Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pavan, Andrea (2008) Separate Motion-detecting Mechanisms for First- and Second-order Motion revealed by Priming, Position Shift and Motion Aftereffect. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
3800Kb

Abstract (english)

A striking number of psychophysical, neuropsychological, and human neuroimaging studies suggest the presence of distinct mechanisms and neural substrates for the perception of motion defined by spatiotemporal variations of luminance (first-order motion) and the perception of motion defined by spatiotemporal variations of contrast (second-order motion) (Ledgeway & Smith, 1994a,b; Lu & Sperling, 1995, 2001). The experiments outlined in this Thesis aimed to investigate further the mechanisms underlying the perception of first- and second-order motion and how these two motion signals are integrated by the visual system. To this end, first-order, second-order and cross-order motion conditions were tested under different experimental paradigms such as motion priming (Chapter 2), motion aftereffect (MAE - Chapter 3) and motion-induced position shift (MIPS - Chapter 4). In particular, the experiments were designed to possibly tap low-levels, intermediate-levels and high-levels of motion processing, to understand better whether first- and second-order motion perception involve different and separate mechanisms from the lower level of motion analysis (e.g., V1, V2/V3) and whether these two kinds of motion signals are integrated at a higher level of motion analysis.
In the first experiment (Chapter 5) we investigated the implicit short-term memory mechanisms for first- and second-order moving stimuli. In particular, we used a repetition priming paradigm (Chapter 2) in order to test if priming for motion direction is sensitive to spatial position with both first- and second-order motion. We also used a cross-order condition in which first-order motion patterns primed second-order moving patterns and vice versa. Testing priming for motion direction and spatial position separately for first- and second-order motion allowed us to assess if these two motion cues are represented and stored in neural substrates with a retinotopical organization. The cross-order condition permitted us to assess whether the implicit short-term memory for first- and second-order motion relies on the same mechanism/s and neural substrates; that is, if first-order primes second-order motion and vice versa, this would suggest a common locus of priming representation for first- and second-order motion. We found that priming for motion direction occurs both with first- and second-order motion. Moreover, priming for motion direction is position-sensitive both with first- and second-order motion, suggesting a neural locus of priming representation with a retinotopical organization. Previous findings of Campana et al. (2002, 2006) have shown the involvement of cortical area MT in priming for motion direction using first-order stimuli, based on the results of the first experiment we suggest that MT might be involved also in second-order motion priming. We found that cross-order motion priming also exists but it is weaker and not sensitive to spatial position. From these findings we hypothesize that first- and second-order motion cues remain distinct and separate at the level in which global motion is extracted (i.e., MT; Edwards & Badcock, 1995). However, the two types of motion could be integrated at a higher level of motion processing, where the retinotopic organization is either lost or at least very coarse (e.g., MST).
The findings of the first experiment showed both that, in the within-order conditions priming for motion direction is dependent on the repetition of the same target’s position; and, in the cross-order condition, priming is not sensitive to spatial position. These findings suggest not only there are two independent pathways for first- and second-order motion, but also that these two motion processing streams seem to encode the spatial position of a moving pattern separately. In the second experiment (Chapter 6) we assessed more specifically the issue of whether first- and second-order motion encode and assign the position of a moving pattern by means of a single and common mechanism, or whether there are two distinct mechanisms for position assignment. To this purpose we measured the motion-induced position shift (MIPS) for first-order and second-order drifting Gabors (De Valois & De Valois, 1991; Durant & Johnston, 2004; Edwards & Badcock, 2003; Fang & He, 2004). We first measured the MIPS for first- and second-order moving patterns separately, then conducted another experiment in which first- and second-order drifting Gabors were presented within the same trial, to see if cross-order motion shifts perceived position as well. If there is a common position assignment mechanism for both first- and second-order motion cues, one would expect an effect size of cross-order MIPS intermediate between that obtained with first- and second-order motion separately. On the other hand, the lack of an effect for cross-order stimuli would indicate the presence of independent position assignment mechanisms. We found that both first- and second-order motion, presented separately, shift the perceived position. We did not find any positional shift with cross-order stimuli. This implies the presence of separate mechanisms that encode and assign the spatial position for these two motion cues.
In the third experiment (Chapter 7), we used a paradigm developed by Kanai and Verstraten (2005) in order to tap the mechanisms of motion processing (of both first- and second-order motion) and their interaction with adaptation at low- (e.g., V1) and intermediate levels (e.g., MT) of motion processing. Kanai and Verstraten (2005) showed that depending both on the duration of the adapting stimulus and that of the adaptation-test blank interval (i.e., inter-stimulus intervals [ISI]), the perceived direction of an ambiguous test pattern can be biased towards the opposite direction of the adaptation pattern, or in the same direction. Specifically, at very short ISIs (below 120 ms), very short adaptation durations (below 100 ms) can produce a rapid form of priming (rapid visual motion priming [rVMP]), whereas slightly longer adaptation durations (e.g., 320 and 640 ms) can yield a rapid form of motion aftereffect (rapid motion aftereffect [rMAE]). Moreover, Kanai and Verstraten (2005) showed that using even longer adaptation durations and ISI longer than one second biases the perceived motion direction of the test pattern toward the same motion direction (i.e., motion priming), obtaining a kind of priming for motion direction similar to that obtained in our first experiment. This probably reflects the activity of intermediate-level areas (e.g., MT). Very brief adaptation durations could selectively tap the response of low-level first- and second-order motion detectors. In this experiment we assessed if rVMP, rMAE, and the motion priming obtained with longer ISI also exist within the second-order motion domain. We found that the rapid effects (i.e., rVMP and rMAE) and motion priming had similar time courses for first- and second-order motions when presented separately. In a cross-order adaptation condition (i.e., adapting to first-order then testing with second-order, and vice versa) we found asymmetric transfers between first- and second-order motion cues. First-order motion influenced the processing of second-order motion but not vice versa (resulting only in rMAEs) (see Schofield et al., 2007).
Taken together, our findings support the notion that first- and second-order motion are encoded by separate mechanisms from the early stages of motion processing but could be integrated at higher levels of motion processing (as in the case of the cross-order priming condition). However, the last experiment showed a certain degree of asymmetric transfer between first- and second-order motions: indeed, we found rMAEs only when we adapted to first-order and tested with second-order. These results imply that, even in low-level processing, first-order motion can influence the perception of second-order motion but not vice versa, further implying a hierarchical organization to the early mechanisms responding to these two motion cues.

Abstract (italian)

Numerosi studi psicofisici, neuropsicologici e di neuroimmagine hanno evidenziato la presenza di meccanismi e substrati neurali distinti per la percezione del movimento di primo ordine (definito da variazioni spazio-temporali di luminanza) e di secondo ordine (definito, ad esempio, da variazioni spazio-temporali di contrasto) (Ledgeway & Smith, 1994a,b; Lu & Sperling, 1995, 2001). Gli esperimenti condotti in questa tesi hanno avuto l’obiettivo di studiare e chiarire ulteriormente i meccanismi sottostanti la percezione del movimento di primo e secondo ordine, e come questi due tipi di segnale sono integrati dal sistema visivo. A questo proposito è stato testato movimento di primo ordine, di secondo ordine e cross ordine utilizzando differenti paradigmi sperimentali, come il motion priming (Capitolo 2), il motion aftereffect (MAE – Capitolo 3) e il motion-induced position shift (spostamento indotto dal movimento della posizione percepita [MIPS] – Capitolo 4). In particolare gli esperimenti condotti sono stati progettati per elicitare attività neurale a livelli bassi, intermedi ed alti d’elaborazione del movimento. I suddetti esperimenti sono stati condotti per comprendere se la percezione del movimento di primo e secondo ordine richiede differenti e distinti meccanismi dai livelli più bassi di analisi (come ad esempio V1, V2/V3), e se questi due tipi di movimento sono o meno integrati ad un più alto livello di elaborazione del movimento.

Nel primo esperimento (Capitolo 5) sono stati investigati i meccanismi di memoria implicita a breve termine per entrambi i tipi di movimento utilizzando il paradigma del repetition priming (Capitolo 2). In particolare è stato testato se il priming per la direzione di movimento dipende o meno dalla posizione spaziale del target. Inoltre è stata utilizzata anche una condizione cross-ordine nella quale uno stimolo di primo ordine fungeva da prime ad uno stimolo di secondo ordine, e viceversa. Testare la presenza di un effetto priming per la direzione di movimento e posizione spaziale per movimento di primo e di secondo ordine, ha permesso di studiare se questi segnali di movimento sono rappresentati in un’area corticale organizzata in modo retinotopico. La condizione cross-ordine invece ha permesso di investigare se la memoria implicita a breve termine per primo e secondo ordine dipende da uno stesso meccanismo/i e da una stessa area/e corticale/i. Se uno stimolo di primo ordine facilitasse la risposta ad uno stimolo di secondo ordine e viceversa, questo indicherebbe il coinvolgimento della stessa area corticale nella rappresentazione del priming (cioè della traccia mnestica relativa alla direzione di movimento). I risultati hanno mostrato che l’effetto di priming per la direzione di movimento avviene sia per stimoli di primo che di secondo ordine. Inoltre quest’effetto è dipendente dalla posizione spaziale del target per entrambi i tipi di movimento. Questo risultato indica chiaramente il coinvolgimento di un area/e corticale/i con organizzazione retinotopica. Precedenti studi hanno dimostrato il coinvolgimento dell’area medio-temporale (MT) nel priming per la direzione di movimento, ma ciò è stato messo in evidenza solo per stimoli di primo ordine (Campana et al., 2002, 2006). Considerando questi studi è possibile supporre il coinvolgimento della medesima area anche per il priming per la direzione di movimento con stimoli di secondo ordine. Inoltre, è stato ottenuto priming per la direzione di movimento anche nella condizione cross-ordine, anche se l’effetto è molto debole se confrontato con quello ottenuto nelle condizioni in cui primo e secondo ordine sono presentati separatamente. Tuttavia, il priming cross-ordine non è dipendente dalla posizione spaziale del target. Questi risultati supportano l’ipotesi della presenza di meccanismi indipendenti che rispondono a movimento di primo e secondo ordine. Questi meccanismi potrebbero mantenersi separati fino al livello in cui è estratto il movimento globale (es. MT) (Edwards & Badcock, 1995). Tuttavia i segnali di movimento di primo e di secondo ordine potrebbero essere integrati ad un più alto livello di analisi, dove viene meno l’organizzazione retinotopica, come ad esempio nell’area medio-temporale superiore (MST).
I risultati del primo esperimento hanno dimostrato come, nelle condizioni in cui primo e secondo ordine sono testati separatamente, l’effetto di priming per la direzione di movimento risulti essere dipendente dalla posizione spaziale del target, mentre questa dipendenza dalla posizione spaziale viene meno nella condizione cross-ordine. Questi risultati non solo stanno ad indicare la presenza di due meccanismi separati per primo e secondo ordine, ma anche che questi meccanismi sono in grado di codificare ed assegnare indipendentemente la posizione spaziale di uno stimolo in movimento.

Nel secondo esperimento (Capitolo 6) è stata testata l’ipotesi relativa alla presenza di un unico meccanismo responsabile della codifica e dell’assegnamento della posizione spaziale per stimoli di primo e secondo ordine, oppure di due meccanismi separati deputati a questo tipo di operazioni. A questo fine è stata misurata l’entità dello spostamento percepito della posizione spaziale indotto da stimoli in movimento (MIPS) (De Valois & De Valois, 1991; Durant & Johnston, 2004; Edwards & Badcock, 2003). In primo luogo è stato misurato esclusivamente lo spostamento della posizione spaziale percepita indotto dalla presentazione di soli stimoli di primo ordine o di soli stimoli di secondo ordine. In un secondo momento è stata utilizzata una condizione in cui gli stimoli di primo e di secondo ordine apparivano all’interno della stessa prova, per verificare se il movimento cross-ordine potesse influenzare o meno la posizione percepita degli stimoli. La logica sottostante a questa condizione è la seguente: nel caso di un meccanismo comune di codifica ed assegnazione della posizione spaziale sia per stimoli di primo che di secondo ordine, ci si aspetterebbe un effetto intermedio a quello ottenuto presentando separatamente questi due stimoli. D’altra parte, la mancanza di un effetto nella condizione cross-ordine indicherebbe la presenza di meccanismi separati ed indipendenti nella codifica e l’assegnazione della posizione spaziale per stimoli di primo e di secondo ordine. I risultati mostrano che sia il movimento di primo che di secondo ordine, quando presentati separatamente, sono in grado d’influenzare la percezione della posizione spaziale di uno stimolo in movimento. Tuttavia non è stato trovato nessun effetto nella condizione cross-ordine. Questo implica chiaramente la presenza di distinti meccanismi che codificano ed assegnano la posizione spaziale per stimoli di movimento di primo e di secondo ordine.
I risultati dei primi due esperimenti supportano l’esistenza di meccanismi distinti per la percezione di movimento di primo e secondo ordine. I dati presentati in questa tesi in accordo con numerosi studi psicofisici, hanno messo in evidenza che i meccanismi che rispondono al movimento di primo e di secondo ordine sono sensibili a differenti frequenze spaziali e temporali. Tuttavia gli studi considerati finora hanno sempre utilizzato lunghi periodi di esposizione degli stimoli, è possibile pertanto che la maggior parte dei risultati ottenuti siano stati influenzati da meccanismi attentivi.
Recentemente è stato dimostrato come esposizioni molto brevi (es. 80 ms) a stimoli direzionali di primo ordine sono in grado di far percepire come unidirezionale uno stimolo ambiguo (cioè uno stimolo per il quale non è possibile distinguere nettamente un movimento verso destra o verso sinistra) presentato successivamente (Kanai & Verstraten, 2005). L’utilizzo di questo paradigma può essere utile per lo studio dell’attività di detettori di movimento di basso livello che rispondono al movimento di primo e di secondo ordine. Il paradigma inoltre potrebbe servire per studiare se i meccanismi che rispondono al movimento di primo e di secondo ordine sono separati sin dai livelli più bassi di analisi del movimento (es. V1, V2/V3). E’stato dimostrato che, dipendentemente dalla durata dell’adattamento e dalla durata dell’intervallo tra la presentazione dello stimolo di adattamento e quello test (Intervallo-Inter-Stimolo, IIS), lo stimolo test ambiguo può essere percepito in movimento nella direzione contraria a quella del pattern di adattamento (motion aftereffect rapido - rMAE) oppure nella stessa direzione rispetto allo stimolo di adattamento (visual motion priming rapido - rVMP). Tuttavia Kanai e Verstraten (2005) hanno dimostrato che, utilizzando periodi di adattamento di circa 300 ms e IIS più lunghi di 2 secondi lo stimolo test ambiguo è percepito in movimento nuovamente nella medesima direzione del pattern di adattamento. Gli autori hanno chiamato questo effetto “Sensibilizzazione Percettiva” (SP), un fenomeno molto simile all’effetto di priming descritto nel primo esperimento. Questo effetto potrebbe indicare attività a livelli più alti d’elaborazione del movimento come ad esempio MT. L’effetto di sensibilizzazione percettiva emerge gradualmente nel tempo.

Nel terzo esperimento (Capitolo 7) gli effetti rVMP, rMAE e SP sono stati studiati sia nel dominio del movimento di primo ordine che in quello di secondo ordine. Anche in questo caso è stata utilizzata una condizione cross-ordine in cui si è adattato con movimento di primo ordine e si è tesato con movimento di secondo ordine e viceversa. I risultati hanno mostrato che gli effetti rMAE, rVMP e SP sono molto simili nelle condizioni in cui gli stimoli di primo e di secondo ordine sono stati presentati separatamente. I risultati della condizione cross-ordine mostrano un trasferimento asimmetrico dell’adattamento, in particolare sono stati ottenuti esclusivamente rMAE adattando a primo ordine e testando con secondo ordine. Non è emerso nessun effetto adattando a movimento di secondo ordine e testando con movimento di primo ordine (Schofield et al., 2007).

I risultati degli esperimenti presentati in questa tesi indicano che, a parte la presenza di decorsi temporali simili per primo e secondo ordine, i meccanismi sottostanti la percezione di questi due tipi di movimento sembrano essere separati dai più bassi livelli di analisi del movimento fino ad includere il livello in cui avviene l’estrazione del movimento globale (MT) (Edwards & Badcock, 1995; Campana et al., 2008). Nel terzo esperimento è emerso, infatti, che gli effetti rapidi di MAE e VMP si trasferiscono in modo asimmetrico quando gli stimoli di adattamento e test sono di diverso tipo, suggerendo un’organizzazione gerarchica dei meccanismi che rispondono a movimento di primo e secondo ordine. In particolare sembra che il meccanismo che risponde a movimento di primo ordine sia precoce e in grado d’influenzare l’elaborazione del movimento anche a più alti livelli di analisi, e sembra influenzi anche l’elaborazione del movimento di secondo ordine. Tuttavia il meccanismo che risponde al movimento di secondo ordine sembra non influenzare l’elaborazione del movimento di primo ordine. Questa organizzazione gerarchica potrebbe spiegare gli effetti asimmetrici riscontrati nel terzo esperimento. I risultati delineati in questa tesi supportano l’ipotesi che questi due tipi di movimento siano elaborati da differenti meccanismi e differenti popolazioni neurali, probabilmente presenti al livello delle stesse aree corticali: questo potrebbe essere plausibile sia per bassi, intermedi che a più elevati livelli di analisi del movimento. In base ai dati presentati è possibile che questi due segnali di movimento siano integrati ad un alto livello di analisi, come ad esempio MST. Tuttavia sono necessari altri studi per meglio capire quale sia l’area o le aree corticali in cui i segnali di movimento di primo e secondo ordine sono integrati.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Campana, Gianluca
Supervisor:Casco, Clara
Ph.D. course:Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE PSICOLOGICHE > PERCEZIONE E PSICOFISICA
Data di deposito della tesi:29 January 2009
Anno di Pubblicazione:2008
Key Words:First-order motion, Second-order motion, Rapid motion aftereffect, Visual motion priming, Rapid visual motion priming, Motion-induced position shift, Perceptual sensitization.
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/01 Psicologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:1609
Depositato il:29 Jan 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adelson, E.H., & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299. Cerca con Google

Alais, D., Verstraten, F.A., & Burr, D.C. (2005). The motion aftereffect of transparent motion: two temporal channels account for perceived direction. Vision Research, 45, 403-412. Cerca con Google

Albright, T.D. (1992). Form-cue invariant motion processing in primate visual cortex. Science, 255, 1141-1143. Cerca con Google

Allen, H.A., & Ledgeway, T. (2003). Attentional modulation of the threshold sensitivity to first-order motion and second-order motion. Vision Research, 43, 2927-2936. Cerca con Google

Allen, H.A., Hess, R.F., Mansouri, B., & Dakin, S.C. (2003). Integration of first- and second-order orientation. Journal of the Optical Society of America A, 20, 974-986. Cerca con Google

Amthor, F.R., Oyster, C.W., & Takahashi, E.S. (1984). Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Research, 298, 187-190. Cerca con Google

Anstis, S., Verstraten, F.A., & Mather, G. (1998). The motion aftereffect. Trends in Cognitive Sciences, 2, 111-117. Cerca con Google

Anstis, S.M. (1980). The perception of apparent movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 290, 153-168. Cerca con Google

Anstis, S.M., & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Mollon, J.D., & Sharpe, R.T. (Eds.). Colour vision: Physiology and Psychophysics (pp. 155-166). London Academic Press. Cerca con Google

Anstis, S.M., & Rogers, B.J. (1975). Illusory reversal of visual depth and movement during changes of contrast. Vision Research, 15, 957-961. Cerca con Google

Antal, A., Varga, E.T., Nitsche, M.A., Chadaide, Z., Paulus, W., Kovács, G., & Vidnyánszky, Z. (2004). Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. Neuroreport, 15, 2491-2494. Cerca con Google

Arnold, D.H., & Johnston, A. (2005). Sub-threshold motion influences apparent position. Journal of vision, 5, 202a. Cerca con Google

Asanuma, C., Andersen, R.A., & Cowan, W.M. (1985). The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. Journal of Comparative Neurology, 241, 357-81. Cerca con Google

Ashida, H., & Osaka, N. (1994). Difference of spatial frequency selectivity between static and flicker motion aftereffects. Perception, 23, 1313-1320. Cerca con Google

Ashida, H., Lingnau, A., Wall, M.B., & Smith, A.T. (2007). fMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97, 1319-1325. Cerca con Google

Ashida, H., Seiffert, A.E., & Osaka, N. (2001). Inefficient visual search for second-order motion. Journal of the Optical Society of America A, 18, 2255-2266. Cerca con Google

Bach, M., & Hoffmann, M. (1996). Motion-onset VEP: Missing direction-specificity of adaptation? Investigative Ophthalmology and Visual Science, 37 (Suppl.), 446. Cerca con Google

Bach, M., & Ullrich, D. (1994). Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Research, 34, 1541-1547. Cerca con Google

Baker, C.L. Jr. (1999). Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology, 9, 461-466. Cerca con Google

Baloch, A.A., Grossberg, S., Mingolla, E., & Nogueira, C.A.M. (1999). Neural model of first-order and second-order motion perception and magnocellular dynamics. Journal of the Optical Society of America A, 16, 953-978. Cerca con Google

Bar, M., & Biederman, I. (1999). Localizing the cortical region mediating visual awareness of object identity. Proceedings of the National Academy of Sciences (US), 96, 1790-1793. Cerca con Google

Barlow, H.B. & Hill, R.M. (1963). Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science, 139, 412-414. Cerca con Google

Barlow, H.B., & Levick, W.R. (1965).The mechanism of directionally selective units in rabbit's retina. Journal of Physiology, 178, 477–504. Cerca con Google

Barraclough, N., Tinsley, C., Webb, B., Vincent, C., & Derrington, A. (2006). Processing of first-order motion in marmoset visual cortex is influenced by second-order motion. Visual Neuroscience, 23, 815-824. Cerca con Google

Becker, S.I. (2008a). The mechanism of priming: episodic retrieval or priming of pop-out? Acta Psychologica (Amst), 127, 324-339. Cerca con Google

Becker, S.I. (2008b). The stage of priming: are inter trial repetition effects attentional or decisional? Vision Research, 48, 664-684. Cerca con Google

Benardete, E.A., Kaplan, E., & Knight, B.W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience, 8, 483-486. Cerca con Google

Bender, D.B. (1982). Receptive-field properties of neurons in the macaque inferior pulvinar. Journal of Neurophysiology, 48, 1-17. Cerca con Google

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289-300. Cerca con Google

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188. Cerca con Google

Benton, C.P. (2002). Gradient-based analysis of non-Fourier motion. Vision Research, 42, 2869-2877. Cerca con Google

Benton, C.P., Johnston, A., McOwan, P.W., & Victor, J.D. (2001). Computational modeling of non-Fourier motion: further evidence for a single luminance-based mechanism. Journal of the Optical Society of America A, 18, 2204-2208. Cerca con Google

Berry, M.J., Brivanlou, I.H., Jordan, T.A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature, 398, 334-338. Cerca con Google

Bex, P.J., Edgar, G.K., & Smith, A.T. (1995). Sharpening of drifting, blurred images. Vision Research, 35, 2539–2546. Cerca con Google

Bex, P.J., Metha, A.B., & Makous, W. (1999). Enhanced motion aftereffect for complex motions. Vision Research, 39, 2229-2238. Cerca con Google

Bex, P.J., Verstraten, F.A., & Mareschal, I. (1996). Temporal and spatial frequency tuning of the flicker motion aftereffect. Vision Research, 36, 2721-2727. Cerca con Google

Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–10472. Cerca con Google

Bichot, N.P., & Schall, J.D. (1999). Effects of similarity and history on neural mechanisms of visual selection. Nature Neuroscience, 2, 549-554. Cerca con Google

Bichot, N.P., & Schall, J.D. (2002). Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22, 4675-4685. Cerca con Google

Born, R.T., & Tootell, R.B. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature, 357, 497-499. Cerca con Google

Borst, A., & Egelhaaf, M. (1989). Principles of visual motion detection. Trends in Neurosciences, 12, 297-306. Cerca con Google

Boycott, B.B., & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology, 240, 397-419. Cerca con Google

Brainard, D.H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436. Cerca con Google

Bravo, M.J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51, 465-472. Cerca con Google

Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. (2000). Adaptive rescaling maximizes information transmission. Neuron, 26, 695-702. Cerca con Google

Bressler, D.W., & Whitney, D. (2006). Second-order motion shifts perceived position. Vision Research, 46, 1120-1128. Cerca con Google

Bruce, V., Georgeson, M.A., & Green, P.R. (2003). Visual Perception: Physiology, Psychology and Ecology. Psychology Press. Cerca con Google

Burr, D.C. (1980). Motion smear. Nature, 284, 164-165. Cerca con Google

Burr, D.C. (1979). Acuity for apparent vernier offset. Vision Research, 19, 835–837. Cerca con Google

Burr, D.C., & Ross, J. (1982). Contrast sensitivity at high velocities. Vision Research, 22, 479-484. Cerca con Google

Burr, D.C., & Ross, J. (2002). Direct evidence that "speedlines" influence motion mechanisms. Journal of Neuroscience, 22, 8661-8664. Cerca con Google

Burr, D.C., Ross, J., & Morrone, M.C. (1986). Smooth and sampled motion. Vision Research, 26, 643-652. Cerca con Google

Campana, G., Cowey, A., & Walsh, V. (2002). Priming of motion direction and area V5/MT: a test of perceptual memory. Cerebral Cortex, 12, 663-669. Cerca con Google

Campana, G., Cowey, A., & Walsh, V. (2006). Visual area V5/MT remembers “what” but not “where”. Cerebral Cortex, 16, 1766-1770. Cerca con Google

Campana, G., Cowey, A., Casco, C., Oudsen, I., & Walsh, V. (2007). Left frontal eye field remembers “where” but not “what”. Neuropsychologia, 45, 2340-2345. Cerca con Google

Campos-Ortega, J.A., & Hayhow, W.R. (1970). A new lamination pattern in the lateral geniculate nucleus of primates. Brain Research, 20, 335-339. Cerca con Google

Carandini, M., Heeger, D.J., & Senn, W. (2002). A synaptic explanation of suppression in visual cortex. Journal of Neuroscience, 22, 10053-10065. Cerca con Google

Castro-Alamancos, M., & Connors, B.W. (1996). Short-term synaptic enhancement and long-term potentiation in neocortex. Proceedings of the National Academy of Sciences (US), 93, 1335-1339. Cerca con Google

Cavanagh, P., & Favreau, O.E. (1980). Motion aftereffect: a global mechanism for the perception of rotation. Perception, 9, 175-182. Cerca con Google

Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spatial Vision, 4, 103-129. Cerca con Google

Chance, F.S., Nelson, S.B., & Abbott, L.F. (1998). Synaptic depression and the temporal response characteristics of V1 cells. Journal of Neuroscience, 18, 4785-4799. Cerca con Google

Chaudhuri, A., & Albright, T.D. (1997). Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1. Visual Neuroscience, 14, 949-962. Cerca con Google

Chen, S., Bedell, H.E., & Ogmen, H. (1995). A target in real motion appears blurred in the absence of other proximal moving targets. Vision Research, 35, 2315–2328. Cerca con Google

Chubb, C. & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A, 5, 1986-2007. Cerca con Google

Chubb, C., & Sperling, G. (1989). Second-order motion perception: space/time separable mechanisms. In Proceedings: IEEE workshop on visual motion. IEEE Computer Society Press: Washington D.C. Cerca con Google

Chun, M.M., & Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28-71. Cerca con Google

Chung, S., Li, X., & Nelson, S.B. (2002). Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron, 34, 437-446. Cerca con Google

Chung, S.T., Patel, S.S., Bedell, H.E., & Yilmaz, O. (2007). Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vision Research, 47, 231-243. Cerca con Google

Clifford, C.W., Webster, M.A., Stanley, G.B., Stocker, A.A., Kohn, A., Sharpee, T.O., & Schwartz, O. (2007). Visual adaptation: neural, psychological and computational aspects. Vision Research, 47, 3125-3131. Cerca con Google

Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in cortex and control processes. Journal of Neurophysiology, 96, 2601-2612. Cerca con Google

Cowey, A., Campana, G., Walsh, V., & Vaina, L.M. (2006). The role of human extra-striate visual areas V5/MT and V2/V3 in the perception of the direction of global motion: a transcranial magnetic stimulation study. Experimental Brain Research, 171, 558-562. Cerca con Google

Culham, J.C., Brandt, S.A., Cavanagh, P., Kanwisher, N.G., Dale, A.M., & Tootell, R.B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657-2670. Cerca con Google

Culham, J.C., Dukelow, S.P., Vilis, T., Hassard, F.A., Gati, J.S., Menon, R.S., Goodale, M.A. (1999). Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. Journal of Neurophysiology, 81, 388-393. Cerca con Google

Culham, J.C., Verstraten, F.A., Ashida, H., & Cavanagh, P. (2000). Independent aftereffects of attention and motion. Neuron, 28, 607-615. Cerca con Google

Daniel, P.M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159, 203-221. Cerca con Google

De Monasterio, F.M., & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey retina. Journal of Physiology, 251, 167-195. Cerca con Google

De Valois, R.L., & De Valois, K.K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31, 1619-1626. Cerca con Google

Derrington, A.M., Badcock, D.R., & Henning, G.B. (1993). Discriminating the direction of second-order motion at short stimulus durations. Vision Research, 33, 1785-1794. Cerca con Google

Derrington, A.M. (1994). Analysis of the motion of contrast-modulated patterns. Investigative Ophthalmology and Visual Science (Supplement), 35, 1406. Cerca con Google

Derrington, A.M., & Badcock, D.R. (1985). Separate detectors for simple and complex grating patterns? Vision Research, 25, 1869-1878. Cerca con Google

Desimone, R., & Schein, S.J. (1987). Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Journal of Neurophysiology, 57, 835-868. Cerca con Google

Dubner, R., & Zeki, S.M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35, 528-532. Cerca con Google

Duffy, C.J., & Wurtz, R.H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology, 65, 1329-1345. Cerca con Google

Duffy, C.J. & Wurtz, R.H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65, 1346-1359. Cerca con Google

Dumoulin, S.O., Baker, C.L. Jr., Hess, R.F., & Evans, A.C. (2003). Cortical specialisation for processing first- and second-order motion. Cerebral Cortex, 13, 1375-1385. Cerca con Google

Durant, S., & Johnston, A. (2004). Temporal dependence of local motion induced shifts in perceived position. Vision Research, 44, 357-366. Cerca con Google

Edwards, M., & Badcock, D.R. (1995). Global motion perception: no interaction between the first- and second-order motion pathways. Vision Research, 35, 2589-2602. Cerca con Google

Edwards, M., & Badcock, D.R. (2003). Motion distorts perceived depth. Vision Research, 43, 1799-1804. Cerca con Google

Ellemberg, D., Allen, H.A., & Hess, R.F. (2004). Investigating local network interactions underlying first- and second-order processing. Vision Research, 44, 1787-1797. Cerca con Google

Emerson, R.C., Bergen, J.R., & Adelson, E.H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research, 32, 203-218. Cerca con Google

Emerson, R.C., Citron, M.C., Vaughn, W.J., & Klein, S.A. (1986). Substructure in directionally selective complex receptive fields of cat. Investigative Ophthalmology and Visual Science (Supplement), 27, 16. Cerca con Google

Enroth-Cugell, C., & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517-552. Cerca con Google

Fahle, M., & Poggio, T. (1981). Visual hyperacuity: spatiotemporal interpolation in human vision. Proceedings of the Royal Society B: Biological Science, 213, 451-477. Cerca con Google

Fang, F., & He, S. (2004). Strong influence of test patterns on the perception of motion aftereffect and position. Journal of Vision, 4, 637-642. Cerca con Google

Fecteau, J.H. (2007). Priming of pop-out depends upon the current goals of observers. Journal of Vision, 7, 1-11. Cerca con Google

Felleman, D.J., & Van Essen, D.C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology, 57, 889-920. Cerca con Google

Ferrera, V.P., Nealey, T.A., & Maunsell, J.H. (1994). Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. Journal of Neuroscience, 14, 2080-2088. Cerca con Google

Field, D.J., Hayes, A., & Hess, R.F. (1993). Contour integration by the human visual system: evidence for a local "association field". Vision Research, 33, 173-193. Cerca con Google

Finlayson, P.G., & Cynader, M.S. (1995). Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation. Experimental Brain Research, 106, 145-155. Cerca con Google

Finney, D.J. (1971). Probit analysis. Cambridge: Cambridge University Press. Cerca con Google

Froemke, R.C., & Dan, Y. (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438. Cerca con Google

Frohlich, F.W. (1929). Die Empfindungszeit. Jena: Verlag von Gustav Fischer, Germany. Cerca con Google

Fu, Y.X., Shen, Y., & Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. Journal of Neuroscience, 21:RC172:1-5. Cerca con Google

Fu, Y.X., Shen, Y., Gao, H., & Dan, Y. (2004). Asymmetry in visual cortical circuits underlying motion-induced perceptual mislocalization. Journal of Neuroscience, 24, 2165-2171. Cerca con Google

Gabrieli, J.D.E., Fleischman, D.A., Keane, M.M., Reminger, S.L., & Morrell, F. (1995). Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychological Science, 6, 76-82. Cerca con Google

Galletti, C., Battaglini, P.P., & Aicardi, G. (1988). “Real-motion” cells in visual area V2 of behaving macaque monkeys. Experimental Brain Research, 69, 279-288. Cerca con Google

Gattass, R., & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 621-638. Cerca con Google

Geisler, W.S. (1999). Motion streaks provide a spatial code for motion direction. Nature, 400, 65-69. Cerca con Google

Geng, J.J., Eger, E., Ruff, C.C., Kristjánsson, Á., Rotshtein, P., & Driver, J. (2006). On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes. Journal of Neurophysiology, 96, 2601-2612. Cerca con Google

Geyer, T., Müller, H.J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: role of repeated target and distractor features. Perception & Psychophysics, 68, 736-749. Cerca con Google

Geyer, T., Müller, H.J., Krummenacher, J. (2007) Cross-trial priming of element positions in visual pop-out search is dependent on stimulus arrangement. Journal of Experimental Psychology: Human Perception & Performance, 33, 788-797. Cerca con Google

Giolli, R.A., & Tigges, J. (1970). The primary optic pathways and nuclei of primates. In Noback, C. R., & Montagna, W. (Eds.). Advances in Primatology. New York, Appleton-Century-Crofts, vol. 1, p. 29. Cerca con Google

Goldberg, M.E., & Wurtz, R.H. (1972). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology, 35, 542-559. Cerca con Google

Goolsby, B.A., & Suzuki, S. (2001). Understanding priming of color-singleton search: roles of attention at encoding and “retrieval”. Perception & Psychophysics, 63, 929-944. Cerca con Google

Gouras, P. (1969). Antidromic responses of orthodromically identified ganglion cells in monkey retina. Journal of Physiology, 204, 407-419. Cerca con Google

Graziano, M.S., Andersen, R.A., & Snowden, R.J. (1994). Tuning of MST neurons to spiral motions. Journal Neuroscience, 14, 54-67. Cerca con Google

Green, D.M. (1990). Stimulus selection in adaptive psychophysical procedures. Journal of the Acoustical Society of America, 87, 2662-2674. Cerca con Google

Green, D.M. (1993). A maximum-likelihood method for estimating thresholds in a yes-no task. Journal of the Acoustical Society of America, 93, 2096-2105. Cerca con Google

Green, D.M. (1995). Maximum-likelihood procedures and the inattentive observer. The Journal of the Acoustical Society of America, 97, 3749-3760. Cerca con Google

Greenlee, M.W., & Heitger, F. (1988). The functional role of contrast adaptation. Vision Research, 28, 791-797. Cerca con Google

Greenlee, M.W., Georgeson, M.A., Magnussen, S., & Harris, J.P. (1991). The time course of adaptation to spatial contrast. Vision Research, 31, 223-236. Cerca con Google

Gu, X., & Green, D.M. (1994). Further studies of a maximum likelihood yes-no procedure. Journal of the Acoustical Society of America, 96, 93-101. Cerca con Google

Gurnsey, R., Fleet, D., & Potechin, C. (1998). Second-order motions contribute to vection. Vision Research, 38, 2801-2816. Cerca con Google

Harp, T.D., Bressler, D.W., & Whitney, D. (2007). Position shifts following crowded second-order motion adaptation reveal processing of local and global motion without awareness. Journal of Vision, 7, 1-13. Cerca con Google

Hassenstein, B., & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertungbei der Bewegungsperzeption des Ruesselkäfers Chlorophanus. Z. Naturforsch, 11b, 513-524. Cerca con Google

Hautzel, H., Taylor, J.G., Krause, B.J., Schmitz, N., Tellmann, L., Ziemons, K., Shah, N.J., Herzog, H., & Müller-Gärtner, H.W. (2001). The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Research, 892, 281-292. Cerca con Google

He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334–337. Cerca con Google

He, S., Cohen, E.R., & Hu, X. (1998). Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Current Biology, 8, 1215-1218. Cerca con Google

Heeger, D.J. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A, 4, 1455-1471. Cerca con Google

Hempel, C.M., Hartman, K.H., Wang, X.J., Turrigiano, G.G., & Nelson, S.B. (2000). Multiple formas of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology, 83, 3031-3041. Cerca con Google

Hillstrom, A.P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800-817 Cerca con Google

Holliday, I.E., & Anderson, S.J. (1994). Different processes underlie the detection of second-order motion at low and high temporal frequencies. Proceedings of the Royal Society of London B, 257, 165-173. Cerca con Google

Huang, L., Holcombe, A.O., & Pashler, H. (2004). Repetition priming in visual search: episodic retrieval, not feature priming. Memory & Cognition, 32, 12-20. Cerca con Google

Huang, P-C., & Hess, R.F. (2007). Collinear facilitation: Effect of additive and multiplicative external noise. Vision Research, 47, 3108-3119. Cerca con Google

Hubel, D.H., & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591. Cerca con Google

Hubel, D.H., LeVay, S., & Wiesel, T.N. (1975). Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Research, 96, 25-40. Cerca con Google

Huk, A.C., Ress, D., & Heeger, D.J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161-172. Cerca con Google

Hutchinson, C.V. (2005). First-order and second-order motion processing in human vision. Unpublished doctoral dissertation, University of Nottingham, United Kingdom. Cerca con Google

Hutchinson, C.V., & Ledgeway, T. (2006). Are neural responses derived from different varieties of motion pooled at later stages of visual processing? Perception (Supplement), 35, 423. Cerca con Google

Itoh, K., Conley, M., & Diamond, I.T. (1982). Retinal ganglion cell projections to individual layers of the lateral geniculate body in Galago crassicaudatus. Journal of Comparative Neurology, 205, 282-290. Cerca con Google

Jiang, Y., Luo, Y.J., & Parasuraman, R. (2002). Neural correlates of perceptual priming of visual motion. Brain Research Bulletin, 57, 211-219. Cerca con Google

Johnston, A., McOwan, P.W., & Buxton, H. (1992). A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proceedings of the Royal Society of London B, 250, 297-306. Cerca con Google

Julesz, B. (1971). Foundations of Cyclopean Perception. Chicago: The University of Chicago Press. Cerca con Google

Kaas, J.H., Huerta, M.F., Weber, J.T., & Harting, J.K. (1978). Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. Journal of Comparative Neurology, 182, 517-553. Cerca con Google

Kanai, R., & Verstraten, F.A. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45, 3109-3116. Cerca con Google

Kaplan, E., & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. The Proceedings of the National Academy of Sciences Online (US), 83, 2755-2757. Cerca con Google

Kobayashi, Y., Yoshino, A., Ogasawara, T., & Nomura, S. (2002). Topography of evoked potentials associated with illusory motion perception as a motion aftereffect. Brain Research. Cognitive Brain Research, 13, 75-84. Cerca con Google

Kohn, A., & Movshon, J.A. (2004). Adaptation changes the direction tuning of macaque MT neurons. Nature Neuroscience, 7, 764-772. Cerca con Google

Kohn, A., & Movshon, J.A. (2003). Neuronal adaptation to visual motion in area MT of the macaque. Neuron, 39, 681-691. Cerca con Google

Komatsu, H., & Wurtz, R.H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology, 60, 580-603. Cerca con Google

Krekelberg, B., Lappe, M., Whitney, D., Cavanagh, P., Eagleman, D.M., & Sejnowski, T.J. (2000). The Position of Moving Objects. Science, 289, 1107a. Cerca con Google

Kristjánsson, Á. (2001). Increased sensitivity to speed changes during adaptation to first-order, but not second-order motion. Vision Research, 41, 1825-1832. Cerca con Google

Kristjánsson, Á. (2006a). Rapid learning in attention shifts - A review. Visual Cognition, 13, 324-362. Cerca con Google

Kristjánsson, Á. (2006b). Simultaneous priming along multiple feature dimensions in a visual search task. Vision Research, 46, 2554-2570. Cerca con Google

Kristjánsson, Á., & Nakayama, K. (2003). A primitive memory system for the deployment of transient attention. Perception & Psychophysics, 65, 711-724. Cerca con Google

Kristjánsson, Á., Ingvarsdóttir, Á., & Teitsdóttir, U.D. (2008). Object- and feature-based priming in visual search. Psychonomic Bulletin & Review, 15, 378-384. Cerca con Google

Kristjánsson, Á., Vuilleumier, P., Malhotra, P., Husain, M., & Driver, J. (2005). Priming of color and position during visual search in unilateral spatial neglect. Journal of Cognitive Neuroscience, 17, 859-873. Cerca con Google

Kristjánsson, Á., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. (2007). Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17, 1612-1624. Cerca con Google

Kristjánsson, Á., Wang, D., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37-52. Cerca con Google

Lamy, D., Carmel, T., Egeth, H.E., & Leber, A.B. (2006). Effects of search mode and intertrial priming on singleton search. Perception & Psychophysics, 68, 919-932. Cerca con Google

Lappe, M., & Krekelberg, B. (1998). The position of moving objects. Perception, 27, 1437–1449. Cerca con Google

Ledgeway, T., & Hess, R.F. (2002). Failure of direction-identification for briefly presented second-order motion stimuli: Evidence for weak direction-selectivity of the mechanisms encoding motion. Vision Research, 42, 1739-1758. Cerca con Google

Ledgeway, T. (1994). Adaptation to second-order motion results in a motion aftereffect for directionally-ambiguous test stimuli. Vision Research, 34, 2879-2889. Cerca con Google

Ledgeway, T., & Hess, R.F. (2002). Failure of direction-identification for briefly presented second-order motion stimuli: Evidence for weak direction-selectivity of the mechanisms encoding motion. Vision Research, 42, 1739-1758. Cerca con Google

Ledgeway, T., & Hutchinson, C.V. (2005). The influence of spatial and temporal noise on the detection of first-order and second-order orientation and motion direction. Vision Research, 45, 2081-2094. Cerca con Google

Ledgeway, T., & Smith, A.T. (1994a). The duration of the motion aftereffect following adaptation to first-order and second-order motion. Perception, 23, 1211-1219. Cerca con Google

Ledgeway, T., & Smith, A.T. (1994b). Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Research, 34, 2727-2740. Cerca con Google

Ledgeway, T., & Smith, A.T. (1997). Changes in perceived speed following adaptation to first-order and second-order motion. Vision Research, 37, 215-224. Cerca con Google

Lee, B.B., Creutzfeldt, O.D., & Elepfandt, A. (1979). The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli. Experimental Brain Research, 35, 547-557. Cerca con Google

Leventhal, A.G., Rodieck, R.W., & Dreher, B. (1981). Retinal ganglion cell classes in the Old World monkey: morphology and central projections. Science, 213, 1139-1142. Cerca con Google

Leventhal, A.G., Wang, Y., Schmolensky, M.T., & Zhou, Y. (1998). Neural correlates of boundary perception. Visual Neuroscience, 15, 1107-1118. Cerca con Google

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, Suppl 2:467+. Cerca con Google

Lisberger, S., & Movshon, J. (1999). Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. Journal of Neuroscience, 19, 2224-2246. Cerca con Google

Livingstone, M.S., & Hubel, D.H. (1982). Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. The Proceedings of the National Academy of Sciences (US), 79, 6098-6101. Cerca con Google

Livingstone, M.S., & Hubel, DH. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740-749. Cerca con Google

Logothetis, N.K. (1994). Physiological Studies of Motion Inputs. In Smith, A.T. & Snowden, R.J. (Eds.), Visual Detection of Motion (pp. 177-216). Academic Press. Cerca con Google

Logothetis, N.K., & Schall, J.D. (1989). Neuronal correlates of subjective visual perception. Science, 245, 761-763. Cerca con Google

Lu, Z.L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35, 2697-2722. Cerca con Google

Lu, Z.L., & Sperling, G. (2001). Three systems theory of human visual motion perception: review and update. Journal of the Optical Society of America A, 18, 2331-2370. Cerca con Google

Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). Journal of Comparative Neurology,147, 455-496. Cerca con Google

Lund, J.S., & Boothe, R.G. (1975). Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey. Journal of Comparative Neurology, 159, 305-334 Cerca con Google

MacKay, D. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature, 181, 507-508. Cerca con Google

Magnussen, S., & Greenlee, M.W. (1999). The psychophysics of perceptual memory. Psychological Research, 62, 81-92. Cerca con Google

Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657-672. Cerca con Google

Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977-991. Cerca con Google

Marcar, W.L., & Cowey, A. (1992). The effect of removing superior temporal cortical motion areas in the macaque monkey: II. Motion discrimination using random dot display. European Journal of Neuroscience, 4, 1228-1238. Cerca con Google

Marcelja, S. (1980). Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America A, 70, 1297-1300. Cerca con Google

Mareschal, I., & Baker, C.L. Jr. (1998a). A cortical locus for the processing of contrast-defined contours. Nature Neuroscience, 1, 150-154. Cerca con Google

Mareschal, I., & Baker, C.L. Jr. (1998b). Temporal and spatial response to second-order stimuli in cat area 18. Journal of Neurophysiology, 80, 2811-2823. Cerca con Google

Mareschal, I., & Baker, C.L. Jr. (1999). Cortical processing of second-order motion. Visual Neuroscience, 16, 527-540. Cerca con Google

Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213-215. Cerca con Google

Marlin, S.G., Hasan, S.J., & Cynader, M.S. (1988). Direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology, 59, 1314-1330. Cerca con Google

Marr, D., & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proceedings of the Royal Society of London B, 211, 151-180. Cerca con Google

Maruya, K., Watanabe, H., & Watanabe, M. (2008). Adaptation to invisible motion results in low-level but not high-level aftereffects. Journal of Vision, 8, 1-11. Cerca con Google

Mather, G. (1991). First-order and second-order visual processes in the perception of motion and tilt. Vision Research, 31, 161-167. Cerca con Google

Mather, G. (1994). Motion Detectors Models: Psychophysical Evidence. In Smith, A.T. & Snowden, R.J. (Eds.), Visual Detection of Motion (pp. 117-143). Academic Press. Cerca con Google

Mather, G., & Murdoch, L. (1998). Evidence for global motion interactions between first-order and second-order stimuli. Perception, 27, 761-767. Cerca con Google

Mather, G., & West, S. (1993). Evidence for second-order motion detectors. Vision Research, 33, 1109-1112. Cerca con Google

Mather, G., Verstraten, F.A., & Anstis, S. (1998). The motion aftereffect: A modern perspective. Cambridge: MA: MIT Press. Cerca con Google

Maunsell, J.H., & van Essen, D.C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience, 3, 2563-2586. Cerca con Google

Maunsell, J.H. (1995). The brain’s visual world: representation of visual targets in cerebral cortex. Science, 270, 764-769. Cerca con Google

McCarthy, J.E. (1993). Directional adaptation effects with contrast modulated stimuli. Vision Research, 33, 2653-2662. Cerca con Google

McGraw, P.V., Levi, D.M., & Whitaker, D. (1999). Spatial characteristics of the second-order visual pathway revealed by positional adaptation. Nature Neuroscience, 2, 479-484. Cerca con Google

McGraw, P.V., Walsh, V., & Barrett, B.T. (2004). Motion-sensitive neurones in V5/MT modulate perceived spatial position. Current Biology, 14, 1090-1093. Cerca con Google

McGraw, P.V., Whitaker, D., Skillen, J., & Chung, S.T. (2002). Motion adaptation distorts perceived visual position. Current Biology, 12, 2042-2047. Cerca con Google

McKee, S.P., Klein, S.A., & Teller, D.Y. (1985). Statistical properties of forced-choice psychometric functions: implications of probit analysis. Perception & Psychophysics, 37, 286-298. Cerca con Google

McKeefry, D.J., Burton, M.P., Vakrou, C., Barrett, B.T., & Morland, A.B. (2008). Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. Journal of Neuroscience, 28, 6848-6857. Cerca con Google

Meng, X., Mazzoni, P., & Qian, N. (2006). Cross-fixation transfer of motion aftereffects with expansion motion. Vision Research, 46, 3681-3689. Cerca con Google

Mikami, A., Newsome, W.T., & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. Journal of Neurophysiology, 55, 1328-1339. Cerca con Google

Morgan, M., Chubb, C., & Solomon, J.A. (2006). Predicting the motion after-effect from sensitivity loss. Vision Research, 46, 2412-2420. Cerca con Google

Morgan, M.J. (1976). Pulfrich effect and the filling in of apparent motion. Perception, 5, 187-195. Cerca con Google

Morgan, M.J. (1980). Spatiotemporal filtering and the interpolation effect in apparent motion. Perception, 9, 161-174. Cerca con Google

Moulden, B. (1980). After-effects and the integration of patterns of neural activity within a channel. Philosophical Transactions of the Royal Society B: Biological Sciences, 290, 39-55. Cerca con Google

Movshon, J.A., & Newsome, W.T. (1984). Functional characteristics of the striate cortical neurons projecting to MT in the macaque. Society for Neuroscience Abstarcts, 10, 933. Cerca con Google

Movshon, J.A., Newsome, W.T., Gizzi, M.S., & Levitt, J.B. (1988). Spatio-temporal tuning and speed sensitivity in macaque visual cortical neurons. Investigative Ophthalmology and Visual Science (Suppl.), 29, 321. Cerca con Google

Movshon, J.A., Thompson, I.D., & Tolhurst, D.J. (1978a). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology, 283, 53-77. Cerca con Google

Movshon, J.A., Thompson, I.D., & Tolhurst, D. J. (1978b). Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat's visual contex. Journal of Physiology, 283, 101-120. Cerca con Google

Muggleton, N., Juan, C., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. Journal of Neurophysiology, 89, 3340-3343. Cerca con Google

Mussap, A.J., & Prins, N. (2002). On the perceived location of global motion. Vision Research, 42, 761-769. Cerca con Google

Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631-1647. Cerca con Google

Nelson, S.B. (1991). Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience, 11, 344-356. Cerca con Google

Newsome, W.T., & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 2201-2211. Cerca con Google

Newsome, W.T., Gizzi, M.S., & Movshon, J.A. (1983). Spatial and temporal properties of neurons in macaque MT. Investigative Ophthalmology and Visual Science (Suppl.), 24, 106. Cerca con Google

Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256-257. Cerca con Google

Nishida, S. (2004). Motion-based analysis of spatial patterns by the human visual system. Current Biology, 14, 830-839. Cerca con Google

Nishida, S., & Ashida, H. (2000). A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects. Vision Research, 40, 265-278. Cerca con Google

Nishida, S., & Johnston, A. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature, 397, 610-612. Cerca con Google

Nishida, S., & Sato, T. (1995). Motion aftereffect with flickering test patterns reveals higher stages of motion processing. Vision Research, 35, 477-490. Cerca con Google

Nishida, S., Ashida, H., & Sato, T. (1994). Complete interocular transfer of motion aftereffect with flickering test. Vision Research, 34, 2707-2716. Cerca con Google

Nishida, S., Edwards, M., & Sato, T. (1997). Simultaneous motion contrast across space: involvement of second-order motion? Vision Research, 37, 199-214. Cerca con Google

Nishida, S., Ledgeway, T., & Edwards, M. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research, 37, 2685-2698. Cerca con Google

Nishida, S., Sasaki, Y., Murakami, I., Watanabe, T., & Tootell, R.B. (2003). Neuroimaging of direction-selective mechanisms for second-order motion. Journal of Neurophysiology, 90, 3242-3254. Cerca con Google

O’Keefe, L.P., & Movshon, J.A. (1998). Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Visual Neuroscience, 15, 305-317. Cerca con Google

Ogren, M., & Hendrickson, A. (1976). Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Experimental Neurology, 53, 780-800. Cerca con Google

Ohzawa, I., Sclar, G., & Freeman. R. D. (1985). Contrast gain control in the cat’s visual system. Journal of Neurophysiology, 54, 651-661. Cerca con Google

O'Keefe, L.P., & Movshon, J.A. (1998). Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Visual Neuroscience, 15, 305-317. Cerca con Google

Olivers, C.N., & Meeter, M. (2006). On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition, 13, 1-28. Cerca con Google

Pantle, A. (1992). Immobility of some second-order stimuli in human peripheral vision. Journal of the Optical Society of America A, 9, 863-867. Cerca con Google

Pantle, A., & Turano, K. (1992). Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli. Vision Research, 32, 2093-2106. Cerca con Google

Pantle, A., Lehmkuhle, S., & Caudill, M. (1978). On the capacity of directionally selective mechanisms to encode different dimensions of moving stimuli. Perception, 7, 261-267. Cerca con Google

Pasternak, T., & Merigan, W.H. (1994). Motion perception following lesions of the superior temporal sulcus in the monkey. Cerebral Cortex, 4, 247-259. Cerca con Google

Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. Cerca con Google

Perrone, J.A., & Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nature Neuroscience, 4, 526-532. Cerca con Google

Perry, V.H., & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 12, 1125–1137. Cerca con Google

Perry, V.H., Oehler, R., & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12, 1101–1123. Cerca con Google

Petersen, S.E., Baker, J.F., & Allman, J.M. (1985). Direction-specific adaptation in area MT of the owl monkey. Brain Research, 346, 146-150. Cerca con Google

Pinkus, A. & Pantle, A. (1997). Probing visual motion signals with a priming paradigm. Vision Research, 37, 541-552. Cerca con Google

Pollen, D.A., & Ronner, S.F. (1981). Phase relationships between adjacent simple cells in the visual cortex. Science, 212, 1409-1411. Cerca con Google

Pollen, D.A., & Ronner, S.F. (1983). Visual cortical neurons as localised spatial-frequency filters. IEE Transactions on Systems, Man and Cybernetics, 13, 907-916. Cerca con Google

Posner, M., Snyder, C., & Davidson, B. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109, 160-174. Cerca con Google

Price, N.S., Greenwood, J.A., & Ibbotson, M.R. (2004). Tuning properties of radial phantom motion aftereffects. Vision Research, 44, 1971-1979. Cerca con Google

Purpura, K., Kaplan, E., & Shapley, R.M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences (US), 85, 4534-4537. Cerca con Google

Purushothaman, G., Ogmen, H., Chen, S., & Bedell, H. E. (1998). Motion deblurring in a neural network model of retino-cortical dynamics. Vision Research, 38, 1827-1842. Cerca con Google

Raiguel, S., Van Hulle, M.M., Xiao, D.K., Marcar, V.L., Lagae, L., & Orban, G.A. (1997). Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. Neuroreport, 8, 2803-2808. Cerca con Google

Ramachandran, V.S., & Anstis, S.M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616. Cerca con Google

Ramachandran, V.S., Rao, V.M., & Vidyasagar, T.R. (1973). Apparent movement with subjective contours. Vision Research, 13, 1399-1401. Cerca con Google

Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W.A. Rosenblith, Sensory Communication MIT Press: London. Cerca con Google

Robson, J.G. (1966). Spatial and temporal contrast sensitivity function of the visual system. Journal of the Optical Society of America, 56, 1141-1142. Cerca con Google

Rodman, H.R., & Albright, T.D. (1987). Coding of visual stimulus velocity in area MT of the macaque. Vision Research, 27, 2035-2048. Cerca con Google

Rodman, H.R., Gross, C.G., & Albright, T.D. (1989). Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. Journal of Neuroscience, 9, 2033-2050. Cerca con Google

Rose, M., & Büchel, C. (2005). Neural coupling binds visual tokens to moving stimuli. Journal of Neuroscience, 25, 10101-10104. Cerca con Google

Ruff, C.C., Kristjánsson, A., & Driver, J. (2007). Readout from iconic memory and selective spatial attention involve similar neural processes. Psychological Science, 18, 901-909. Cerca con Google

Saevarsson, S., Jóelsdóttir, S., Hjaltason, H., & Kristjánsson, Á. (2008). Repetition of distractor sets improves visual search performance in hemispatial neglect. Neuropsychologia, 46, 1161-1169. Cerca con Google

Sakai, H.M., Wang, J.L., & Naka, K. (1995). Contrast gain control in the lower vertebrate retinas. The Journal of General Physiology, 105, 815-835. Cerca con Google

Schacter, D.L., & Buckner, R.L. (1998). Priming and the brain. Neuron, 20, 185-195. Cerca con Google

Schiller, P.H., & Malpeli, J.G. (1977). Properties and tectal projections of monkey retinal ganglion cells. Journal of Neurophysiology, 40, 428-45. Cerca con Google

Schiller, P.H., Logothetis, N.K., & Charles, E.R. (1990a). Functions of the colour-opponent and broad-band channels of the visual system. Nature, 343, 68-70. Cerca con Google

Schiller, P.H., Logothetis, N.K., & Charles, E.R. (1990b). Role of the color-opponent and broad-band channels in vision. Visual Neuroscience, 5, 321-346. Cerca con Google

Schiller, P.H., Malpeli, J.G., & Schein, S.J. (1979). Composition of geniculostriate input ot superior colliculus of the rhesus monkey. Journal of Neurophysiology, 42, 1124-1133. Cerca con Google

Schofield, A.J., Ledgeway, T., & Hutchinson, C.V. (2007). Asymmetric transfer of the dynamic motion after-effect between first and second-order cues and among different second-order cues. Journal of Vision, 7, 1-12. Cerca con Google

Sclar, G., Lennie, P., & DePriest, D.D. (1989). Contrast adaptation in striate cortex of macaque. Vision Research, 29, 747-755. Cerca con Google

Seiffert, A.E., & Cavanagh, P. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Research, 38, 3569-3582. Cerca con Google

Seiffert, A.E., & Cavanagh, P. (1999). Position-based motion perception for color and texture stimuli: Effects of contrast and speed. Vision Research, 39, 4172-4185. Cerca con Google

Seiffert, A.E., Somers, D.C., Dale, A.M., & Tootell, R.B. (2003). Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. Cerebral Cortex, 13, 340-349. Cerca con Google

Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R., & Tootell, R.B.H. (1995). Borders of multiple visual areas in human revealed by functional magnetic resonance imaging. Science, 268, 889-893. Cerca con Google

Shapley, R.M., & Victor, J.D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology, 285, 275-298. Cerca con Google

Shim, W.M., & Cavanagh, P. (2004). The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research, 44, 2393-2401. Cerca con Google

Shipp, S., & Zeki, S. (1985). Segregated output to area V5 from layer 4b of macaque monkey striate cortex. Journal of Physiology, 369. Cerca con Google

Shipp, S., & Zeki, S. (1989). The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. European Journal of Neuroscience, 1, 309-332. Cerca con Google

Sigurðardóttir, H.M., Kristjánsson, Á., & Driver, J. (2008). Repetition streaks increase perceptual sensitivity in brief visual search displays. Visual Cognition, 16, 643-658. Cerca con Google

Simpson, W.A. (1989). The step method: A new adaptive psychophysical procedure. Perception & Psychophysics, 45, 572-576. Cerca con Google

Sjostrom, P.J., Turrigiano, G.G., & Nelson, S.B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149-1164. Cerca con Google

Smith, A.T., & Ledgeway, T. (1997). Separate detection of moving luminance and contrast modulations: fact or artifact? Vision Research, 37, 45-62. Cerca con Google

Smith, A.T., & Ledgeway, T. (1998). Sensitivity to second-order motion as a function of temporal frequency and eccentricity. Vision Research, 38, 403-410. Cerca con Google

Smith, A.T., Greenlee, M., Singh, K.D., Kraemer, F.M., & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18, 3816-3830. Cerca con Google

Smith, A.T., Hess, R.F., & Baker, C.L. Jr. (1994). Direction identification thresholds for second-order motion in central and peripheral vision. Journal of the Optical Society of America A, 11, 506-514. Cerca con Google

Smith, A.T., Scott-Samuel, N.E., & Singh, K.D. (2000). Global motion adaptation. Vision Research, 40, 1069-1075. Cerca con Google

Snowden, R.J. (1994). Motion Processing in the Primate Cerebral Cortex. In Smith, A.T. & Snowden, R.J. (Eds.), Visual Detection of Motion (pp. 51-83). Academic Press. Cerca con Google

Snowden, R.J. (1998). Shifts in perceived position following adaptation to visual motion. Current Biology, 8, 1343-1345. Cerca con Google

Snowden, R.J., & Milne, A.B. (1997). Phantom motion aftereffects – evidence of detectors for the analysis of optic flow. Current Biology, 7, 717-722. Cerca con Google

Solomon, J.A., & Sperling, G. (1995). First-order and second-order motion and texture resolution in central and peripheral vision. Vision Research, 35, 59-64. Cerca con Google

Stadler, M.A., & Hogan, E. (1996). Varieties of positive and negative priming. Psychonomic Bulletin and Review, 3, 87–90. Cerca con Google

Stewart, L., Battelli, L., Walsh, V., & Cowey, A. (1999). Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalography and Clinical Neurophysiology Supplement, 51, 334-350. Cerca con Google

Stratford, K.J., Tarczy-Hornuch, K., Martin, K.A., Bannister, N.J., & Jack, J.J. (1996). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature, 382, 258-261. Cerca con Google

Sundberg, K.A., Fallah, M., & Reynolds, J.H. (2006). A motion-dependent distortion of retinotopy in area V4. Neuron, 49, 447-457. Cerca con Google

Sutherland, N.S. (1961). Figural aftereffects and apparent size. Quarterly Journal of Experimentl Psychology, 13, 222-228. Cerca con Google

Sutter, A., Sperling, G., & Chubb, C. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35, 915-924. Cerca con Google

Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and the rotation cells clustered in the dorsal part of the median superior temporal area of the macaque monkey. Journal of Neurophysiology, 62, 626-641. Cerca con Google

Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience, 6, 134-144. Cerca con Google

Tanaka, K., Sugita, Y., Moriya, M., & Saito, H. (1993). Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. Journal of Neurophysiology, 69, 128-142. Cerca con Google

Taub, E., Victor, J.D., & Conte, M.M. (1997). Nonlinear preprocessing in short-range motion. Vision Research, 37, 1459-1477. Cerca con Google

Taylor, J.G., Schmitz, N., Ziemons, K., Grosse-Ruyken, M.L., Gruber, O., Mueller-Gaertner, H.W., & Shah, N.J. (2000). The Network of Brain Areas Involved in the Motion Aftereffect. Neuroimage, 11, 257-270. Cerca con Google

Théoret, H., Kobayashi, M., Ganis, G., Di Capua, P., & Pascual-Leone, A. (2002). Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect. Neuropsychologia, 40, 2280-2287. Cerca con Google

Tikhonov, A., Händel, B., Haarmeier, T., Lutzenberger, W., & Thier, P. (2007). Gamma oscillations underlying the visual motion aftereffect. Neuroimage, 38, 708-719. Cerca con Google

Tolhurst, D.J., & Movshon, J.A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurons. Nature, 257, 674-675. Cerca con Google

Tootell, R.B., & Born, R.T. (1990). Patches and directional columns in primate area MT. Investigative Ophthalmology and Visual Science (Suppl.), 31, 238. Cerca con Google

Tootell, R.B., Hadjikhani, N.K., Vanduffel, W., Liu, A.K., Mendola, J.D., Sereno, M.I., & Dale, A.M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings of the National Academy of Sciences Online (US), 95, 811-817. Cerca con Google

Tootell, R.B.H., Reppas, J.B., Kwong, K.K., Malach, R., Born, R.T., Brady, T.J., Rosen, B.R., & Belliveau, J.W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215-3230 Cerca con Google

Tootell, R.B., Reppas, J.B., Dale, A.M., Look, R.B., Sereno, M.I., Malach, R., Brady, T.J., Rosen, B.R. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375, 139-141. Cerca con Google

Tootell, R.B.H., Silverman, M.S., Switkes, E., & De Valois, R.L. (1982). Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science, 218, 902-904. Cerca con Google

Torre, V., & Poggio, T. (1978). A synaptic mechanism possibly underlying selectivity to motion. Proceedings of the Royal Society of London B, 202, 409-416. Cerca con Google

Treisman, A. (1992). Perceiving and re-perceiving objects. American Psychologist, 47, 862-875. Cerca con Google

Treue, S., & Maunsell, J. (1995). Attentional modulation of direction selective responses in the superior temporal sulcus of the macaque monkey. Investigative Ophthalmology and Visual Science (Suppl.), 36, 1052. Cerca con Google

Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8, 1096-1101. Cerca con Google

Tsui, S.Y., Khuu, S.K., & Hayes, A. (2007). The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern’s apparent size and shape. Vision Research, 47, 402-410. Cerca con Google

Tulving, E., & Schacter, D.L. (1990). Priming and human memory systems. Science, 247, 301-306. Cerca con Google

Turano, K., & Pantle, A. (1989). On the mechanism that encodes the movement of contrast variations. Vision Research, 29, 207-211. Cerca con Google

Ukkonen, O.I., & Derrington, A.M. (2000). Motion of contrast-modulated gratings is analyzed by different mechanisms at low and at high contrasts. Vision Research, 40, 3359-3371. Cerca con Google

Ungerleider, L.G., & Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization. Journal of Comparative Neurology, 188, 347-366. Cerca con Google

Vaina, L.M., & Cowey, A. (1996). Impairment of the perception of second-order motion but not first-order motion in a patient with unilateral focal brain damage. Proceedings of the Royal Society of London B, 263, 1225-1232. Cerca con Google

Vaina, L.M., & Soloviev, S. (2004). First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Progress in Brain Research, 144, 197-212. Cerca con Google

Vaina, L.M., Cowey, A., & Kennedy, D. (1999). Perception of first- and second-order motion: separable neurological mechanisms? Human Brain Mapping, 7, 67-77. Cerca con Google

Vaina, L.M., LeMay, M., & Gryzwacz, N.M. (1993). Deficits on non-Fourier motion perception in a patient with normal performance on short-range motion tasks. Neuroscience Abstracts, 19, 1284. Cerca con Google

Vaina, L.M., Makris, N., Kennedy, D., & Cowey, A. (1998). The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Visual Neuroscience, 15, 333-348. Cerca con Google

Vaina, L.M., Soloviev, S., Bienfang, D.C., & Cowey, A. (2000). A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. NeuroReport, 11, 1039-1044. Cerca con Google

van de Grind, W.A., van der Smagt, M.J., & Verstraten, F.A. (2004). Storage for free: a surprising property of a simple gain-control model of motion aftereffects. Vision Research, 44, 2269-2284. Cerca con Google

van de Grind, W.A., Verstraten, F.A., & van der Smagt, M.J. (2003). Influence of viewing distance on aftereffects of moving random pixel arrays. Vision Research, 43, 2413-2426. Cerca con Google

van der Smagt, M.J., Verstraten, F.A., & van de Grind, W.A. (1999). A new transparent motion aftereffect. Nature Neuroscience, 2, 595-596 Cerca con Google

van Santen, J.P.H. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A, 2, 300-321. Cerca con Google

van Wezel, R.J.A., & Britten, K.H. (2002). Motion adaptation in area MT. Journal of Neurophysiology, 88, 3469-3476. Cerca con Google

Verstraten, F.A., Fredericksen, R.E., & van de Grind, W.A. (1994). The movement aftereffect of bi-vectorial transparent motion. Vision Research, 34, 349-358. Cerca con Google

Verstraten, F.A., Fredericksen, R.E., van Wezel, R.J., Boulton, J.C., & van de Grind ,W.A. (1996). Directional motion sensitivity under transparent motion conditions. Vision Research, 36, 2333-2336. Cerca con Google

Verstraten, F.A., Fredericksen, R.E., Van Wezel, R.J., Lankheet, M.J., & Van de Grind, W.A. (1996). Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms. Vision Research, 36, 421-424. Cerca con Google

Verstraten, F.A., van der Smagt, M.J., & van de Grind, W.A. (1998). Aftereffect of high-speed motion. Perception, 27, 1055-1066. Cerca con Google

Verstraten, F.A., van der Smagt, M.J., Fredericksen, R.E., & van de Grind, W.A. (1999). Integration after adaptation to transparent motion: static and dynamic test patterns result in different motion aftereffect directions. Vision Research, 39, 803-810. Cerca con Google

Vogel, E.K., Woodman, G.F., & Luck, S.J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114. Cerca con Google

von Grünau, M.W. (2002). Bivectorial transparent stimuli simultaneously adapt mechanisms at different levels of the motion pathway. Vision Research, 42, 577-587. Cerca con Google

Walsh, V., Ellison, A., Battelli, L., & Cowey, A. (1998). Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proceedings Biological Sciences, 265, 537-543. Cerca con Google

Walsh, V., Le Mare, C., Blaimire, A., & Cowey, A. (2000). Normal discrimination performance accompanied by priming deficits in monkeys with V4 or TEO lesions. Neuroreport, 11, 1459-1462. Cerca con Google

Wang, D., Kristjánsson, Á., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 67, 239-253. Cerca con Google

Wang, Y.Z., Hess, R.F., & Baker, C.L. Jr. (1997). Second-order motion perception in peripheral vision: limits of early filtering. Journal of the Optical Society of America A, 14, 3145-3154. Cerca con Google

Warrington, E.K., & Weiskrantz, L. (1968). New method of testing long-term retention withspecial reference to amnesic patients. Nature, 217, 972-974. Cerca con Google

Watanabe, K. (2005). The motion-induced position shift depends on the visual awareness of motion. Vision Research, 45, 2580-2586. Cerca con Google

Watson, A.B., & Ahumada, A.J. Jr. (1983). A look at motion in the frequency domain. NASA Tech. Memo. TM-84352. Cerca con Google

Whitaker, D., McGraw, P.V., & Levi, D.M. (1997). The influence of adaptation on perceived visual location. Vision Research, 37, 2207-2216. Cerca con Google

Whitaker, D., McGraw, P.V., & Pearson, S. (1999). Non-veridical size perception of expanding and contracting objects. Vision Research, 39, 2999-3009. Cerca con Google

Whitney, D. (2002). The influence of visual motion on perceived position. Trends in Cognitive Sciences, 6, 211-216. Cerca con Google

Whitney, D. (2005). Motion distorts perceived position without awareness of motion. Current Biology, 15, R324-326. Cerca con Google

Whitney, D. (2006). Contribution of bottom-up and top-down motion processes to perceived position. Jornal of Experimental Psychology: Human Perception and Performance, 32, 1380-1397. Cerca con Google

Whitney, D., & Bressler, D.W. (2007). Second-order motion without awareness: passive adaptation to second-order motion produces a motion aftereffect. Vision Research, 47, 569-579. Cerca con Google

Whitney, D., & Cavanagh, P. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience, 3, 954-959. Cerca con Google

Whitney, D., & Cavanagh, P. (2003). Motion adaptation shifts apparent position without the motion aftereffect. Perception & Psychophysics, 65, 1011-1018. Cerca con Google

Whitney, D., Goltz, H.C., Thomas, C.G., Gati, J.S., Menon, R.S., & Goodale, M.A. (2003). Flexible retinotopy: motion-dependent position coding in the visual cortex. Science, 302, 878-881. Cerca con Google

Wilson, H.R., Ferrera, V.P., & Yo, C. (1992). Psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience, 9, 79-97. Cerca con Google

Wolfe, J.M., Butcher, S.J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29, 483-502. Cerca con Google

Wolfe, J.M., Friedman-Hill, S.R., & Bilsky, A.B. (1994). Parallel processing of part-whole information in visual search tasks. Perception & Psychophysics, 55, 537-550. Cerca con Google

Wyatt, H.J., & Daw, N.W. (1975). Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. Journal of Neurophysiology, 38, 613-626. Cerca con Google

Wurtz, R.H. (1969). Visual receptive fields of striate cortex neurons in awake monkeys. Journal of Neurophysiology, 32, 727-742. Cerca con Google

Yokoi, K., & Watanabe, K. (2005). Distortion of positional representation of visual objects by motion signals. Journal of vision, 5, 206a. Cerca con Google

Zanker, J.M., Quenzer, T., & Fahle, M. (2001). Perceptual deformation induced by visual motion. Naturwissenschaften, 88, 129-132. Cerca con Google

Zeki, S.M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology, 277, 273-290. Cerca con Google

Zhou, Y.X., & Baker, C.L. Jr. (1993). A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science, 261, 98-101. Cerca con Google

Zhou, Y.X., & Baker, C.L. Jr. (1994). Envelope-responsive neurons in areas 17 and 18 of cat. Journal of Neurophysiology, 72, 2134-2150. Cerca con Google

Zhou, Y.X., & Baker, C.L. Jr. (1996). Spatial properties of envelope-responsive cells in area 17 and 18 of the cat. Journal of Neurophysiology, 75, 1038-1050. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record