Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sangati, Marco (2009) Flash flood analysis and modelling in mountain regions. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

ABSTRACT: “Flash flood analysis and modelling in mountain regions”

Flash flood are rare and localized phenomena, triggered by meteorological event with a pronounced spatial variability, with a precipitation gradient, at event scale, up to 20-50 mm/km. The consequences of these features is that the scientific and operational communities working on flash flood analysis have to deal with an impressive lack of data. Even a dense raingauge network may not be able to represent spatial variability of rainfall patterns associated with convective storms that trigger flash floods. Radar rainfall estimations, when correctly elaborated, are able to represent spatial patterns, but quantitative precipitation volume estimations need to be validated. In addition, concerning discharge data, the majority of the upstream and larger catchments affected by flash floods are not gauged and stream gauges, where present, are often damaged, so that peak discharge distribution along main and secondary river network is even less known than precipitation fields.
This study aims at covering the gap between needed and available data for flash flood event analysis, combining different methodologies. An Intense Post Event Campaign (IPEC) may be very useful to collect peak discharge estimations and time sequence of the flood in ungauged sections. Simplified hydrological model, based on rough runoff excess computation and set velocity propagation, can be used to cross validate quantitative distributed precipitation data from weather radar and peak discharge estimations collected during an IPEC. More complex and detailed model may help to improve the knowledge about flash flood associated phenomena, like debris flow.
Another objective of this thesis is to investigate the role of rainfall spatial variability in flash flood triggering. First a standard procedure to describe the variability catchment scale is needed. It will be so possible to study the relationship between rainfall input distribution and flood propagation dynamics. Then a simplified hydrological model is used to investigate the role of spatial variability in precipitation patterns: systematic studies are carried to describe the accuracy of rainfall volumes at basin scale and the effect of spatial variability within the basin.
Often the studies about flash flood dynamics are slow down or stopped because no measured data are directly to hand, or, if so, because they are not considered sufficiently accurate. This work shows the possibility to combine together data with an assured degree of uncertainty, the only available or collectable existing data, and processed them with simple statistical and hydrological tools to obtain a more precise knowledge about past flash floods.
The remainder of this dissertation is organised as follows.

Chapter 1 “Introduction”. The work starts with the aim to define what a “flash flood” is, underlying the importance to characterize such event according spatial and temporal proprieties. From this definition it follows that a generic flood can be classified according its own spatial and temporal proprieties and located in a specific point of a segment delimitated by the two ideal cases of “flash flood” and “flood at large scale”.

Chapter 2 “Literature review”. Spatial and temporal characterization lead to describe typical features of flash flood in different climates. Meteorological conditions able to trigger this kind of events are described and analyzed, with particular care about convective cells system organized in mesoscale structures. Finally some literature examples are reported to show different possible approach and to underline usual uncertainty when dealing with flash flood.

Chapter 3 “Materials an methods”. This chapter summarizes and describes the tools used in this thesis to carry on flash flood analysis.
3.1 Weather radar data are used to describe rainfall spatial distribution and obtain quantitative estimations of rainfall patterns. Data acquiring and processing are described and most common errors are summarized along with most common procedures and algorithms to avoid and correct them. It is finally shown how merging radar and conventional raingauge network information can provide a more exhaustive description of rainfall fields, with quantitative estimation. This data processing is very useful for further characterization and analysis of past flash flood events.
3.2 Post event surveys are presented as an essential tool to collect the richest possible documentation. Measure campaigns are valorised to obtain qualitative and quantitative description of past floods. The goal is to complete the spatial and temporal precipitation knowledge and dynamic description, focusing on discharge estimation along hydrological network in term of peak values and timing.
3.3 Hydrological models can be routed for a better comprehension of flood dynamics at event scale. Two hydrological models, then used for flash flood analysis, are described in detail. The first one is applied at large event scale and starts from a distributed precipitation input. Hortonian runoff generation is applied punctually and superficial flood propagation is computed basing on fixed hillslope and channel velocity. The second model is built to be applied at very small catchment scale and simulate infiltration and transport processes for surface and subsurface flow through uniform hypothesis equations.

Chapter 4 “Analysis of past flash flood events”. Some specific post flood analysis are collected in three section.
4.1 Five flash flood events occurred in Romania are analysed with HYDRATE European project contribution. This study shows that even if the conventional hydrometeorological data are poor, weather radar information and hydrological modelling can help in understanding specific past flood dynamics.
4.2 HYDRATE project was also involved in the analysis of a flash flood occurred in Slovenia in September 2007, including radar processing and post event surveys. It is shown how this approach, characterize by time and cost significant efforts, is a precious tool to collect data and information for a detailed description that would be not possible through traditional hydrometeorological network.
4.3 A detailed model is used to describe surface and subsurface flow dynamics during the debris flow occurred in two small subcatchments in Fella river valley (North Est of Italy), hit by a flash flood on August 29, 2003. The study mainly consists on liquid and solid mass balance during the different phases of the event.

Chapter 5 “Spatial variability in flash flood events”. An analysis on rainfall spatial distribution is carried with the same tools on two different basin interested by flash flood event. The studies includes a fist detailed analysis on rainfall spatial variability within selected subcatchments at different scales: spatial variability is described through time distance calculated in base of hydrological network. Then a simplified hydrological model is used to investigate spatial aggregation effects on mean areal rainfall and peak discharge value at subcatchment scale.
5.3 For Fella river basin (in Friuli Venezia Giulia region), ten subcatchments from 10.5 and 623km² are choosen.
5.4 For Cervo River (Piomente region, North West Italy) the study is applied to three flood events characterized by different rainfall spatial variability, and focused on four subcatchments (from 75 to 983km²).

Chapter 6 “Conclusions”. Are here reported and summarized the main observations coming from the specific studies describe in the two previous chapters as long as recommendation for future research.

Abstract (italiano)

RIASSUNTO: “Analisi e modellazione di piene improvvise in zone montane”

Le piene improvvise sono fenomeni rari e localizzati, causati da eventi meteorologici caratterizzati da una spiccata variabilità spaziale, con gradienti di precipitazione che possono raggiungere, a scala di evento, i 20-50 mm/km. La conseguenza di ciò è che la comunità scientifica e gli enti operativi interessati nell’analisi dei fenomeni di piena si relazionano quotidianamente con una carenza di dati. Anche una fitta rete di pluviometri non è in grado di rappresentare la variabilità spaziale dei campi di precipitazione associati a fenomeni convettivi che innescano piene improvvise. Le stime di precipitazione ottenute attraverso il radar meteorologico, opportunatamente elaborate, sono in grado di rappresentare i pattern spaziali, ma i valori di volumi di pioggia necessitano di essere validati. Inoltre, per quanto riguarda i dati di portata, la maggior parte dei bacini colpiti da piene improvvise non sono strumentati e gli strumenti, dove presenti, risultano spesso danneggiati, cosicché la conoscenza della distribuzione delle portate al picco, lungo la rete idrologica principale e secondaria, è persino più approssimativa di quella della distribuzione spaziale della precipitazione.
Questo studio si prefigge di colmare la distanza tra i dati disponibili e quelli richiesti per un’analisi a scala di evento con riferimento a fenomeni di piena improvvisa. Un’approfondita campagna di rilievi post evento (in inglese Intense Post Event Campaign, IPEC) può risultare estremamente utile per raccogliere le stime di portate al picco e la sequenza cronologica dello svilupparsi della piena in sezioni non monitorate. Modelli idrologici semplificati, dotati di metodi elementari per la separazione dei deflussi e predeterminate velocità di propagazione, possono essere utilizzati per una validazione incrociata tra una descrizione quantitativa della distribuzione di precipitazione ottenuta attraverso il radar meteorologico e le stime di portate al picco raccolte durante un IPEC. Modelli più complessi e dettagliati possono migliorare il livello di conoscenza riguardo fenomeni associati alle piene improvvise, come le colate detritiche.
Un altro obiettivo di questa tesi è quello di investigare il ruolo della variabilità spaziale della precipitazione nei fenomeni di piena improvvisa. In primo luogo è necessario impostare una procedura che permetta di caratterizzare tale variabilità all’interno di un particolare bacino idrografico, mettendo in relazione la distribuzione degli apporti meteorici con le modalità di propagazione della piena. In secondo luogo si vuole indagare, attraverso l’applicazione di modelli idrologici semplificati, il ruolo della risoluzione spaziale della precipitazione. A questo fine è necessario separare due aspetti: l’accuratezza della stima dei volumi piovuti a scala di bacino e l’influenza della variabilità spaziale all’interno del bacino stesso.
Spesso gli studi che si concentrano sulle dinamiche delle piene improvvise sono rallentati o resi impossibili per il fatto che nessun dato misurato risulta utilizzabile così come disponibile, oppure perchè i dati di partenza non sono ritenuti sufficientemente accurati. Questo lavoro si prefigge di mostrare come sia possibile, partendo dai soli dati esistenti, disponibili o recuperabili, caratterizzati da un certo grado di incertezza, passare attraverso un’elaborazione tramite semplici strumenti statistici e idrologici al fine di ottenere una conoscenza più precisa riguardo passati eventi di piena improvvisa.

Si riporta una breve descrizione del contenuto dei capitoli della tesi, che sarà elaborata in lingua inglese.

Capitolo 1 “Introduction”. Introduzione alla tematica che comprende una definizione del termine “piena improvvisa”, convenendo sulla necessità di caratterizzare tali eventi in termini di proprietà spazio-temporali. Si nota che, a partire da questa definizione, è possibile classificare una generica piena in un punto di un segmento ai cui estremi ci sono i casi ideali di “piena improvvisa” e “piena a larga scala”.

Capitolo 2 “Literature review”. Partendo dalla caratterizzazione spazio temporale si descrivono le caratteristiche tipiche delle piene improvvise nei diversi tipi di clima, si individuano le condizioni meteorologiche in grado di innescare tali fenomeni, quali le celle convettive organizzate in strutture di mesoscala. Si riportano, infine, alcuni esempi di studi in letteratura che mostrano diverse tipologie di approcci e che sono indicativi dell’incertezza in cui si è soliti lavorare quando si approfondiscono questi temi.

Capitolo 3 “Materials an methods”. In questo capitolo vengono presentati i principali strumenti comuni a tutte le analisi di fenomeni di piena improvvisa presentati in questa tesi.
3.1 L’utilizzo del radar meteorologico per studiare, dal punto di vista quantitativo, la distribuzione spaziale della precipitazione. Vengono approfondite la modalità di acquisizione del dato, sottolineando le possibili fonti di errore ed i metodi più comuni per ovviare a questi inconvenienti. Viene anche mostrato come l’utilizzo combinato di radar e tradizionali pluviometri renda più completa la caratterizzazione della precipitazione ai fini di un analisi di una piena improvvisa.
3.2 Le indagini post evento, necessarie per raccogliere la maggior documentazione possibile, sono valorizzate al fine di una ricostruzione, anche qualitativa, delle dinamiche caratteristiche di una specifica piena. Queste, attraverso diverse metodologie, devono aiutare a descrivere la struttura spazio temporale della precipitazione e la stima di portata, distribuita lungo la rete idrica, in termini di valore al picco e di tempistica
3.3 L’uso della modellistica idrologica applicata ad una miglior comprensione delle dinamiche a scala di evento. In particolare vengono descritti i due modelli idrologici utilizzati. Il primo, da applicare a larga scala, parte da un input di precipitazione spazialmente distribuito e, attraverso un meccanismo hortoniano di separazione dei deflussi applicato puntualmente, propaga la piena in base a fissate velocità di versante e di canale. Il secondo, da applicare a bacini di piccolissima dimensione, simula i processi di trasporto superficiale e sottosuperficiale integrando le note equazioni di moto uniforme.

Capitolo 4 “Analysis of past flash flood events”. Vengono qui presentate alcune analisi di eventi, distinte in tre sezioni.
4.1 Analisi di cinque eventi di piena improvvisa avvenuti in Romania nell’ambito del progetto europeo HYDRATE. Da questo studio risulta che, pur in presenza di scarsi dati provenienti dalle tradizionali fonti di monitoraggio idro-meteorologico, l’informazione proveniente da radar meteorologico e la modellistica idrologica possono aiutare nella ricostruzione delle dinamiche dell’evento preso in considerazione.
4.2 Analisi di una piena improvvisa avvenuta in Slovenia nel settembre 2007 per la quale, attraverso il progetto HYDRATE si è condotta un indagine post evento. La ricchezza di questo approccio, pur dispendioso in termini di tempo, mostra un possibile percorso per recuperare le maggior informazioni possibili per eventi di piena che non sono ricostruibili solo attraverso le normali reti di monitoraggio idrometeorologico.
4.3 Analisi attraverso un modello dettagliato di deflusso superficiale e sottosuperficiale della colata detritica avvenuta in due piccoli sottobacini nella valle del fiume Fella, colpita da una piena improvvisa il 29 agosto 2003. Lo studio consiste essenzialmente nel bilancio di massa liquido e solido durante le diverse fasi dell’evento.

Capitolo 5 “Spatial variability in flash flood events”. Questa analisi sulla distribuzione spaziale della precipitazione è stata condotta con le medesime metodologie in due diversi bacini. Gli studi comprendono un primo approfondimento della variabilità spaziale della precipitazione all’interno di sottobacini di diversa estensione: la variabilità è descritta in funzione del reticolo idrografico del bacino preso in considerazione. Successivamente, attraverso un modello idrologico semplificato, si è valutata l’influenza della variabilità spaziale della precipitazione analizzando gli effetti dell’aggregazione spaziale in termini di precipitazione media su bacino e di portata al picco simulata.
5.3 Per l’analisi nel bacino del fiume Fella (FVG), colpito da una piena improvvisa il 29 agosto 2003, si sono scelti dieci sottobacini di dimensione variabile tra i 10.5 e i 623km².
5.4 Nel caso del fiume Cervo (Piemonte) lo studio ha riguardato tre eventi di piena con diversa variabilità spaziale della precipitazione e si è concentrato su quattro sottobacini (tra i 75 e i 983km²).

Capitolo 6 “Conclusions”. Vengono riassunte le principali osservazioni ricavate dalle analisi descritte nei due capitoli precedenti e indicazioni per possibili future linee di ricerca.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Borga, Marco
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > TERRITORIO, AMBIENTE, RISORSE E SALUTE > IDRONOMIA AMBIENTALE
Data di deposito della tesi:29 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):piena improvvisa, modellistica idrologica, variabilità spaziale della precipitazione, flash flood, hydrological modelling, precipitation spatial variability
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:1686
Depositato il:29 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

ACTIF (2004): Some research needs for river flood forecasting in FP6, EVK1-CT-2002-80014, www.actif-ec.net. Vai! Cerca con Google

Agnese C., Baiamonte G. and Corraro C. (2001): A simple model of hillslope response for overland flow generation, Hydrological processes, 15, 3225-3238. Cerca con Google

AMS: American Meteorological Society (2000): Glossary of Meteorology, T. S. Glickman Ed., 2nd Edition, Boston MA-USA. Cerca con Google

Anagnostou M.N., Kalogeros J., Tarolli M., Anagnostou E.N., Borga M., and Papadopoulos A. (2008): Rainfall Measurements of X-band Polarimetric Weather Radar in Complex Terrain, proceeding for ERAD - the 5th European conference on radar in meteorology and hydrology. Cerca con Google

Andréassian V., Perrin C., Michel C., Usart-Sanchez I. and Lavabre J. (2001): Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models, Journal of Hydrology, 250, 206-223. Cerca con Google

Andrieu H. and Creutin J.D. (1995): Identification of Vertical Profiles of Radar Reflectivity for Hydrological Applications Using an Inverse Method. Part II: Formulation, Journal of Applied Meteorology, 240-259. Cerca con Google

ARSO (2007): Poro?ilo o vremenski in hidrološki situaciji18, www.arso.gov.si (in Slovenian). Vai! Cerca con Google

Bain V., Gaume E. , Marchi L., Sangati M. and Borga M. (2009): Post event analysis of a flash flood on the Selscica Sora River in Slovenia, HYDRATE document. Cerca con Google

Barancourt C., Creutin J. D., and Rivoirard J. (1992): A Method for Delineating and Estimating Rainfall Fields, Water Resources Research, 28(4), 1133-1144. Cerca con Google

Battan L.J. (1973): Radar observation of the atmosphere, University of Chicago Press, 324 pages. Cerca con Google

Bell V.A. and Moore R.J. (2000): The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrology and Earth System Sciences, 4(4), 653-667. Cerca con Google

Benson M.A. and Dalrymple T. (1967): General field and office procedures for indirect discharge measurements, U.S. Geological Survey Tech. Water Resour. Invest., Book 3, Chapter A. Cerca con Google

Berenguer M., Lee G. W., Sempere-Torres D., and Zawadzki I. (2002): A variational method for attenuation correction of radar signal, Proceedings for ERAD, 11-16. Cerca con Google

Berne A., Delrieu G., Creutin J.D. and Obled C. (2004): Temporal and spatial resolution of rainfall measurements required for urban hydrology, Journal of Hydrology, 299(3-4), 166-179. Cerca con Google

Beven K.J. (1982): kinematic subsurface stormflow, Water Resources Research, 17(5), 1419-1424. Cerca con Google

Beven K.J. and Hornberger G.M. (1982): Assessing the effect of spatial pattern of precipitation in modelling stream flow hydrographs, Water Resources Bulletin, 18, 823-829. Cerca con Google

Blöschl G. and Sivapalan M. (1995): Scale issues in hydrological modelling: a review, Hydrological Processes 9: 251-290. Cerca con Google

Bonacci O. (2004): Hazards caused by natural and anthropogenic changes of catchment area in karst, Hydrogeol. J., 4, 655-661. Cerca con Google

Borga M., Boscolo P., Zanon F., Sangati M. (2007): Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps, J. Hydrometeorology, 8(5), 1049-1067. Cerca con Google

Borga M., Gaume E., Creutin J.D., Marchi L. (2008): Surveying flash floods: gauging the ungauged extremes, Hydrological Processes, 22(18), 3883-3885. Cerca con Google

Borga, M., Anagnostou E.N. and Frank E. (2000): On the use of real-time radar rainfall estimates for flood prediction in mountainous basins, Journal of Geophysical Research, 105, D2, 2269-2280. Cerca con Google

Borga M., Tonelli F., Moore R.J. and Andrieu H. (2002): Long-term assessment of bias adjustment in radar rainfall estimation, Water Resources Research, 38(11), 1226. Cerca con Google

Borga M., Degli Esposti S. and Norbiato D. (2006): Influence of errors in radar rainfall estimates on hydrological modelling prediction uncertainty, Water Resources Research, 42, W08409. Cerca con Google

Bouilloud L., Delrieu G. , Boudevillain B., Zanon F. and Borga M. (2009): Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: application of the mountain reference technique at C-band frequency, HYDRATE document. Cerca con Google

Bras R.L. (1990): Hydrology an introduction to hydrologic science, Addison-Wesley, Reading, MA-USA. Cerca con Google

Brilly M., Rakovec J. (1996): Use of radar for flood forecasting, Acta Hydrotehnica, University of Ljubljana, Faculty of Civil Engineering and Geodesy, 14/12, Ljubljana. Cerca con Google

Bringi V.N., Ran J. and Chandrasekar V. (1998): Polarimetric radar and surface observation of a flash flood, Geoscience and Remote Sensing Symposium Proceedings, IGARSS’98, IEEE International, 1:144-146. Cerca con Google

Burrell E.M. and Gruntfest E. (2002): Flash flood mitigation: recommendations for research and applications, Global Environmental Change Part B, Environmental Hazard, 4(1), 15-22. Cerca con Google

Campos E. and Zawadzki I. (2000): Instrumental uncertainties in Z-R relations, J. Appl. Meteor., 39, 1088-1102. Cerca con Google

Caroni E., Rosso R. and Siccardi F. (1986): Nonlinearity and time-variance of the hydrologic response of a small mountain creek; in: Gupta V.K. et al. (Eds.), ”Scale Problems in Hydrology”, D. Reidel Publishing Company, 19-37. Cerca con Google

Carraro F., Dal Piaz G.V., Govi M. and Sacchi R. (1969): Il dissesto idrogeologico del 2 novembre 1968 nel bacino della Strona a monte di Cossato, in Studi Geologici nel Vercellese e nella Valle Strona, CNR Torino (in Italian). Cerca con Google

Cazorzi F. and Dalla Fontana G. (1992): L’utilizzo dei sistemi informativi geografici nello studio idrologico di bacino, Quaderni di Idronomia Montana, 12 (in Italian). Cerca con Google

Cazorzi F. and Bincoletto L. (2005): Modellazione dei processi idrologici, in: “La prevenzione del rischio idrogeologico nei piccoli bacini montani della regione: Esperienze e conoscenze acquisite con il progetto CATCHRISK”, Convegno finale del Progetto CATCHRISK, Udine, 28-29 Giugno 2005, 45-74 (in Italian). Cerca con Google

Chow V.T. (1959): Open-chanel hydraulics, McGraw-Hill Book Company. Cerca con Google

Costa J.E. (1988): Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows, in Flood Geomorphology, Baker V.R., Kochel R.C., Patton P.C., Eds. J. Wiley & Sons: New York; 113-122. Cerca con Google

Costa J.E. (1987): Comparison of the largest rainfall-runoff floods in the United States with those of the People 's Republic of China and the world, Journal of Hydrology, 96(1-4), 101-115. Cerca con Google

Coussot P., Meunier M. (1996): Recognition, classification and mechanical description of debris flows, Earth-Science Reviews, 40, 209-227. Cerca con Google

Creutin J.D., Borga M. (2003): Radar hydrology modifies the monitoring of flash flood, Hydrological Processes, 17, 1453-1456. Cerca con Google

Da Ros D. and M. Borga, 1997: Use of digital elevation model data for the derivation of the geomorphologic instantaneous unit hydrograph, Hydrological Processes, 11, 13-33. Cerca con Google

David-Novak H., Morin E., Enzel Y. (2004): Modern extreme storms and the rainfall thresholds for initiating debris flows on the hyperarid western escarpment of the Dead Sea, Israel, GSA Bulletin, 116, 718-728. Cerca con Google

Delrieu G., Caoudal S. and Creutin J. D. (1997): Feasibility of using mountain return for the correction of ground based X-band weather radar data, Journal of Atmospheric and Oceanic Technology, 14, 368-385. Cerca con Google

Delrieu G., Ducrocq V., Gaume E., Nicol J., Payrastre O., Yates E., Kirstetter P.E., Andrieu H., Ayral P.A., Bouvier C., Creutin J.D., Livet M., Anquetin S., Lang M., Neppel L., Obled C., du-Châtelet J.P., Saulnier G.M., Walpersdorf A. and Wobrock W. (2005): The catastrophic flash-flood event of 8-9 September 2002 in the Gard Region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeor., 6, 34-52. Cerca con Google

Dolinar M. (2000): Abundant precipitation during the 1998 Autumn Floods, Ujma 13, 151-159. Cerca con Google

Doswell C.A., Brooks H.E. and Maddox R.A. (1996): Flash flood forecasting: an ingredients-based methodology, Wea. Forecasting, 11, 560-581. Cerca con Google

Eisbacher G.H., Clague J.J. (1984): Destructive mass movements in high mountains: hazard and management, Geol. Survey of Canada, Paper 84-16; 230. Cerca con Google

Fabry F. (1995): Vertical profiles of reflectivity and precipitation intensity, Proceedings of the III International Symposium on Weather Radars, San Paulo, Brazil. Cerca con Google

Fabry F., and Zawadzki I. (1995): Long-term radar observations of the melting layer of precipitation and their interpretation, J. Atmos. Sci., 52, 838-851. Cerca con Google

Fiedler F.R. (2004): CE504 Computational Hydrology - Infiltration Equations, www.webs1. uidaho.edu. Vai! Cerca con Google

Foody G.M., Ghoneim E.M. and Arnell N.W. (2004): Predicting locations sensitive to flash flooding in an arid environment, Journal of Hydrology, 292(1-4), 48-58. Cerca con Google

Frei C. and Schär C. (1998): A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol., 18. Cerca con Google

Gabet E.J., Bookter A. (2008): A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA, Geomorphology 96, 298-309. Cerca con Google

Gaume E., Livet M. and Desbordes M. (2003): Study of the hydrological processes during the Avene river extraordinary flood (south of France): 6-7 October 1997, Physics and Chemistry of the Earth, 28, 263-267. Cerca con Google

Gaume E. (2006): Post flash flood investigation - Methodological note, www.floddsite.net. Vai! Cerca con Google

Gaume E., Bain V., Bernardara P. and Borga M.: First Year HYDRATE Report Project, WorkPackage 1 on Flash Flood Primary data analysis, HYDRATE document. Cerca con Google

Georgakakos, K.P. (1986): On the design of national real-time warning systems with capability for site-specific flash flood forecasts, Bull. Am. Meteorol. Soc., 67, 1233-1239. Cerca con Google

Ghioca M. (2006): Spatial and temporal variability of Romanian precipitation and river Flows on winter period in connection with the North Atlantic oscillation, National Institute of Hydrology and Water Management, Bucharest, Romania. Cerca con Google

Giannoni F., Smith J. A. , Zhang Y. and Roth G. (2003): Hydrologic modelling of extreme floods using radar rainfall estimates, Adv. Water Resour., 26, 195- 200. Cerca con Google

Gouldby B., Samuels P., Klijn F., Messner F., van Os A., Sayers P. and Schanze J. (2007): Language of Risk - Project definitions, FLOODsite document, T32-04-01, www. floodsite.com. Cerca con Google

Green W.H. and Ampt G.A. (1911): Studies on soil physics, part 1, The flow of air and water through soils, J. Agric. Sci., 4, 1-24. Cerca con Google

Gruntfest E., and Huber C.J. (1991): Toward a comprehensive national assessment of flash flooding in the United States, Episodes, 14, 26-35. Cerca con Google

Gupta V. K., Castro S. and Over T. M. (1996): On scaling exponents of spatial peak flows from rainfall and river network geometry, Journal of Hydrology, 187(1-2), 81-104. Cerca con Google

Hicks N.S., Smith J.A., Nelson P.A. (2005): Catastrophic flooding from an orographic thunderstorm in the central Appalachians, Water Resources Research, 41, W12428. Cerca con Google

Hildebrand P.H. (1978): Iterative correction for attenuation of 5 cm radar in rain, J. Appl. Meteor., 17, 508-514. Cerca con Google

Hirschboeck K.K. (1987): Catastrophic flooding and atmospheric circulation anomalies, Pp. 23-56 in Catastrophic Flooding, L. Mayer and D. Nash, Eds. Boston: Allen and Unwin. Cerca con Google

Hitschfeld W. and Bordan J., (1954): Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Atmos. Sci., 11(1), 58-67. Cerca con Google

House P.K., and Pearthree P.A. (1995): A geomorphic and hydrologic evaluation of an extraordinary flood discharge estimate: Bronco Creek, Arizona, Water Resources Research, 31(12), 3059-3073. Cerca con Google

Houze R.A., James C.N. and Medina S., (2001): Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999, Quart. J. Roy. Meteor. Soc., 127, 2537-2558. Cerca con Google

Hubbert J. and Bringi V.N. (1995): An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements, J. Atmos. Ocean. Technol.,12,643-648. Cerca con Google

Jakob M., Anderson D., Fuller T., Hungr O., Ayotte D. (2000): An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia, Canadian Geotechnical Journal 37, 1109-1125. Cerca con Google

Jarrett R.D. (1987): Errors in slope-area computations of peak discharges in mountain streams, Journal of Hydrology, 96, 53-67. Cerca con Google

Jarrett R.D. (1990): Hydrologic and Hydraulic Research in Mountain Rivers, Water Resources Bulletin, 26(3), 419-429. Cerca con Google

Joss J. and Gori E.G.(1978): Shapes of raindrop size distributions, J. Appl. Meteor., 17,1054-1061. Cerca con Google

Joss J. and Waldvogel A. (1968): Raindrop size distribution and sampling size errors, J. Atmos. Sci., 26, 566-569. Cerca con Google

Journel A.G. (1983): Non parametric estimation of spatial distributions, Math. Geol., 15(3), 445-467. Cerca con Google

Journel A.G. and Huijbregts C.J. (1978): Mining geostatistics, Academic Press, London - UK, 600 pp. Cerca con Google

Kavvas M.L., Yoon J.Y., Chen Z.Q., Liang L., Dogrul E.C., Ohara N., Aksoy H., Anderson M.L., Reuters J. and Hackley S. (2006): Watershed environmental hydrology model: environmental module and its application to a California watershed, ASCE Journal of Hydrologic Engineering, 11(3), 261-272. Cerca con Google

Kelsch M., Lanza L., and Caporali E. (2000): Hydrometeorology of flash floods, NATO Advanced Study Institute: Coping With Flash Floods, E. Grunfest and J Handmer ed., Kluuwer Press, The Netherlands, 19-35. Cerca con Google

Kolbezen M. (1991): Flooding in Slovenia on November 1, 1990, Ujma No. 5, Ljubljana, 16-18. Cerca con Google

Komac B., Natek K. and Zorn M. (2008): Influence of spreading urbanization in flood areas on flood damage, XXIVth Conference of the Danubian Countries on the hydrological forecasting and hydrological bases of water management. Cerca con Google

Krajewski W.F. (1995): Rainfall estimation using weather radar and ground stations, Proceedings of the III International Symposium on Weather Radars, San Paulo, Brazil. Cerca con Google

Le Lay M. and Saulnier G.M. (2007): Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event, Geophys. Res. Lett., 34, L13401. Cerca con Google

Lewis H.W., Harrison D.L. and Kitchen M. (2007): Local vertical profile corrections using data from multiple scan elevations, Met. Office, United Kingdom, Proceedings for 33rd Conference on Radar Meteorology. Cerca con Google

Liljequist G.H. and Cehak K. (1984): Allgemeine Meteorologie, Vieweg Verlag, Braunschweig, Germany (in German). Cerca con Google

Lin X. (1999): Flash floods in arid and semi-arid zones, IHP-V Technical Documents in Hydrology, no. 23 (International Hydrological Programme, UNESCO). Cerca con Google

Marchi L. and Bain V. (2008): IPEC Report - Intensive Post-Event Campaign in the Selscica Sora river basin, Slovenia, after the flash flood of september 18, 2007, HYDRATE document. Cerca con Google

Marchi L. and D’Agostino V. (2004): Estimation of debris-flow magnitude in the Eastern Italian Alps, Earth Surface Processes and Landforms, 29(2), 207-220. Cerca con Google

Marchi L., Pasuto A. (1999): A debris flow in the Dolomites, Northeastern Italy, Landslide News, 12, 9-12. Cerca con Google

Marchi L., Borga M., Sangati M. and Cavalli M. (2009): Hydrological controls and erosive response of a major alpine debris flow, Hydrological Processes, under review. Cerca con Google

Marshall J.S. and Palmer W.K. (1948): The distribution of raindrop size to intensity. J. Meteor., 5(165-166). Cerca con Google

Marwitz J.D. (1972): The structure and motion of severe hailstorms; part I: supercell storms; part II: multi-cell storms, Part III: severely sheared storms, J. Appl. Meteor., 11, 166-201. Cerca con Google

Merz B. and Bardossy A. (1998): Effects of spatial variability on the rainfall runoff process in a small loess catchment, Journal of Hydrology, 212-213, 304-317. Cerca con Google

Merz, B. and E.J. Plate (1997): An analysis of the effects of spatial variability of soil and soil moisture on runoff, Water Resour. Res., 33(12), 2909-2922. Cerca con Google

Michaud J.D., Hirschboeck K.K.and Winchel M. (2001): Regional variations in small-basin floods in the United States, Water Resources Research, 37, 1405- 1416. Cerca con Google

Milly P. and Eagleson, P. (1988): Effects of storm scale on surface runoff volume, Water Resources Research, 24, 620-624. Cerca con Google

Montandon F. (1933): Chronologie des Grands Eboulements Alpins du début de l’ère chrétienne à nos jours, Société de Géographie Genève, Matériaux pour l’étude des calamités, 32, Genève, 271-340 (in French). Cerca con Google

Moody J.A. and Kinner D.A. (2005): Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire, Earth Surface Processes and Landforms, www.interscience.wiley.com. Vai! Cerca con Google

Moody J.A. and Martin D.A. (2001): Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA, Hydrological Processes, 15(15) 2981-2993. Cerca con Google

Moore I.D. (1985): Kinematic overland flow: generalization of Rose’s approximation solution, Journal of Hydrology, 82, 233-245. Cerca con Google

Mortara G., Dutto F., Godone F. (1995): Effetti degli eventi alluvionali nell’ambiente proglaciale: la sovraincisione della morena del ghiacciaio del Mulinet (Stura di Valgrande, Alpi Graie), Geografia Fisica e Dinamica Quaternaria, 18(2), 295-304 (in Italian). Cerca con Google

Moulin L., Gaume E. and Obled C. (2008): Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations, Hydrology and Earth System Science Discussion, 5, 2067-2110. Cerca con Google

Naden P.S. (1992): Spatial variability in flood estimation for large catchments: the exploitation of channel network structure, Hydrol. Sci. J., 37, 53-71. Cerca con Google

Nicotina L., Alessi Celegon E., Rinaldo A. and Marani M. (2008): On the impact of rainfall patterns on the hydrologic response, Water Resources Research, 44, W12401. Cerca con Google

Norbiato D., Borga M., Sangati M., Zanon F. (2007): Regional Frequency Analysis of Extreme Precipitation in the eastern Italian Alps and the August 29, 2003 Flash Flood, Journal of Hydrology, 345(3-4), 149-166. Cerca con Google

Norbiato D., Borga M., Degli Esposti S., Gaume E. and Anquetin S. (2008): Flash flood warning based on rainfall depth-duration thresholds and soil moisture conditions: an assessment for gauged and ungauged basins, Journal of Hydrology, 362(3-4). Cerca con Google

O’Connor J. E. and Costa J.E. (2004): Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km² in the United States and Puerto Rico, Water Resources Research, 40, W01107. Cerca con Google

Obled C., Wendling J. and Beven K. (1994): The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data, Journal of Hydrology, 159(1-4), 305-333. Cerca con Google

Ogden F.L. and Julien P.Y. (1994): Runoff model sensitivity to radar rainfall resolution, Journal of Hydrology, 158, 1-18. Cerca con Google

Orlanski I. (1975): A rational subdivision of scales for atmospheric processes, Bull. Am. Meteorol. Soc., 56(5), 527-530. Cerca con Google

Payrastre O., Gaume E. and Andrieu H. (2005): Use of historical data to assess the occurrence of floods in small watersheds in the French Mediterranean area, Advances in Geosciences, 2, 313-320. Cerca con Google

Pellarin T., Delrieu G., Creutin J. D. and Andrieu H. (2000): Hydrologic visibility of weather radars operating in high-mountainous regions: A case study for the Toce catchment (Italy) during the Mesoscale Alpine Programme, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 953-957. Cerca con Google

Pessoa M.L., Bras R.L. and Williams E.R. (1993): Use of Weather Radar for Flood Forecasting in the Sieve River Basin: A Sensitivity Analysis, Journal of Applied Meteorology, 32, 462-475. Cerca con Google

Ponce V.M. and Hawkins R.H. (1996): Runoff curve number: has it reached maturity?, J. Hydrologic Eng., 1(1), 11-19. Cerca con Google

Rajar R., Zakrajšek M. (1993): Modelling of flood wave, caused by overtopping of landslide created dam, Ujma No 7, Ljubljana, 77-80. Cerca con Google

Reid I. and Frostick L.E. (2006): Flow dynamics and suspended sediment properties in arid zone flash floods, Hydrological Processes, 1(3), 239-253. Cerca con Google

Reya O., (1946): Carte de precipitation's de la Slovenie, Publ. by ZMG, Univ. of Ljubljana (in French). Cerca con Google

Rickenmann D., Zimmermann M. (1993): The 1987 debris flows in Switzerland: documentation and analysis, Geomorphology, 8, 175-189. Cerca con Google

Rinaldo A., Vogel G.K., Rigon R. and Rodriguez-Iturbe I. (1995): Can one gauge the shape of a Basin?, Water Resources Research, 31(4), 1119-1127. Cerca con Google

Rose C.V., Parlange J.Y., Sander G.C., Campbell S.Y. and Barry D.A. (1983): Kinematic flow approximation to runoff on a plane: an approximate analytical solution, Journal of Hydrology, 62, 363-369. Cerca con Google

Rosenthal E.M. (1993): The Johnstown Flood, The Journal of American history. Cerca con Google

Rosso R. and Serva L. (1998): 9 giugno 1996 - Alluvione in Versilia e Garfagnana, ARTPAT (Agenzia regionale per la protezione ambientale della Toscana) and ANPA (Agenzia nazionale per la protezione dell'ambiente). Cerca con Google

Saghafian B. and Julien P.Y. (1995): Time to equilibrium for spatially variable watersheds, Journal of Hydrology, 172, 231-245. Cerca con Google

Sangati M. and Borga M., 2009: Influence of rainfall spatial resolution on flash flood modelling, Natural Hazards and Earth System Sciences, under review. Cerca con Google

Sangati M., Borga M., Rabuffetti D. and Bechini R. (2009): Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: an evaluation based on the Sesia river basin, North Western Italy, Adv. Water Resour., doi:10.1016/j.advwatres.2008.12.007. Cerca con Google

Segond M.L., Wheater H.S. and Onof C. (2007): The significance of spatial rainfall representation for flood runoff estimation: a numerical evaluation based on the Lee catchment, UK, Journal of Hydrology, 347, 116-131. Cerca con Google

Sekhon R.S. and Srivastava R.C. (1970): Doppler radar observations of rain drop distributions in a thunderstorm, J. Atmos. Sci., 28:983-994. Cerca con Google

Serrar S., Delrieu G., Creutin J. D., and Uijlenhoet R. (2000): Mountain reference technique - The use of mountain returns to calibrate weather radars operating at attenuating wavelengths, Journal of Geophysical Research, 105, 2281-2290. Cerca con Google

Shah S.M.S., O’Connell P.E. and Hosking J.R.M. (1996): Modelling the effects of spatial variability in rainfall on catchment response - 2. Experiments with distributed and lumped models, Journal of Hydrology, 175, 89-111. Cerca con Google

Šipec S. (2001): Natural and Other Disasters and Incidences in Slovenia in 1999, UJMA, 14-15, 26-28. Cerca con Google

Sivapalan M. (2006): Pattern, Process and Function: Elements of a Unified Theory of Hydrology at the Catchment Scale, Encyclopedia of Hydrological Sciences- Part 1. Theory, Organization and Scale. Cerca con Google

Skøien, J.O. and Blöschl G. (2006): Scale Effects in Estimating the Variogram and Implications for Soil Hydrology, Vadose Zone Journal, 5, 153-167. Cerca con Google

Smith J. A., Baeck M.L., Meierdiercks K.L., Nelson P.A., Miller A.J., and Holland E.J. (2005): Field studies of the storm event hydrologic response in an urbanizing watershed, Water Resources Research, 41, W10413. Cerca con Google

Smith M.B. , Seo D.J., Koren V.I., Reed S.M., Zhang Z., Duan Q., Moreda F. and Cong S., 2004: The distributed model intercomparison project (DMIP): motivation and experiment design, Journal of Hydrology, 298, 4-26. Cerca con Google

Stancalie G., Oprea C., Irimescu A., Antonescu B., Burcea S., Catana S., Cheval S., Dumitrescu A. and Breza T. (2008): Severe flash flood in Romania - Case studies, EMS8/ECAC7 Abstracts, Vol. 5, EMS2008-A-00253. Cerca con Google

Steiner M., Houze R.A., Yuter S.E. (1995): Climatological characterisation of three-dimensional storm structure from operational radar and rain gauge data, J. Appl. Meteorol., 34, 1978-2007. Cerca con Google

Stiny J., (1910): Debris flows - An attempted monograph with particular reference to the conditions in the Tyrolean Alps. (Or. title: Die Muren - Bersuch einer Monographie mit besonderer Berückstichtigung der Berhältnisse in den Tiroler Alpen. Verlag der Wagnerischen Universitäts - Buchandlung, Innsbruck.) Translated from the German by M. Jakob and N. Skermer, EBA Engineering Consultants Ltd., Vancouver, Canada, 1997, 105 pp. Cerca con Google

Tarboton D.G. (2003): Rainfall-Runoff Processes, http://www.webs1.uidaho.edu/ch/notes/ intro.pdf. Vai! Cerca con Google

Thouret J.C., Vivian H., Fabre D. (1995): Instabilité morphodynamique d'un bassin-versant alpin et simulation d'une crise érosive (L'Eglise-Arc 1800, Tarentaise), Bulletin de la Societé Géologique de France, 166(5), 587-600 (in French). Cerca con Google

Tropeano D., Turconi L., Sanna S. (2004): Debris flows triggered by the 29 August 2003 cloudburst in Val Canale, Eastern Italian Alps, International Congress Interpraevent 2004, 1(1), 121-132. Cerca con Google

Ulbrich C.W. (1983): Natural variations in the analytical form of the raindrop size distribution, J. Clim. Appl. Meteor., 22, 1764-1775. Cerca con Google

U.S. SCS (1986): Urban hydrology for small watersheds, U.S. Department of Agriculture Tech. Release, 55, 164 pp. Cerca con Google

Vivekanandan J., Yates D.N. and Brandes E.A. (1999): The influence of terrain on rainfall estimates from radar reflectivity and specific propagation phase observations, J. Atmos. Oceanic Technol., 16, 837-845. Cerca con Google

Vrhovec T., Cegnar T., Costantini D., Castracane D., Siani A.M. and Palmieri P. (1998): Modelling urban heat island: the case of a Mediterranean town and a continental one, Proceeding for European Conference on Applied Climatology. Cerca con Google

Waldvogel A. (1974): The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 1067-1078. Cerca con Google

Winchell M., Gupta H., and Sorooshian S. (1998): On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: effects of algorithm uncertainty and pixel aggregation, Water Resources Research, 34(10), 2655-2670. Cerca con Google

Wingmosta M.S. and Lettenmaier D.P. (1999): A comparison of simplified methods for routing topographically diven subsurface flow, Water Resourches Research, 35(1), 255-264. Cerca con Google

Woods R.A. and M. Sivapalan, (1999): A synthesis of space-time variability in storm response: rainfall, runoff generation and routing, Water Resources Research, 35(8), 2469-2485. Cerca con Google

Woolhiser, D.A., Smith R.E., and Giraldez J.V. (1996): Effects of Spatial Variability of Saturated Hydraulic Conductivity on Hortonian Overland Flow, Water Resources Research, 32(3), 671-678. Cerca con Google

Yatheendradas S., Wagener T., Gupta H., Unkrich C., Goodrich D., Schaffner M. and Stewart A. (2008): Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resources Research, 44, W05S19. Cerca con Google

Zhang Y., Smith J.A., and Baeck M.L. (2001): The hydrology and hydrometeorology of extreme floods in the Great Plains of eastern Nebraska, Adv. Water Resour., 24, 1037-1050. Cerca con Google

www.mcwar.org/articles/types/tstorm_types.html Vai! Cerca con Google

www.meteogiornale.it/reportages/read.php?id=397 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record