Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Callegari, Andrea (2008) Cardiac tissue engineering: use of a collagen scaffold and bone marrow-derived stem cells in a model of acute and chronic myocardial infarction. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

1. Cardiopatch in a model of Acute Myocardial Injury (AMI)
In this research project we tested the possibility of using a new biodegradable collagen-based material in vivo at cardiac level. We chose the rat as animal model and the acute necrotizing injury (ANI) as type of lesion. Wistar rats of 200-250 grams were used. After anaesthesia, animals were intubated and ventilated mechanically with room air. The heart was exposed through a left thoracotomy and a left ventricular acute necrotizing injury (ANI, freeze-thaw procedure) was created by three sequential exposures (60 s each, 20 s of non-freezing interval) of a liquid nitrogen-cooled cryoprobe (a stainless-steel cylinder, 8mm of diameter).
The potential of collagen scaffold (Cardiopatch) for attracting angiogenesis/arteriogenesis was studied in vivo by implantation on a healthy (group 2) or cryoinjured left ventricle (group 3) of rats up to 60 days postinjury times. Blood vessel content and extra-vascular cell infiltration were evaluated within the Cardiopatches, the cryoinjury zones, and the "border zones" of the myocardium facing the cryoinjury zones.
In vitro, this biomaterial supported differentiation of cardiomyocytes, smooth muscle and endothelial cells. When implanted in the peritoneum, the scaffold induced a striking neoangiogenesis but also an innate immune response with an abundant macrophage infiltrate and some foreign body giant cells.
In the heart, cardiopatches were almost completely absorbed in 60 days and became populated by new arterioles and capillaries in both intact and cryoinjured heart (arterioles in cryoinjury vs. intact zone were about 2,3-fold higher; capillaries in cryoinjury vs. intact zone were 1.7-fold higher). In turn, cardiopatches exerted a "trophic" effect on the organizing granulation tissue that emerged from the wound healing process increasing vessel density of this tissue of 2.7-fold for arterioles and 4-fold for capillaries.
Interstitial cells in cardiopatches rarely (<1%) expressed markers of cardiogenic stem cells such as Sca-1- or MDR1, whereas markers of neural crest cells GFAP+/nestin+ cells ranged from 3/30% to 30/70% in cardiopatches placed on intact vs cryoinjured heart, respectively. Myofibroblasts and cardiomyocyte were absent but macrophages largely accommodated in the cardiopatches even after 60 days from implantation. Western blotting of cardiopatches detached from intact/cryoinjured hearts confirmed that endothelial and smooth muscle cells but not cardiomyocyte markers were expressed in the patches.
The porous collagen scaffold was able to evoke a powerful angiogenetic and arteriogenetic response in the intact and cryoinjured hearts, representing an ideal tool for therapeutic angio-arteriogenesis and a potentially useful substrate for stem cell seeding.

2. Cardiopatch in a model of Chronic Myocardial Injury (CMI)
After using the collagen scaffold in a model of AMI, this biomaterial was also applied in a model of Chronic Myocardial Injury (CMI) again in a rat myocardium. In view of a possible clinical application, this model seems closer to the clinical picture of chronic ischemia in human.
The animals were divided in 4 experimental groups:
1. animals that received a chronic necrotizing injury (CNI) at cardiac level
2. animals in which the scaffold was applied to the intact heart;
3. animals in which the scaffold was sutured to a cryoinjured heart;
4. Sham-operated animals.
The animals were sacrificed at time points of 15, 30 and 60 days. After collecting and freezing the organs, cardiac cryosections were obtained for the histological analysis: haematoxylin-eosin, Masson's thrichrome, immunoperoxidase and immunofluorescence.
In detail, four zones were studied in the region of cryoinjury or in the intact heart:
Zone 1: damaged tissue in hearts with CNI;
Zone 2: cardiopatch in intact hearts;
Zone 3: damaged tissue in hearts with CNI and cardiopatch;
Zone 4: cardiopatch in hearts with CNI.
When applied in intact or damaged rat heart, the biomaterial was able to attract a remarkable neovascularization, with the formation of capillaries and arterioles. The scaffold promoted neovascularization in the damaged zone, while this zone was not able to induce a important neovascularization in the cardiopatch any longer, as occurred in the ANI model. The mutual influence between the cardiopatch and the zone with CNI was lacking, probably due to a reduction of angiogenic/arteriogenic growth factors released from the granulation tissue. After 15 days from the application of cardiopatch in hearts with CNI, the rise of blood vessel was significant in zone 3, but it slightly decreased at 30 days. The efficacy of the biomaterial is so debatable in prospective of a long run use. In this contest it would be necessary to use angiogenetic growth factors (such as VEGF) in order to improve the neovascularisation.
The biomaterial was also unable to mobilize resident cardiogenic stem cells: in the cardiopatch no cells with this phenotypic pattern were found.

3. Cardiopatch and Bone Marrow derived Mesenchymal Stem Cells (MSCs) in a model of Chronic Myocardial Injury (CMI)
As these results were encouraging, but not sufficient with regard to a more complex therapeutic use of this the biomaterial, it became essential to test an additional manipulation of the cardiopatch.
The patch applied in a model of CMI was therefore injected with BM-MSCs, a phenotypically well-characterized cell population that is extensively used as a therapy in the myocardial infraction both in animal models and in human trials. In addition, these cells constitutively expressed the GFP (Green Fluorescent Protein), a green fluorescent marker that can be easily tracked after transplantation.
The Wistar rats underwent to CNI and after 30 days were divided into the following groups:
1. animals that received cryoinjury alone;
2. animals with CMI that received via an intra-myocardial route the BM-MSCs alone near the damaged zone;
3. animals in which the patch was attached to the injured myocardium and than injected with medium alone;
4. animals in which the patch was attached to the normal myocardium and the cells injected within it;
5. animals in which the scaffold was implanted in the damaged hearts and subsequently injected with about 4x106 GFP+ BM-MSCs.
The day before the second operation the rats started the treatment with 10mg/Kg/day of Cyclosporine (CsA) until the sacrifice to avoid the risk of rejection.
After 15 days post-injection numerous GFP+ cells were found in the myocardium of animals of group 2 (rats with CMI received GFP+ BM-MSCs alone near the damaged zone), or in the cardiac patch and fibrotic myocardium of animals in groups 4 (patch attached to normal myocardium and the cells injected within it) and 5 (scaffold implanted in damaged hearts and subsequently injected with GFP+ BM-MSCs). This suggests that the cells injected in the patch were able to move from the patch to the myocardium.
Also in this case the material was able to induce neovascularization.
After transplant the BM-MSCs were able to activate differentiation programs and form capillaries, arterioles and cardiomyocytes.
Some of the transplanted GFP+ BM-MSCs were positive for endothelial (CD31) and smooth muscle (SM ?-actin) cell marker and were found in capillaries and arterioles, respectively. In particular, in group 5, most of the BM-MSCs were dispersed into the interstice and several participated in vessel formation both in cardiopatch and in the cryoinjured zone. However, the contribute of GFP+ cells to neoangiogenesis in the cryoinjured zone was very limited.
Two weeks after transplantation some of the engrafted MSCs were stained positive for cardiac troponin T. No presence of cTnT positive cells was detected in the injured myocardium of animals in group 5.
In previous models, the use of the collagen scaffold only in cardiac repair was not sufficient to mobilize resident cardiogenic stem cells locally. The use of BM-MSCs was able to avoid the lack of cells with the phenotypic profile of cardiomyocytes, even if the percentage of conversion to this kind of cell was not big enough to ensure an adequate functional recovery.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Sartore, Saverio
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:cardiac tissue engineering, collagen scaffold, bone marrow mesenchymal stem cells, myocardial infarction
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Biomediche Sperimentali
Codice ID:168
Depositato il:11 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension. 2005 Mar; 45(3): 321-5. Cerca con Google

2. Anversa P, Leri A, Kajstura J. Cardiac regeneration. J Am Coll Cardiol 2006; 47:1769-76. Cerca con Google

3. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 Feb 14; 275(5302): 964-7. Cerca con Google

4. Atala A. Experimental and clinical experience with tissue engineering techniques for urethral recostruction. Urol Clin North Am. 2002; 29(2):485-92, ix. Cerca con Google

5. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC and Terzic A. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16 , pp. 1558-1566. Cerca con Google

6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003 Sep 19;114(6):763-76. Cerca con Google

7. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994; 89, pp. 151-163. Cerca con Google

8. Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005 May-Jun; 11 (5-6): 803-13. Cerca con Google

9. Bittira B, Shum-Tim D, Al-Khaldi A, Chiu RC. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur J Cardiothorac Surg. 2003 Sep; 24(3): 393-8. Cerca con Google

10. Boheler KR and Schwartz K. Gene expression in cardiac hypertrophy. Trends Cardiovasc Med 1992; 2, pp. 176-182. Cerca con Google

11. Bradley A, Evans M, Kaufman MH and Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984.309, pp.255-256. Cerca con Google

12. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of myocardial coronary arteries. 1991 Circ. Res. 69, 107-115. Cerca con Google

13. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003 Dec;5(6):877-89. Cerca con Google

14. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Medicine. 2003 Dec; 9 (12): 1520-7. Cerca con Google

15. Chang Y, Lai PH, Wei HJ, Lin WW, Chen CH, Hwang SM, Chen SC, Sung HW. Tissue regeneration observed in a basic fibroblast growth factor-loaded porous acellular bovine pericardium populated with mesenchymal stem cells. J Thorac Cardiovasc Surg. 2007 Jul;134(1):65-73, 73.e1-4. Cerca con Google

16. Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B, Zhu Z, Lin S, Kwan TW. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006; 18: 552-556. Cerca con Google

17. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004; 94: 92-95. Cerca con Google

18. Cleutjens JPM, Blankesteijn WM, Daemen MJAP, Smits JFM. The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovascular Research. 1999; 44:232-241. Cerca con Google

19. Cleutjens PM, Verluyten M, Smits JFM and Daemen MJAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995; 147, pp. 325-338. Cerca con Google

20. Davani S, Deschaseaux F, Chalmers F, Tiberghien P, Kantelip JP. Can stem cells mend a broken heart? Cardiovasc Res. 2005; 65: 305-16. Cerca con Google

21. Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A. 2006; 103: 8155-60. Cerca con Google

22. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005 Mar 8; 102(10): 3766-71. Cerca con Google

23. Deindl E, Zaruba MM, Brunner S, Huber B, Mehl U, Assmann G, Hoefer IE, Mueller-Hoecker J, Franz WM. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J. 2006 May;20(7):956-8. Cerca con Google

24. Deten A, Volz HC, Clamors S, Leiblein S, Briest W, Marx G, Zimmer HG. et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc. Res. 2005; 65, 52−63. Cerca con Google

25. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prokop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Brith J Haemat. 1999; 107: 275-281. Cerca con Google

26. Eisemberg LM, Burns L, Eisenberg CA. Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. Anat Rec A Discov Mol Cell Evol Biol. 2003 Sep; 274 (1): 870-82. Cerca con Google

27. El-Helou V, Dupuis J, Proulx C, Drapeau J, Clement R, Gosselin H, Villeneuve L, Manganas L, Calderone A. Resident nestin+ neural-like cells and fibers are detected in normal and damaged rat myocardium. Hypertension. 2005; 46: 1219-25. Cerca con Google

28. Ertl G, Frantz S. Healing after myocardial infarction. Cardiovasc Res. 2005;66:22-32. Cerca con Google

29. Eschenhagen T, Didie M, Heubach J, Ravens U, Zimmermann WH. Cardiac tissue engineereng. Transpl Immunol.2002; 9(2-4):315-21. Cerca con Google

30. Eschenhagen T, Zimmermann WH. Engineering myocardial tissue. Circ Res. 2005; 97: 1220-31. Cerca con Google

31. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR. Hypoxia-induced pulmonary vascular remodelling requires recruitament of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am j Pathol. 2006; 168(2):659-69. Cerca con Google

32. Fridenstein A. Stromal bone marrow cells and the hematopoietic microenvironment. Arkh. Patol. 1982; 44: 3-11. Cerca con Google

33. Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast-based fetal tissue engineering. Surgery. 2006 Jul;140(1):100-7. Cerca con Google

34. Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol. 2007 Jun 12;49(23):2292-300. Cerca con Google

35. Gerecht-Nir S, Radisic M, Park H, Cannizzaro C, Boublik J, Langer R, Vunjak-Novakovic G. Biophysical regulation during cardiac development and application to tissue engineering. Int J Dev Bio. 2006; 50: 233-43. Cerca con Google

36. Giulla MM, Paliotti R, Ferrero S, Braidotti P, Esposito A, Gianelli U, Busca G, Cioffi U, Bulfamante G, Magrini F. Left ventricular remodeling after experimental myocardial cryoinjury in rats. J Surg Res. 2004; 116(1):91-7. Cerca con Google

37. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005; 11: 367-368. Cerca con Google

38. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Research. 2003; 288: 51-59. Cerca con Google

39. Gronthos S, Simmons P. The biology and application of human bone marrow stromal cells precursors. J. Hematother. 1996; 5: 15-23. Cerca con Google

40. Guo XM, Zhao YS, Chang HX, Wang CY, E LL, Zhang XA, Duan CM, Dong LZ, Jiang H, Li J, Song Y, Yang XJ. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation. 2006; 113: 2229-37. Cerca con Google

41. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Yamauchi-Takihara K, Komuro I. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med. 2005 Mar;11(3):305-11. Cerca con Google

42. Hasegawa H, Takano H, Iwanaga K, Ohtsuka M, Qin Y, Niitsuma Y, Ueda K, Toyoda T, Tadokoro H, Komuro I. Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. J Am Coll Cardiol. 2006 Feb 21;47(4):842-9. Cerca con Google

43. Haynesworth S, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992; 13: 69-80. Cerca con Google

44. Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med. 2006, 10(1):45-55. Cerca con Google

45. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95:449-58. Cerca con Google

46. Hilenski LL, Terracio L, Borg TK. Myofibrillar and cytoskeletal assembly in neonatal rat cardiomyocytes cultured on laminin and collagen. Cell Tissue Res 1991;264:577-87. Cerca con Google

47. Howson KM, Aplin AC, Gelati M, Alessandri G, Parati EA, Nicosia RF. The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol. 2005; 289: C1396-40. Cerca con Google

48. Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Korber T, Schumichen C, Freund M, Nienaber CA. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation. 2005 Nov 15;112(20):3097-106. Cerca con Google

49. Ito WD, Khmelevski E. Tissue macrophages: “Satellite Cells” for growing collateral vessels? A hypothesis. Endothelium. 2003; 10: 233-5. Cerca con Google

50. Iwanaga K, Takano H, Ohtsuka M, Hasegawa H, Zou Y, Qin Y, Odaka K, Hiroshima K, Tadokoro H, Komuro I. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem. Biophys. Res. Commun. 2004; 325, 1353-1359. Cerca con Google

51. Jabs A, Moncada G, Nichols C, Waller E, Wilcox J. Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res. 2005; 42: 174-80. Cerca con Google

52. Jackson BM, Gorman JH 3rd, Salgo IS, Moainie SL, Plappert T, St Jhon-Sutton M, Edmunds LH Jr, Gorman RC. Border zone geometry increases wall stress after myocardial infarction: contrast echocardiographic assessment. Am. J. Physiol. Heart. Circ. Physiol. 2003; 284(2): H475-9. Cerca con Google

53. Jackson BM, Parish LM, Gorman JH 3rd, Enomoto Y, Sakamoto H, Plappert T, St John Sutton MG, Salgo I, Gorman RC. Borderzone geometry after acute myocardial infarction: a three-dimensional contrast enhanced echocardiographic study. Ann Thorac Surg 2005 Dec; 80(6): 2250-5. Cerca con Google

54. Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij LFMH, van Luyn MJA. A hyaluronan-based nerve guide: in vitro cytotoxicity, sunncutaneous tissue reactions, and degradation in the rat. Biomaterials 2004; 25: 483-9. Cerca con Google

55. Jiang Y, Dudek K, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Pluripotent nature of adult marrow derived mesenchymal stem cells. Nature. 2002; 418: 41-49. Cerca con Google

56. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell death are independent contributing variables of infarct size in rats. Lab Invest 1996; 74, pp. 86-107. Cerca con Google

57. Kanellakis P, Slater NJ, Du XJ, Bobik A, Curtis DJ. Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myocardial infarction. Cardiovasc Res. 2006 Apr 1;70(1):117-25. Cerca con Google

58. Kang HJ, Kim HS, Koo BK, Kim YJ, Lee D, Sohn DW, Oh BH, Park YB. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am Heart J. 2007 Feb;153(2):237.e1-8 Cerca con Google

59. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, Kim YJ, Soo Lee D, Sohn DW, Han KS, Oh BH, Lee MM, Park YB Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004 363:751-756. Cerca con Google

60. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006 Nov;11(5):723-32. Cerca con Google

61. Kihara T, Hirose M, Oshima A, Ohgushi H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2006; 341: 1029-35. Cerca con Google

62. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004; 94: 678-685. Cerca con Google

63. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001 Apr; 7(4): 430-6. Cerca con Google

64. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar AQ, Fisher S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg. 2002;124:63-9. Cerca con Google

65. Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M,, Yamane T, Lebl DR, Swijnenburg R-J, Chang C-P, Quertermous T, Robbins RC. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant. 2005; 24: 737-44. Cerca con Google

66. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 2005b; 112(9 Suppl):I173-7. Cerca con Google

67. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR and Swijnenburg RJ. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration.. Stem Cells. 2004; 22, pp. 1239-1245. Cerca con Google

68. Kopen G, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughtout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 10711-10716. Cerca con Google

69. Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, Pachmann K, Krack A, Sayer HG, Gottschild D, Werner GS. Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J. 2005 150:115 (e1-7). Cerca con Google

70. Kuizinga MC, Smits JFM, Arends JW and Daemen MJAP. AT2 receptor blockade reduces cardiac interstitial cell DNA synthesis and cardiac function after rat myocardial infarction. J Mol Cell Cardiol 1998; 30, pp. 425-434. Cerca con Google

71. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003; 74: 833-45. Cerca con Google

72. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005; Jul 23(7): 845-56. Cerca con Google

73. Langer R, Vacanti JP. Tissue engineering. Science. 1993 May 14; 260(5110):920-6. Cerca con Google

74. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005 Feb 10; 433 (7026): 647-53. Cerca con Google

75. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A. 2003 Jun 24;100 (13): 7808-11. Cerca con Google

76. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Biongineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 2000; 102 (19 Suppl 3): III56-61. Cerca con Google

77. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 1999; 100(19 Suppl):II63-9. Cerca con Google

78. Li WG, Zaheer A, Coppey L and Oskarsson HJ. Activation of JNK in the remote non-infarcted myocardium after large myocardial infarction in rats. Biochem Biophys Res Commun 1998; 246, pp. 816-820 Cerca con Google

79. Linda W. van Laake, Rutger Hassink, Pieter A. Doevendans and Christine Mummery. Heart repair and stem cells. J. Physiol. 2006; 577;467-478. Cerca con Google

80. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Circulation. 2004;109:2487-91. Cerca con Google

81. Luttun A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovascular Research 2003; 58: 378-389. Cerca con Google

82. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, Wang K, Zou Y. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005 May;100(3): 217-23. Cerca con Google

83. Makoto K, Ryozo N, Hidetsugu T, Hirohisa K, Yoshio Y, Akiyuki O, Fuminaru T. Developmentally Regulated Expression of Vascular Smooth Muscle Heavy Chain Isoforms. The Journal of Biological Chemistry 1989; 31:18272-18275. Cerca con Google

84. Maltsev V A, Wobus A M, Rohwedel J, Bader M and Hescheler J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994. 75, pp. 233-244. Cerca con Google

85. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004 Jan 1; 265(1): 262-75. Cerca con Google

86. Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li RK. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 2003, 108 Suppl 1:II219-25. Cerca con Google

87. Menasche P. Skeletal myoblast for cell therapy. Coron Artery Dis. 2005; Mar; 16(2): 105-10. Cerca con Google

88. Menasche P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis. 2007 Jul-Aug; 50(1): 7-17. Cerca con Google

89. Mikat EM, Hackel DB, Harrison L, Gallagher JJ, Wallace AG. Reaction of the myocardium and coronary arteries to cryosurgery. Lab Invest.1977; 37 (6): 632-41. Cerca con Google

90. Min J Y, Yang Y, Converso K L, Liu L, Huang Q and Morgan J P. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats.. J Appl Physiol. 2002; 92 , pp. 288-296. Cerca con Google

91. Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation. 2004 Jun 1;109(21):2572-80. Cerca con Google

92. Misao Y, Arai M, Ohno T, Ushikoshi H, Onogi H, Kobayashi H, Takemura G, Minatoguchi S, Fujiwara T, Fujiwara H. Modification of post-myocardial infarction granulocyte-colony stimulating factor therapy with myelo-suppressives. Circ J. 2007 Apr;71(4):580-90. Cerca con Google

93. Misao Y, Takemura G, Arai M, Ohno T, Onogi H, Takahashi T, Minatoguchi S, Fujiwara T, Fujiwara H. Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovasc Res. 2006 Aug 1;71(3):455-65. Cerca con Google

94. Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K, Sanatkar M, Gasemi M, Mirkhani H, Radmehr H, Salehi M, Eslami M, Farhig-Parsa A, Emami-Razavi H, al-Mohamad MG, Solimani AA, Ghavamzadeh A, Nikbin B. Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med. 2007 Oct; 10 (4): 467-73. Cerca con Google

95. Mokry J, Cizkova D, Filip S, Ehrmann J, Osterreicher J, Kolar Z, English D. Nestin expression by newly formed human blood vessels. Stem Cells Dev. 2004; 13: 658-64. Cerca con Google

96. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006 Dec 15;127(6):1151-65. Cerca con Google

97. Morini S, Carotti R, Carpino G, Franchitto A, Corradini SG, Merli M, Gaudio E. GFAP expression in the liver as an early marker of the stellate cells activation. Ital. J Anat. Embryol. 2005, 110(4):193-207. Cerca con Google

98. Morsi YS, Birchall IE, Rosenfeldt FL. Artificial aortic valves: an overview. Int J Artif Organs. 2004;27:445-51. Cerca con Google

99. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003 Jun 3;107(21):2733-40. Cerca con Google

100. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000; 105:1527-1536. Cerca con Google

101. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest. 1996 Dec 1; 98 (11): 2512-23. Cerca con Google

102. Nachtsheim R, Dudley B, McNeil PL, Howdieshell TR. The peritoneal cavity is a distinct compartment of angiogenic molecular mediators. J Surg Res. 2006 Jul; 134: 28-35. Cerca con Google

103. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005 Aug 23;112(8):1128-35. Cerca con Google

104. Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, Ohta Y, Sami M, Tachibana T, Ishikawa H, Kurosawa H, Kahn RC, Otsu K, Shirasawa T. Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem. 2006 Nov 3; 281(44):33789-801. Cerca con Google

105. Norol F, Merlet P, Isnard R, Sebillon P, Bonnet N, Cailliot C, Carrion C, Ribeiro M, Charlotte F, Pradeau P, Mayol JF, Peinnequin A, Drouet M, Safsafi K, Vernant JP, Herodin F. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 2003; 102, 4361-4368. Cerca con Google

106. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003 Oct 14; 100(21): 12313-8. Cerca con Google

107. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proc Natl Acad Sci U S A. 98 (2001), pp. 10344-10349. Cerca con Google

108. Ota T, Gilbert TW, Badylak SF, Schwartzman D, Zenati MA. Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix. J Thorac Cardiovasc Surg. 2007 Apr;133(4):979-85. Cerca con Google

109. Ozawa T, Mickle DA, Weisel RD, Koyama N, Osawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002; 106(12 Suppl 1):I176-82. Cerca con Google

110. Ozawa T, Mickle DA, Weisel RD, Koyana N, Wonq H, Ozawa S, Li RK. Histological changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg.2002; 124(6):1157-64. Cerca con Google

111. Ozawa T, Mickle DA, Weisel RD, Matsubayashi K, Fujii T, Fedak PW, Koyama N, Ikada Y, Li RK. Tissue-engineered grafts matured in the right ventricular outflow tract. Cell transplant.2004; 13(2):169-77. Cerca con Google

112. Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, Dinsmore JH, Wright S, Aretz TH, Eisen HJ, Aaronson KD. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histologicalanalysis of cell survival and differentiation, J Am Coll Cardiol. 2003; 41, pp. 879-888. Cerca con Google

113. Park H, Radisic M, Lim JO, Chang BH,Vunjak-Novakovic G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Animal. 2005; 41: 188-96. Cerca con Google

114. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R., Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147. Cerca con Google

115. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. Jul 2004; 95(1): 9-20. Cerca con Google

116. Price PA, Chan WS, Jolson DM, Williamson MK. The elastic lamellae of devitalized arteries calcify when incubated in serum. Arterioscler Thromb Vasc Biol. 2006; 26: 1079- 85. Cerca con Google

117. Prockop D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276: 71-74. Cerca con Google

118. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med. 2002 Jan 3; 346(1): 5-15. Cerca con Google

119. Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G. High density seeding of myocyte cells for tissue engineering. Biotech Bioeng. 2003; 82: 403-14. Cerca con Google

120. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “Endothelial Progenitor Cells” are derived from monocyte/macrophages and secrete angiogenic factors. Circulation. 2003;107:1164-9. Cerca con Google

121. Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol. 2000 May 1; 149 (3): 731-40. Cerca con Google

122. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol. 2002 Feb; 34 (2): 241-9. Cerca con Google

123. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human post-natal bone marrow. J. Clin. Invest. 2002; 109: 337-346. Cerca con Google

124. Robbins, Cotran. Le basi patologiche delle malattie. 7a edizione Elsevier. 2005. Cerca con Google

125. Robinson KA, Li J, Mathison M, Redkar A, Cui J, Chronos NA, Matheny RG, Badylak SF. Extracellular matrix scaffold for cardiac repair. Circulation 2005; 112(9 Suppl):I135.43. Cerca con Google

126. Sabbah HN, Sharov VG and Goldstein S. Programmed cell death in the progression of heart failure. Ann Med 1998; 30 Suppl 1 , pp. 33-38 Cerca con Google

127. Sakai T, Li RK, Weisel RD, Mickle DA, Kim ET, Jia ZQ, Yau TM. The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J Thorac Cardiovasc Surg. 2001; 121(5):932-42. Cerca con Google

128. Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, Itescu S. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol. 2004 Aug; 287(2): H525-32. Cerca con Google

129. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differenziate into functional hepatocytes-like cells. J. Clin. Invest. 2002; 109: 1291-1302. Cerca con Google

130. Shaper W, Heil M, Eitenmüller I, Schmitz-Rixen T. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006; 10(1):45-55. Cerca con Google

131. Shimizu T, Yamato M, Isoi Y, Ajutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002; 90 (3): e40. Cerca con Google

132. Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007 Sep;25(9):2350-7. Cerca con Google

133. Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK. Modulation of cardiac myocyte phenotype in vitro by the composition and the orientation of the extracellular matrix. J Cell Physiol. 1994;161: 89-105. Cerca con Google

134. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999; 341:738-46. Cerca con Google

135. Singla DK, Lyons GE, Kamp TJ. Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am J Physiol Heart Circ Physiol. 2007 Aug; 293(2): H1308-14. Cerca con Google

136. Stocum DL. Stem cells in regenerative biology and medicine. Wound. Rep. Reg. 2001; 9: 429-442. Cerca con Google

137. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002; 106:1913-1918. Cerca con Google

138. Sugano Y, Anzai T, Yoshikawa T, Maekawa Y, Kohno T, Mahara K, Naito K, Ogawa S. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc. Res. 2005; 65, 446-456. Cerca con Google

139. Takano H, Qin Y, Hasegawa H, Ueda K, Niitsuma Y, Ohtsuka M, Komuro I. Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. J Mol Med. 2006 Mar;84(3):185-93. Epub 2006 Jan 17. Cerca con Google

140. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T. Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435. Cerca con Google

141. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002; 3: 349- 63. Cerca con Google

142. Tomita Y, Matsumura K, Wakamatsu Y, Shibuya I, Kawaguchi H, Ieda M, Kanakubo S, Shimazaki T, Ogawa S, Osumi N, Okano H, Fukuda K. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 2005; 170:1135-46. Cerca con Google

143. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47-49. Cerca con Google

144. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantion. Lancet 1999; 354 Suppl 1:SI32-4. Cerca con Google

145. van Amerongen MJ, Harmsem MC, Petersen AH, Kors G, van Luyn MJA. The enzymatic degradation of scaffolds and their replacement by vascularizad extracellular matrix in the murine myocardium. Biomaterials 2006; 27:2247-57. Cerca con Google

146. Volders PGA, Willems IEMG, Cleutjens JPM, Arends JW, Havenith MG, Daemen MJ. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 1993; 25, pp. 1317-1323. Cerca con Google

147. Vracko R, Thorning D. Contractile cells in rat myocardial scar tissue. Lab Invest.1991; 65: 214-27. Cerca con Google

148. Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, Chiang HK, Hsu LF, Yang HH, Sung HW. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials. 2006 Nov;27(31):5409-19. Epub 2006 Jul 17. Cerca con Google

149. Westfall MV, Pasyk KA, Yule DI, Samuelson LC, Metzger JM. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil Cytoskeleton. 1997;36(1):43-54. Cerca con Google

150. Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res. 2005; 96: 151-63. Cerca con Google

151. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet. 2004; 364:141-148. Cerca con Google

152. Woodbury D, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosi. Res. 2000; 61: 364-370. Cerca con Google

153. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002 Sep 20;91(6):501-8. Cerca con Google

154. Yang Y, Min JY, Rana JS, Ke Q, Cai J and Chen Y. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells.. J Appl Physiol. 2002; 93, pp. 1140-1151. Cerca con Google

155. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997 Dec 15; 90(12): 5002-12. Cerca con Google

156. Yoon Y-S, Park J-S, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. 2004;109:3154-7. Cerca con Google

157. Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotech. 2004;15:430-4. Cerca con Google

158. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation. 2002; 106(12 Suppl 1):I151-7. Cerca con Google

159. Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004, 25(9):1639-47. Cerca con Google

160. Zimmermann W-H, Melnychenko I, Wasmeier G, Didié Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Shwoerer A, Ehmke H, Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med. 2006;12: 452-8. Cerca con Google

161. Zohlnhofer D, Kastrati A, Schomig A. Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: lessons from the REVIVAL-2 trial. Nat Clin Pract Cardiovasc Med. 2007 Feb; 4 Suppl 1:S106-9. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record