Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Martello, Graziano (2009) Microrna coinvolti nello sviluppo embrionale e nella progressione tumorale. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

MicroRNAs(miRNAs) are small non-coding RNA that regulate gene expression at the posttranscriptional level. MiRNAs are involved in many biological processes, as embryonic development, cellular differentiation and proliferation.
Genes involved in embryonic development are often used aberrantly by cancer cells: for example, the TGF-? cascade has a key role during early development in vertebrates, but during cancer progression TGF-? controls proliferation and invasion.
In the first part of this thesis we characterized miR-15 and miR-16 as microRNAs critical for early embryonic development. Indeed, we demonstrated that they regulate the induction of the Spemann Organizer, a tissue controlling axis formation and neural induction in Xenopus embryos (Martello et al., 2007).
The second part of this thesis is about a microRNA family with oncogenic activity: miR-103 and -107 are overexpressed in different tumor types and can control the epithelial plasticity and cellular motility, two main aspects of the metastatic progression.

Abstract (italiano)

I microRNA (miRNA) sono una famiglia di piccoli RNA non codificanti, in grado di inibire l’espressione genica a livello post-trascrizionale; i miRNA sono coinvolti in numerosi processi biologici, che vanno dallo sviluppo embrionale al controllo della proliferazione cellulare.
E’ interessante osservare come spesso la cellula tumorale utilizzi in maniera aberrante dei programmi genici propri dell’embrione; ad esempio il segnale TGF-? ha un ruolo chiave durante lo sviluppo embrionale precoce, ma nel contesto tumorale regola sia la proliferazione e che l’invasività cellulare.
Nella prima parte (A) di questa tesi di dottorato ci siamo occupati di miR-15 e miR-16, per i quali ho identificato un ruolo durante lo sviluppo embrionale precoce. Abbiamo dimostrato come miR-15 e miR-16 regolino la formazione dell’Organizzatore di Spemann, una struttura che controlla la formazione degli assi corporei e del sistema nervoso in embrioni di Xenopus laevis (Martello et al., 2007).
La seconda parte (B) di questa tesi è dedicata ad uno studio, ancora non pubblicato, su una famiglia di miRNA a potenziale attività oncogenica, miR-103 e miR-107. Questi geni sono espressi ad alti livelli in diversi tipi tumorali e sono in grado di controllare la plasticità epiteliale e la motilità cellulare, due aspetti cruciali nel processo metastatico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Piccolo, Stefano
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:29 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):microrna, sviluppo embrionale, metastasi
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche
Codice ID:1613
Depositato il:29 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Afshar K, Gonczy P, DiNardo S, Wasserman SA: fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster. Genetics 2001; 157: 1267-76 Cerca con Google

Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal- related signals and mesoderm induction in Xenopus. Development 127, 1173-83 (2000). Cerca con Google

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97 Cerca con Google

Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet 2005; 37: 382-90 Cerca con Google

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ: Dicer is essential for mouse development. Nat Genet 2003; 35: 215-7 Cerca con Google

Blenkiron C, Miska EA: miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 2007; 16 Spec No 1: R106-13 Cerca con Google

Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW: Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47: 897-907 Cerca con Google

Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582-9 Cerca con Google

Calabrese J M, Amy C Seila, Gene W Yeo, Phillip A Sharp: RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104 (46): 18097-102 Cerca con Google

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99: 15524-9 Cerca con Google

Cha, Y. R., Takahashi, S. & Wright, C. V. Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. Dev Biol 290, 246-64 (2006). Cerca con Google

Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029-33 Cerca con Google

Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83-6 Cerca con Google

Chen, X. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85-9 (1997). Cerca con Google

Cordenonsi, M. et al. Integration of TGF-beta and Ras/MAPK Signaling Through p53 Phosphorylation. Science 315, 840-43 (2007). Cerca con Google

Davis et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56-61 Cerca con Google

De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 1, 171-81 (2000). Cerca con Google

Eisenberg E, Levanon EY: Human housekeeping genes are compact. Trends Genet 2003;19: 362-5 Cerca con Google

Eulalio A, Huntzinger E, Izaurralde E: Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9-14 Cerca con Google

Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, van't Veer LJ, Perou CM: Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006; 355: 560-9 Cerca con Google

Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127, 2917-31 (2000). Cerca con Google

Feng, X. H. & Derynck, R. Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21, 659-93 (2005). Cerca con Google

Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H: Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics 2005; 86: 127-41 Cerca con Google

Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF: MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005; 308: 833-8 Cerca con Google

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew- Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601 Cerca con Google

Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, Li B, Meng X, Ma X, Luo M, Shao K, Li N, Qiu B, Mitchelson K, Cheng J, He J: Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 2008; 68: 26-33 Cerca con Google

He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-31 Cerca con Google

Heasman, J., Kofron, M. & Wylie, C. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222, 124-34 (2000). Cerca con Google

Heasman, J. et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791-803 (1994). Cerca con Google

Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein- Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R:The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10: 202-10 Cerca con Google

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065-70 Cerca con Google

John, B. et al. Human MicroRNA targets. PLoS Biol 2, e363 (2004). Cerca con Google

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-47 Cerca con Google

Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489-501 Cerca con Google

Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T: Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111-5 Cerca con Google

Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, Gray JW, Bissell MJ: The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84-96 Cerca con Google

Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910-4 Cerca con Google

Krek, A. et al. Combinatorial microRNA target predictions. Nat Genet 37, 495-500 (2005). Cerca con Google

Krutzfeldt, J., Poy, M. N. & Stoffel, M. Strategies to determine the biological function of microRNAs. Nat Genet 38 Suppl, S14-9 (2006). Cerca con Google

Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685-9 Cerca con Google

Lagna G, Hata A, Hemmati-Brivanlou and Massague J. Partnership between DPC4 and SMAD proteins in TGF-beta singalling pathways. Nature 383: 832-6 Cerca con Google

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VM: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415-9 Cerca con Google

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-8 Cerca con Google

Ma L, Weinberg RA: Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 2008; 24: 448-56 Cerca con Google

Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Morsut L, Soligo S, Tran U, Dupont S, Cordenonsi M, Wessely O, Piccolo S: MicroRNA control of Nodal signalling. Nature 2007; 449: 183-8 Cerca con Google

Massague, J. How cells read TGF-b signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000). Cerca con Google

Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ: Critical roles for Dicer in the female germline. Genes Dev 2007; 21: 682-93 Cerca con Google

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515-27 Cerca con Google

Niehrs, C. Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5, 425-34 (2004). Cerca con Google

Norris, D. P. & Robertson, E. J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev 13, 1575-88 (1999). Cerca con Google

Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894-907 Cerca con Google

Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707-10 (1999). Cerca con Google

Pogoda, H. M., Solnica-Krezel, L., Driever, W. & Meyer, D. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol 10, 1041-9 (2000). Cerca con Google

Reinhart, B.J., Slack, F.J., Basson, M., Bettinger, J.C., PasquinelliA.E., Rougvie, A.E., Horvitz H.R., and Ruvkun, G. The 21nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000 403, 901–906. Cerca con Google

Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24: 4677-84 Cerca con Google

Shi, R. & Chiang, V. L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519-25 (2005). Cerca con Google

Schohl, A. & Fagotto, F. Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129, 37-52 (2002). Cerca con Google

Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3, 807-21 (2003). Cerca con Google

Simpson JF, Gray R, Dressler LG, Cobau CD, Falkson CI, Gilchrist KW, Pandya KJ, Page DL, Robert NJ: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 2000; 18: 2059-69 Cerca con Google

Song, J. et al. The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev Biol 213, 157-69 (1999). Cerca con Google

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98: 10869-74 Cerca con Google

Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague : Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147-52 Cerca con Google

Ting AH, Suzuki H, Cope L, Schuebel KE, Lee BH, Toyota M, Imai K, Shinomura Y, Tokino T, Baylin SB: A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells. Cancer Res 2008; 68: 2570-5 Cerca con Google

Tao, Q. et al. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857-71 (2005). Cerca con Google

van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene- expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999-2009 Cerca con Google

Vize, P. D. DNA sequences mediating the transcriptional response of the Mix.2 homeobox gene to mesoderm induction. Dev Biol 177, 226-31 (1996). Cerca con Google

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257-61 Cerca con Google

Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124: 1169-81 Cerca con Google

Watanabe, T. et al. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 579, 318-24 (2005). Cerca con Google

Wrana JL, Attisano L, Carcamo J, Zentella A, Doody M, Laiho M, Wang XF and Massague J. TGF beta singals through a heteromeric protein kinase receptorcomplex. Cell 1992. 71: 1003-14 Cerca con Google

Yeom KH, Lee Y, Han J, Suh MR, Kim VN: Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006; 34: 4622-9 Cerca con Google

Zhang W, Dahlberg JE, Tam W: MicroRNAs in tumorigenesis: a primer. Am J Pathol 2007; 171: 728-38 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record