2476-2487. Cerca con Google

270. Pérez-Torres S, Miró X, Palacios JM, Cortés R, Puigdomènech P, Mengod G. (2000). Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20, 349-374. Cerca con Google

271. Pesce C, Reale A. (1987). Aging and the nerve cell population of the putamen: a morphometric study. Clin Neuropathol 6, 16-18. Cerca con Google

272. Petito CK, Roberts B. (1995a). Effect of post-mortem interval on in situ end-labeling of DNA oligonucleosomes. J Neuropathol Exp Neurol 54, 761-765. Cerca con Google

273. Petito CK, Roberts B. (1995b). Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146, 1121-1130. Cerca con Google

274. Pindur J, Capin DM, Johnson MI, Rance NE. (1992). Cystic brainstem necrosis in a premature infant after prolonged bradycardia. Acta Neuropathol 83, 667-669. Cerca con Google

275. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. (1999). Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104, 1363-1374. Cerca con Google

276. Pluder F, Sinz A, Beck-Sickinger AG. (2007). Proliferative effect of calcitonin gene-related peptide is induced by at least five proteins as identified by proteome profiling. Chem Biol Drug Des 69, 14-22. Cerca con Google

277. Poncet L, Denoroy L, Dalmaz Y, Pequignot JM, Jouvet M. (1994). Chronic hypoxia affects peripheral and central vasoactive intestinal peptide-like immunoreactivity in the rat. Neurosci Lett 176, 1-4. Cerca con Google

278. Poncet L, Denoroy L, Dalmaz Y, Pequignot JM, Jouvet M. (1996). Alteration in central and peripheral substance P- and neuropeptide Y-like immunoreactivity after chronic hypoxia in the rat. Brain Res 733, 64-72. Cerca con Google

279. Porzionato A, Macchi V, Ferrara SD, Parenti A, De Caro R. (2004a). C-FOS expression in the subnucleus gelatinosus of the human nucleus tractus solitarii. Ital J Anat Embryol 109, 125-134. Cerca con Google

280. Porzionato A, Macchi V, Parenti A, De Caro R. (2004b). The distribution of mast cells in the human area postrema. J Anat 204, 141-147. Cerca con Google

281. Porzionato A, Macchi V, Guidolin D, Parenti A, Ferrara SD, De Caro R. (2005a). Histopathology of carotid body in heroin addiction. Possible chemosensitive impairment. Histopathology 46, 296-306. Cerca con Google

282. Porzionato A, Macchi V, Morsut L, Parenti A, De Caro R. (2005b). Microvascular patterns in human medullary tegmentum at the level of the area postrema. J Anat 206, 405-410. Cerca con Google

283. Porzionato A, Macchi V, Belloni AS, Parenti A, De Caro R. (2006a). Adrenomedullin immunoreactivity in the human carotid body. Peptides 27, 69-73. Cerca con Google

284. Porzionato A, Macchi V, Barzon L, Masi G, Iacobone M, Parenti A, Palù G, De Caro R. (2006b). Immunohistochemical assessment of parafibromin in mouse and human tissues. J Anat 209, 817-827. Cerca con Google

285. Porzionato A, Macchi V, Parenti A, De Caro R. (2008a). Trophic factors in the carotid body. Int Rev Cell Mol Biol 269, 1-58. Cerca con Google

286. Porzionato A, Macchi V, Guidolin D, Sarasin G, Parenti A, De Caro R. (2008b). Anatomic distribution of apoptosis in medulla oblongata of infants and adults. J Anat 212, 106-113. Cerca con Google

287. Porzionato A, Macchi V, Stecco C, Vigato E, Tiengo C, Parenti A, De Caro R. (2008c). Morphometric analysis of the inferior olivary complex in infants and adults. Ital J Anat Embryol 113, 65-73. Cerca con Google

288. Porzionato A, Macchi V, Parenti A, Matturri L, De Caro R. (2008d). Peripheral chemoreceptors: postnatal development and cytochemical findings in Sudden Infant Death Syndrome. Histol Histopathol 23, 351-365. Cerca con Google

289. Porzionato A, Macchi V, Parenti A, De Caro R. (2008e). Neural Cell Adhesion Molecule in the human carotid body. Ital J Anat Embryol 113, In press. Cerca con Google

290. Porzionato A, Macchi V, Parenti A, De Caro R. (2009a). Extracellular signal-regulated kinase and phosphatidylinositol-3-kinase/AKT signalling pathways in the human carotid body and peripheral ganglia. Acta Histochem In press. Cerca con Google

291. Porzionato A, Macchi V, Parenti A, De Caro R. (2009b). Chronic carotid glomitis in heroin addiction. Histol Histopathol In press. Cerca con Google

292. Potter LR, Abbey-Hosch S, Dickey DM. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27, 47-72. Cerca con Google

293. Powell FL. (2007). The influence of chronic hypoxia upon chemoreception. Respir Physiol Neurobiol 157, 154-161. Cerca con Google

294. Prabhakar NR, Jacono FJ. (2005). Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol 6, 112-120. Cerca con Google

295. Prabhakar NR, Landis SC, Kumar GK, Mullikin-Kilpatrick D, Cherniack NS, Leeman S. (1989). Substance P and neurokinin A in the cat carotid body: localization, exogenous effects and changes in content in response to arterial pO2. Brain Res 481, 205-214. Cerca con Google

296. Purves MJ. (1970). The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J Physiol 209, 417-431. Cerca con Google

297. Puurunen J, Lucke C, Schwabe U. (1978). Effect of the phosphodiesterase inhibitor 4-(3-cyclopentyloxy-4- methoxyphenyl)-2-pyrrolidone (ZK 62711) on gastric secretion and gastric mucosal cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol 304, 69-75. Cerca con Google

298. Qiao M, Shapiro P, Kumar R, Passaniti A. (2004). Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. J Biol Chem 279, 42709-42718. Cerca con Google

299. Qin XP, Ye F, Hu CP, Liao DF, Deng HW, Li YJ. (2004). Effect of calcitonin gene-related peptide on angiotensin II-induced proliferation of rat vascular smooth muscle cells. Eur J Pharmacol 488, 45-49. Cerca con Google

300. Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbroker D, Bethke TD. (2005). Roflumilast--an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 366, 563-571. Cerca con Google

301. Rane MJ, Gozal D, Butt W, Gozal E, Pierce WM Jr, Guo SZ, Wu R, Goldbart AD, Thongboonkerd V, McLeish KR, Klein JB. (2005). Gamma-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion. J Immunol 174, 7242-7249. Cerca con Google

302. Revesz T, Geddes JF. (1988). Symmetrical columnar necrosis of the basal ganglia and brain stem in an adult following cardiac arrest. Clin Neuropathol 6, 294-298. Cerca con Google

303. Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD. (1999). The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 19, 4337-4348. Cerca con Google

304. Roberts RE. (2004). The role of Rho kinase and extracellular regulated kinase-mitogen-activated protein kinase in alpha2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein. J Pharmacol Exp Ther 311, 742-747. Cerca con Google

305. Robichaud A, Savoie C, Stamatiou PB, Lachance N, Jolicoeur P, Rasori R, Chan CC. (2002a). Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol 135, 113-118. Cerca con Google

306. Robichaud A, Stamatiou PB, Jin SL, Lachance N, Macdonald D, Laliberte F, Liu S, Huang Z, Conti M, Chan CC. (2002b). Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110, 1045-1052. Cerca con Google

307. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000). ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci 20, 977-985. Cerca con Google

308. Runcie MJ, Ulman LG, Potter EK. (1995). Effects of pituitary adenylate cyclase-activating polypeptide on cardiovascular and respiratory responses in anaesthetised dogs. Regul Pept 60, 193-200. Cerca con Google

309. Rutishauser U. (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9, 26-35. Cerca con Google

310. Salido M, Vilches J, López A. (2000). Neuropeptides bombesin and calcitonin induce resistance to etoposide induced apoptosis in prostate cancer cell lines. Histol Histopathol 15, 729-738. Cerca con Google

311. Sander GE, Lowe RF, Given MB, Giles TD. (1989). Interaction between circulating peptides and the central nervous system in hemodynamic regulation. Am J Cardiol 64, 44–50. Cerca con Google

312. Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, Francesconi W. (2002). Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22, 3359-3365. Cerca con Google

313. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T. (1991). Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351, 230-233. Cerca con Google

314. Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Sasano H, Mouri T. (1996). Immunocytochemical localization of adrenomedullin-like immunoreactivity in the human hypothalamus and the adrenal gland. Neurosci Lett 203, 207-210. Cerca con Google

315. Schaeffer P, Laplace MC, Savi P, Pflieger AM, Gully D, Herbert JM. (1995). Human umbilical vein endothelial cells express high affinity neurotensin receptors coupled to intracellular calcium release. J Biol Chem 270, 3409-3413. Cerca con Google

316. Schwartz JP. (1992). Neurotransmitters as neurotrophic factors: a new set of functions. Int Rev Neurobiol 34, 1-23. Cerca con Google

317. Scott RJ, Hegyi L. (1997). Cell death in perinatal hypoxic-ischaemic brain injury. Neuropathol App Neurob 23, 307-314. Cerca con Google

318. Scott AI, Perini AF, Shering PA, Whalley LJ. (1991). In-patient major depression: is rolipram as effective as amitriptyline? Eur J Clin Pharmacol 40, 127-129. Cerca con Google

319. Scraggs M, Smith P, Heath D. (1992). Glomic cells and their peptides in the carotid body of the human fetus. Pediatr Pathol 12, 823-834. Cerca con Google

320. Seatriz JV, Hammer RPJr. (1993). Effects of opiates on neuronal development in the rat cerebral cortex. Brain Res Bull 30, 523-527. Cerca con Google

321. Seki T, Arai Y. (1993). Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17, 265-290. Cerca con Google

322. Seutin V, Massotte L, Dresse A. (1989). Electrophysiological effects of neurotensin on dopaminergic neurones of the ventral tegmental area of the rat in vitro. Neuropharmacology 28, 949-954. Cerca con Google

323. Shah GV, Rayford W, Noble MJ, Austenfeld M, Weigel J, Vamos S, Mebust WK. (1994). Calcitonin stimulates growth of human prostate cancer cells through receptor-mediated increase in cyclic adenosine 3',5'-monophosphates and cytoplasmic Ca2+ transients. Endocrinology 134, 596-602. Cerca con Google

324. Shaver SW, Pang JJ, Wall KM, Sposito NM, Gross PM. (1991). Subregional topography of capillaries in the dorsal vagal complex of rats. I. Morphometric properties. J Comp Neurol 306, 73–82. Cerca con Google

325. Shelton JG, Steelman LS, White ER, McCubrey JA. (2004). Synergy between PI3K/Akt and Raf/MEK/ERK pathways in IGF-1R mediated cell cycle progression and prevention of apoptosis in hematopoietic cells. Cell Cycle 3, 372-379. Cerca con Google

326. Shen PJ, Yuan CG, Ma J, Cheng S, Yao M, Turnley AM, Gundlach AL. (2005). Galanin in neuro(glio)genesis: expression of galanin and receptors by progenitor cells in vivo and in vitro and effects of galanin on neurosphere proliferation. Neuropeptides 39, 201-205. Cerca con Google

327. Shi WX, Bunney BS. (1992). Roles of intracellular cAMP and protein kinase A in the actions of dopamine and neurotensin on midbrain dopamine neurons. J Neurosci 12, 2433-2438. Cerca con Google

328. Smith P, Heath D, Fitch R, Hurst G, Moore D, Weitzenblum E. (1986). Effects on the rabbit carotid body of stimulation by almitrine, natural high altitude, and experimental normobaric hypoxia. J Pathol 149, 143-153. Cerca con Google

329. Smith P, Heath D, Williams D, Bencini C, Pulera N, Giuntini C. (1993). The earliest histopathological response to hypobaric hypoxia in rabbits in the Rifugio Torino (3370 M) on Monte Bianco. J Pathol 170, 485-491. Cerca con Google

330. Smith P, Gosney J, Heath D, Burnett H. (1990). The occurrence and distribution of certain polypeptides within the human carotid body. Cell Tissue Res 261, 565-571. Cerca con Google

331. Smith P, Hurst G, Heath D, Drewe R. (1986). The carotid bodies in a case of ventricular septal defect. Histopathology 10, 831-840. Cerca con Google

332. Snider BJ, Gottron FJ, Choi DW. (1999). Apoptosis and necrosis in cerebrovascular disease. Ann N Y Acad Sci 893, 243-253. Cerca con Google

333. Springell DA, Costin NS, Pilowsky PM, Goodchild AK. (2005). Hypotension and short-term anaesthesia induce ERK1/2 phosphorylation in autonomic nuclei of the brainstem. Eur J Neurosci 22, 2257-2270. Cerca con Google

334. Standring S, Ellis H, Healy H, Johnson D, Williams A. (2005). Gray's Anatomy. 39th ed. Churchill Livingstone. London. p 547. Cerca con Google

335. Stapelfeldt WH, Szurszewski JH. (1989a). The electrophysiological effects of neurotensin on neurones of guinea-pig prevertebral sympathetic ganglia. J Physiol 411, 301-323. Cerca con Google

336. Stapelfeldt WH, Szurszewski JH. (1989b). Neurotensin facilitates release of substance P in the guinea-pig inferior mesenteric ganglion. J Physiol 411, 325-345. Cerca con Google

337. Stea A, Jackson A, Nurse CA. (1992). Hypoxia and N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin-like arterial chemoreceptors. Proc Natl Acad Sci USA 89, 9469-9473. Cerca con Google

338. Stecco C, Porzionato A, Macchi V, Sarasin G, Calcagno A, Parenti A, De Caro R. (2005). Detection of apoptosis in human brainstem by TUNEL assay. Ital J Anat Embryol 110, 255-260. Cerca con Google

339. Steingart RA, Abu-Roumi M, Newman ME, Silverman WF, Slotkin TA, Yanai J. (2000). Neurobehavioral damage to cholinergic systems caused by prenatal exposure to heroin or phenobarbital: cellular mechanisms and the reversal of deficits by neural grafts. Brain Res Dev Brain Res 122, 125-133. Cerca con Google

340. Sterio DC. (1984). The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134, 127-136. Cerca con Google

341. Sterni LM, Bamford OS, Tomares SM, Montrose MH, Carroll JL. (1995). Developmental changes in intracellular Ca2+ response of carotid chemoreceptor cells to hypoxia. Am J Physiol 268, L801-808. Cerca con Google

342. Su B, Karin M. (1996). Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 8, 402-411. Cerca con Google

343. Suarez C, Diaz C, Tolivia J, Alvarez JC, Gonzalez del Rey C, Navarro A. (1997). Morphometric analysis of the human vestibular nuclei. Anat Rec 247:271-288. Cerca con Google

344. Sweatt JD. (2001). The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76, 1-10. Cerca con Google

345. Szilagyi JE, Ferrario CM. (1981). Central opiate system modulation of the area postrema pressor pathway. Hypertension 3, 313–317. Cerca con Google

346. Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS. (1999). Chronic antidepressant administration increases the expression of cAMP- specific phosphodiesterase 4A and 4B isoforms. J Neurosci 19, 610-618. Cerca con Google

347. Takei Y. (2000). Structural and functional evolution of the natriuretic peptide system in vertebrates. Int Rev Cytol 194, 1-66. Cerca con Google

348. Tang Y, Lopez I, Baloh RW. (2001-2002). Age-related change of the neuronal number in the human medial vestibular nucleus: a stereological investigation. J Vestib Res 11, 357-363. Cerca con Google

349. Taraviras S, Olli-Lähdesmäki T, Lymperopoulos A, Charitonidou D, Mavroidis M, Kallio J, Scheinin M, Flordellis C. (2002). Subtype-specific neuronal differentiation of PC12 cells transfected with alpha2-adrenergic receptors. Eur J Cell Biol 81, 363-374. Cerca con Google

350. Taylor SR, Roessman U. (1984). Hypotensive brainstem necrosis in a stillborn. Acta Neuropathol 65, 166-167. Cerca con Google

351. Tischler AS, Ruzicka LA, DeLellis RA. (1991). Regulation of neurotensin content in adrenal medullary cells: comparison of PC12 cells to normal rat chromaffin cells in vitro. Neuroscience 43, 671-678. Cerca con Google

352. Toft MH, Gredal O, Pakkenberg B. (2005). The size distribution of neurons in the motor cortex in amyotrophic lateral sclerosis. J Anat 207, 399-407. Cerca con Google

353. Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Echevarria M, Lopez-Barneo J. (2003). Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J Neurosci 23, 141–148. Cerca con Google

354. Tomiyama M, Palacios JM, Cortés R, Vilaró MT, Mengod G. (1997). Distribution of AMPA receptor subunit mRNAs in the human basal ganglia: an in situ hybridization study. Mol Brain Res 46, 281-289. Cerca con Google

355. Trejter M, Brelinska R, Warchol JB, Butowska W, Neri G, Rebuffat P, Gottardo L, Malendowicz LK. (2002a). Effects of galanin on prolifera Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record