ABSTRACT: “Flash flood analysis and modelling in mountain regions” Flash flood are rare and localized phenomena, triggered by meteorological event with a pronounced spatial variability, with a precipitation gradient, at event scale, up to 20-50 mm/km. The consequences of these features is that the scientific and operational communities working on flash flood analysis have to deal with an impressive lack of data. Even a dense raingauge network may not be able to represent spatial variability of rainfall patterns associated with convective storms that trigger flash floods. Radar rainfall estimations, when correctly elaborated, are able to represent spatial patterns, but quantitative precipitation volume estimations need to be validated. In addition, concerning discharge data, the majority of the upstream and larger catchments affected by flash floods are not gauged and stream gauges, where present, are often damaged, so that peak discharge distribution along main and secondary river network is even less known than precipitation fields. This study aims at covering the gap between needed and available data for flash flood event analysis, combining different methodologies. An Intense Post Event Campaign (IPEC) may be very useful to collect peak discharge estimations and time sequence of the flood in ungauged sections. Simplified hydrological model, based on rough runoff excess computation and set velocity propagation, can be used to cross validate quantitative distributed precipitation data from weather radar and peak discharge estimations collected during an IPEC. More complex and detailed model may help to improve the knowledge about flash flood associated phenomena, like debris flow. Another objective of this thesis is to investigate the role of rainfall spatial variability in flash flood triggering. First a standard procedure to describe the variability catchment scale is needed. It will be so possible to study the relationship between rainfall input distribution and flood propagation dynamics. Then a simplified hydrological model is used to investigate the role of spatial variability in precipitation patterns: systematic studies are carried to describe the accuracy of rainfall volumes at basin scale and the effect of spatial variability within the basin. Often the studies about flash flood dynamics are slow down or stopped because no measured data are directly to hand, or, if so, because they are not considered sufficiently accurate. This work shows the possibility to combine together data with an assured degree of uncertainty, the only available or collectable existing data, and processed them with simple statistical and hydrological tools to obtain a more precise knowledge about past flash floods. The remainder of this dissertation is organised as follows. Chapter 1 “Introduction”. The work starts with the aim to define what a “flash flood” is, underlying the importance to characterize such event according spatial and temporal proprieties. From this definition it follows that a generic flood can be classified according its own spatial and temporal proprieties and located in a specific point of a segment delimitated by the two ideal cases of “flash flood” and “flood at large scale”. Chapter 2 “Literature review”. Spatial and temporal characterization lead to describe typical features of flash flood in different climates. Meteorological conditions able to trigger this kind of events are described and analyzed, with particular care about convective cells system organized in mesoscale structures. Finally some literature examples are reported to show different possible approach and to underline usual uncertainty when dealing with flash flood. Chapter 3 “Materials an methods”. This chapter summarizes and describes the tools used in this thesis to carry on flash flood analysis. 3.1 Weather radar data are used to describe rainfall spatial distribution and obtain quantitative estimations of rainfall patterns. Data acquiring and processing are described and most common errors are summarized along with most common procedures and algorithms to avoid and correct them. It is finally shown how merging radar and conventional raingauge network information can provide a more exhaustive description of rainfall fields, with quantitative estimation. This data processing is very useful for further characterization and analysis of past flash flood events. 3.2 Post event surveys are presented as an essential tool to collect the richest possible documentation. Measure campaigns are valorised to obtain qualitative and quantitative description of past floods. The goal is to complete the spatial and temporal precipitation knowledge and dynamic description, focusing on discharge estimation along hydrological network in term of peak values and timing. 3.3 Hydrological models can be routed for a better comprehension of flood dynamics at event scale. Two hydrological models, then used for flash flood analysis, are described in detail. The first one is applied at large event scale and starts from a distributed precipitation input. Hortonian runoff generation is applied punctually and superficial flood propagation is computed basing on fixed hillslope and channel velocity. The second model is built to be applied at very small catchment scale and simulate infiltration and transport processes for surface and subsurface flow through uniform hypothesis equations. Chapter 4 “Analysis of past flash flood events”. Some specific post flood analysis are collected in three section. 4.1 Five flash flood events occurred in Romania are analysed with HYDRATE European project contribution. This study shows that even if the conventional hydrometeorological data are poor, weather radar information and hydrological modelling can help in understanding specific past flood dynamics. 4.2 HYDRATE project was also involved in the analysis of a flash flood occurred in Slovenia in September 2007, including radar processing and post event surveys. It is shown how this approach, characterize by time and cost significant efforts, is a precious tool to collect data and information for a detailed description that would be not possible through traditional hydrometeorological network. 4.3 A detailed model is used to describe surface and subsurface flow dynamics during the debris flow occurred in two small subcatchments in Fella river valley (North Est of Italy), hit by a flash flood on August 29, 2003. The study mainly consists on liquid and solid mass balance during the different phases of the event. Chapter 5 “Spatial variability in flash flood events”. An analysis on rainfall spatial distribution is carried with the same tools on two different basin interested by flash flood event. The studies includes a fist detailed analysis on rainfall spatial variability within selected subcatchments at different scales: spatial variability is described through time distance calculated in base of hydrological network. Then a simplified hydrological model is used to investigate spatial aggregation effects on mean areal rainfall and peak discharge value at subcatchment scale. 5.3 For Fella river basin (in Friuli Venezia Giulia region), ten subcatchments from 10.5 and 623km² are choosen. 5.4 For Cervo River (Piomente region, North West Italy) the study is applied to three flood events characterized by different rainfall spatial variability, and focused on four subcatchments (from 75 to 983km²). Chapter 6 “Conclusions”. Are here reported and summarized the main observations coming from the specific studies describe in the two previous chapters as long as recommendation for future research.

RIASSUNTO: “Analisi e modellazione di piene improvvise in zone montane” Le piene improvvise sono fenomeni rari e localizzati, causati da eventi meteorologici caratterizzati da una spiccata variabilità spaziale, con gradienti di precipitazione che possono raggiungere, a scala di evento, i 20-50 mm/km. La conseguenza di ciò è che la comunità scientifica e gli enti operativi interessati nell’analisi dei fenomeni di piena si relazionano quotidianamente con una carenza di dati. Anche una fitta rete di pluviometri non è in grado di rappresentare la variabilità spaziale dei campi di precipitazione associati a fenomeni convettivi che innescano piene improvvise. Le stime di precipitazione ottenute attraverso il radar meteorologico, opportunatamente elaborate, sono in grado di rappresentare i pattern spaziali, ma i valori di volumi di pioggia necessitano di essere validati. Inoltre, per quanto riguarda i dati di portata, la maggior parte dei bacini colpiti da piene improvvise non sono strumentati e gli strumenti, dove presenti, risultano spesso danneggiati, cosicché la conoscenza della distribuzione delle portate al picco, lungo la rete idrologica principale e secondaria, è persino più approssimativa di quella della distribuzione spaziale della precipitazione. Questo studio si prefigge di colmare la distanza tra i dati disponibili e quelli richiesti per un’analisi a scala di evento con riferimento a fenomeni di piena improvvisa. Un’approfondita campagna di rilievi post evento (in inglese Intense Post Event Campaign, IPEC) può risultare estremamente utile per raccogliere le stime di portate al picco e la sequenza cronologica dello svilupparsi della piena in sezioni non monitorate. Modelli idrologici semplificati, dotati di metodi elementari per la separazione dei deflussi e predeterminate velocità di propagazione, possono essere utilizzati per una validazione incrociata tra una descrizione quantitativa della distribuzione di precipitazione ottenuta attraverso il radar meteorologico e le stime di portate al picco raccolte durante un IPEC. Modelli più complessi e dettagliati possono migliorare il livello di conoscenza riguardo fenomeni associati alle piene improvvise, come le colate detritiche. Un altro obiettivo di questa tesi è quello di investigare il ruolo della variabilità spaziale della precipitazione nei fenomeni di piena improvvisa. In primo luogo è necessario impostare una procedura che permetta di caratterizzare tale variabilità all’interno di un particolare bacino idrografico, mettendo in relazione la distribuzione degli apporti meteorici con le modalità di propagazione della piena. In secondo luogo si vuole indagare, attraverso l’applicazione di modelli idrologici semplificati, il ruolo della risoluzione spaziale della precipitazione. A questo fine è necessario separare due aspetti: l’accuratezza della stima dei volumi piovuti a scala di bacino e l’influenza della variabilità spaziale all’interno del bacino stesso. Spesso gli studi che si concentrano sulle dinamiche delle piene improvvise sono rallentati o resi impossibili per il fatto che nessun dato misurato risulta utilizzabile così come disponibile, oppure perchè i dati di partenza non sono ritenuti sufficientemente accurati. Questo lavoro si prefigge di mostrare come sia possibile, partendo dai soli dati esistenti, disponibili o recuperabili, caratterizzati da un certo grado di incertezza, passare attraverso un’elaborazione tramite semplici strumenti statistici e idrologici al fine di ottenere una conoscenza più precisa riguardo passati eventi di piena improvvisa. Si riporta una breve descrizione del contenuto dei capitoli della tesi, che sarà elaborata in lingua inglese. Capitolo 1 “Introduction”. Introduzione alla tematica che comprende una definizione del termine “piena improvvisa”, convenendo sulla necessità di caratterizzare tali eventi in termini di proprietà spazio-temporali. Si nota che, a partire da questa definizione, è possibile classificare una generica piena in un punto di un segmento ai cui estremi ci sono i casi ideali di “piena improvvisa” e “piena a larga scala”. Capitolo 2 “Literature review”. Partendo dalla caratterizzazione spazio temporale si descrivono le caratteristiche tipiche delle piene improvvise nei diversi tipi di clima, si individuano le condizioni meteorologiche in grado di innescare tali fenomeni, quali le celle convettive organizzate in strutture di mesoscala. Si riportano, infine, alcuni esempi di studi in letteratura che mostrano diverse tipologie di approcci e che sono indicativi dell’incertezza in cui si è soliti lavorare quando si approfondiscono questi temi. Capitolo 3 “Materials an methods”. In questo capitolo vengono presentati i principali strumenti comuni a tutte le analisi di fenomeni di piena improvvisa presentati in questa tesi. 3.1 L’utilizzo del radar meteorologico per studiare, dal punto di vista quantitativo, la distribuzione spaziale della precipitazione. Vengono approfondite la modalità di acquisizione del dato, sottolineando le possibili fonti di errore ed i metodi più comuni per ovviare a questi inconvenienti. Viene anche mostrato come l’utilizzo combinato di radar e tradizionali pluviometri renda più completa la caratterizzazione della precipitazione ai fini di un analisi di una piena improvvisa. 3.2 Le indagini post evento, necessarie per raccogliere la maggior documentazione possibile, sono valorizzate al fine di una ricostruzione, anche qualitativa, delle dinamiche caratteristiche di una specifica piena. Queste, attraverso diverse metodologie, devono aiutare a descrivere la struttura spazio temporale della precipitazione e la stima di portata, distribuita lungo la rete idrica, in termini di valore al picco e di tempistica 3.3 L’uso della modellistica idrologica applicata ad una miglior comprensione delle dinamiche a scala di evento. In particolare vengono descritti i due modelli idrologici utilizzati. Il primo, da applicare a larga scala, parte da un input di precipitazione spazialmente distribuito e, attraverso un meccanismo hortoniano di separazione dei deflussi applicato puntualmente, propaga la piena in base a fissate velocità di versante e di canale. Il secondo, da applicare a bacini di piccolissima dimensione, simula i processi di trasporto superficiale e sottosuperficiale integrando le note equazioni di moto uniforme. Capitolo 4 “Analysis of past flash flood events”. Vengono qui presentate alcune analisi di eventi, distinte in tre sezioni. 4.1 Analisi di cinque eventi di piena improvvisa avvenuti in Romania nell’ambito del progetto europeo HYDRATE. Da questo studio risulta che, pur in presenza di scarsi dati provenienti dalle tradizionali fonti di monitoraggio idro-meteorologico, l’informazione proveniente da radar meteorologico e la modellistica idrologica possono aiutare nella ricostruzione delle dinamiche dell’evento preso in considerazione. 4.2 Analisi di una piena improvvisa avvenuta in Slovenia nel settembre 2007 per la quale, attraverso il progetto HYDRATE si è condotta un indagine post evento. La ricchezza di questo approccio, pur dispendioso in termini di tempo, mostra un possibile percorso per recuperare le maggior informazioni possibili per eventi di piena che non sono ricostruibili solo attraverso le normali reti di monitoraggio idrometeorologico. 4.3 Analisi attraverso un modello dettagliato di deflusso superficiale e sottosuperficiale della colata detritica avvenuta in due piccoli sottobacini nella valle del fiume Fella, colpita da una piena improvvisa il 29 agosto 2003. Lo studio consiste essenzialmente nel bilancio di massa liquido e solido durante le diverse fasi dell’evento. Capitolo 5 “Spatial variability in flash flood events”. Questa analisi sulla distribuzione spaziale della precipitazione è stata condotta con le medesime metodologie in due diversi bacini. Gli studi comprendono un primo approfondimento della variabilità spaziale della precipitazione all’interno di sottobacini di diversa estensione: la variabilità è descritta in funzione del reticolo idrografico del bacino preso in considerazione. Successivamente, attraverso un modello idrologico semplificato, si è valutata l’influenza della variabilità spaziale della precipitazione analizzando gli effetti dell’aggregazione spaziale in termini di precipitazione media su bacino e di portata al picco simulata. 5.3 Per l’analisi nel bacino del fiume Fella (FVG), colpito da una piena improvvisa il 29 agosto 2003, si sono scelti dieci sottobacini di dimensione variabile tra i 10.5 e i 623km². 5.4 Nel caso del fiume Cervo (Piemonte) lo studio ha riguardato tre eventi di piena con diversa variabilità spaziale della precipitazione e si è concentrato su quattro sottobacini (tra i 75 e i 983km²). Capitolo 6 “Conclusions”. Vengono riassunte le principali osservazioni ricavate dalle analisi descritte nei due capitoli precedenti e indicazioni per possibili future linee di ricerca.

Flash flood analysis and modelling in mountain regions / Sangati, Marco. - (2009).

Flash flood analysis and modelling in mountain regions

Sangati, Marco
2009

Abstract

RIASSUNTO: “Analisi e modellazione di piene improvvise in zone montane” Le piene improvvise sono fenomeni rari e localizzati, causati da eventi meteorologici caratterizzati da una spiccata variabilità spaziale, con gradienti di precipitazione che possono raggiungere, a scala di evento, i 20-50 mm/km. La conseguenza di ciò è che la comunità scientifica e gli enti operativi interessati nell’analisi dei fenomeni di piena si relazionano quotidianamente con una carenza di dati. Anche una fitta rete di pluviometri non è in grado di rappresentare la variabilità spaziale dei campi di precipitazione associati a fenomeni convettivi che innescano piene improvvise. Le stime di precipitazione ottenute attraverso il radar meteorologico, opportunatamente elaborate, sono in grado di rappresentare i pattern spaziali, ma i valori di volumi di pioggia necessitano di essere validati. Inoltre, per quanto riguarda i dati di portata, la maggior parte dei bacini colpiti da piene improvvise non sono strumentati e gli strumenti, dove presenti, risultano spesso danneggiati, cosicché la conoscenza della distribuzione delle portate al picco, lungo la rete idrologica principale e secondaria, è persino più approssimativa di quella della distribuzione spaziale della precipitazione. Questo studio si prefigge di colmare la distanza tra i dati disponibili e quelli richiesti per un’analisi a scala di evento con riferimento a fenomeni di piena improvvisa. Un’approfondita campagna di rilievi post evento (in inglese Intense Post Event Campaign, IPEC) può risultare estremamente utile per raccogliere le stime di portate al picco e la sequenza cronologica dello svilupparsi della piena in sezioni non monitorate. Modelli idrologici semplificati, dotati di metodi elementari per la separazione dei deflussi e predeterminate velocità di propagazione, possono essere utilizzati per una validazione incrociata tra una descrizione quantitativa della distribuzione di precipitazione ottenuta attraverso il radar meteorologico e le stime di portate al picco raccolte durante un IPEC. Modelli più complessi e dettagliati possono migliorare il livello di conoscenza riguardo fenomeni associati alle piene improvvise, come le colate detritiche. Un altro obiettivo di questa tesi è quello di investigare il ruolo della variabilità spaziale della precipitazione nei fenomeni di piena improvvisa. In primo luogo è necessario impostare una procedura che permetta di caratterizzare tale variabilità all’interno di un particolare bacino idrografico, mettendo in relazione la distribuzione degli apporti meteorici con le modalità di propagazione della piena. In secondo luogo si vuole indagare, attraverso l’applicazione di modelli idrologici semplificati, il ruolo della risoluzione spaziale della precipitazione. A questo fine è necessario separare due aspetti: l’accuratezza della stima dei volumi piovuti a scala di bacino e l’influenza della variabilità spaziale all’interno del bacino stesso. Spesso gli studi che si concentrano sulle dinamiche delle piene improvvise sono rallentati o resi impossibili per il fatto che nessun dato misurato risulta utilizzabile così come disponibile, oppure perchè i dati di partenza non sono ritenuti sufficientemente accurati. Questo lavoro si prefigge di mostrare come sia possibile, partendo dai soli dati esistenti, disponibili o recuperabili, caratterizzati da un certo grado di incertezza, passare attraverso un’elaborazione tramite semplici strumenti statistici e idrologici al fine di ottenere una conoscenza più precisa riguardo passati eventi di piena improvvisa. Si riporta una breve descrizione del contenuto dei capitoli della tesi, che sarà elaborata in lingua inglese. Capitolo 1 “Introduction”. Introduzione alla tematica che comprende una definizione del termine “piena improvvisa”, convenendo sulla necessità di caratterizzare tali eventi in termini di proprietà spazio-temporali. Si nota che, a partire da questa definizione, è possibile classificare una generica piena in un punto di un segmento ai cui estremi ci sono i casi ideali di “piena improvvisa” e “piena a larga scala”. Capitolo 2 “Literature review”. Partendo dalla caratterizzazione spazio temporale si descrivono le caratteristiche tipiche delle piene improvvise nei diversi tipi di clima, si individuano le condizioni meteorologiche in grado di innescare tali fenomeni, quali le celle convettive organizzate in strutture di mesoscala. Si riportano, infine, alcuni esempi di studi in letteratura che mostrano diverse tipologie di approcci e che sono indicativi dell’incertezza in cui si è soliti lavorare quando si approfondiscono questi temi. Capitolo 3 “Materials an methods”. In questo capitolo vengono presentati i principali strumenti comuni a tutte le analisi di fenomeni di piena improvvisa presentati in questa tesi. 3.1 L’utilizzo del radar meteorologico per studiare, dal punto di vista quantitativo, la distribuzione spaziale della precipitazione. Vengono approfondite la modalità di acquisizione del dato, sottolineando le possibili fonti di errore ed i metodi più comuni per ovviare a questi inconvenienti. Viene anche mostrato come l’utilizzo combinato di radar e tradizionali pluviometri renda più completa la caratterizzazione della precipitazione ai fini di un analisi di una piena improvvisa. 3.2 Le indagini post evento, necessarie per raccogliere la maggior documentazione possibile, sono valorizzate al fine di una ricostruzione, anche qualitativa, delle dinamiche caratteristiche di una specifica piena. Queste, attraverso diverse metodologie, devono aiutare a descrivere la struttura spazio temporale della precipitazione e la stima di portata, distribuita lungo la rete idrica, in termini di valore al picco e di tempistica 3.3 L’uso della modellistica idrologica applicata ad una miglior comprensione delle dinamiche a scala di evento. In particolare vengono descritti i due modelli idrologici utilizzati. Il primo, da applicare a larga scala, parte da un input di precipitazione spazialmente distribuito e, attraverso un meccanismo hortoniano di separazione dei deflussi applicato puntualmente, propaga la piena in base a fissate velocità di versante e di canale. Il secondo, da applicare a bacini di piccolissima dimensione, simula i processi di trasporto superficiale e sottosuperficiale integrando le note equazioni di moto uniforme. Capitolo 4 “Analysis of past flash flood events”. Vengono qui presentate alcune analisi di eventi, distinte in tre sezioni. 4.1 Analisi di cinque eventi di piena improvvisa avvenuti in Romania nell’ambito del progetto europeo HYDRATE. Da questo studio risulta che, pur in presenza di scarsi dati provenienti dalle tradizionali fonti di monitoraggio idro-meteorologico, l’informazione proveniente da radar meteorologico e la modellistica idrologica possono aiutare nella ricostruzione delle dinamiche dell’evento preso in considerazione. 4.2 Analisi di una piena improvvisa avvenuta in Slovenia nel settembre 2007 per la quale, attraverso il progetto HYDRATE si è condotta un indagine post evento. La ricchezza di questo approccio, pur dispendioso in termini di tempo, mostra un possibile percorso per recuperare le maggior informazioni possibili per eventi di piena che non sono ricostruibili solo attraverso le normali reti di monitoraggio idrometeorologico. 4.3 Analisi attraverso un modello dettagliato di deflusso superficiale e sottosuperficiale della colata detritica avvenuta in due piccoli sottobacini nella valle del fiume Fella, colpita da una piena improvvisa il 29 agosto 2003. Lo studio consiste essenzialmente nel bilancio di massa liquido e solido durante le diverse fasi dell’evento. Capitolo 5 “Spatial variability in flash flood events”. Questa analisi sulla distribuzione spaziale della precipitazione è stata condotta con le medesime metodologie in due diversi bacini. Gli studi comprendono un primo approfondimento della variabilità spaziale della precipitazione all’interno di sottobacini di diversa estensione: la variabilità è descritta in funzione del reticolo idrografico del bacino preso in considerazione. Successivamente, attraverso un modello idrologico semplificato, si è valutata l’influenza della variabilità spaziale della precipitazione analizzando gli effetti dell’aggregazione spaziale in termini di precipitazione media su bacino e di portata al picco simulata. 5.3 Per l’analisi nel bacino del fiume Fella (FVG), colpito da una piena improvvisa il 29 agosto 2003, si sono scelti dieci sottobacini di dimensione variabile tra i 10.5 e i 623km². 5.4 Nel caso del fiume Cervo (Piemonte) lo studio ha riguardato tre eventi di piena con diversa variabilità spaziale della precipitazione e si è concentrato su quattro sottobacini (tra i 75 e i 983km²). Capitolo 6 “Conclusions”. Vengono riassunte le principali osservazioni ricavate dalle analisi descritte nei due capitoli precedenti e indicazioni per possibili future linee di ricerca.
2009
ABSTRACT: “Flash flood analysis and modelling in mountain regions” Flash flood are rare and localized phenomena, triggered by meteorological event with a pronounced spatial variability, with a precipitation gradient, at event scale, up to 20-50 mm/km. The consequences of these features is that the scientific and operational communities working on flash flood analysis have to deal with an impressive lack of data. Even a dense raingauge network may not be able to represent spatial variability of rainfall patterns associated with convective storms that trigger flash floods. Radar rainfall estimations, when correctly elaborated, are able to represent spatial patterns, but quantitative precipitation volume estimations need to be validated. In addition, concerning discharge data, the majority of the upstream and larger catchments affected by flash floods are not gauged and stream gauges, where present, are often damaged, so that peak discharge distribution along main and secondary river network is even less known than precipitation fields. This study aims at covering the gap between needed and available data for flash flood event analysis, combining different methodologies. An Intense Post Event Campaign (IPEC) may be very useful to collect peak discharge estimations and time sequence of the flood in ungauged sections. Simplified hydrological model, based on rough runoff excess computation and set velocity propagation, can be used to cross validate quantitative distributed precipitation data from weather radar and peak discharge estimations collected during an IPEC. More complex and detailed model may help to improve the knowledge about flash flood associated phenomena, like debris flow. Another objective of this thesis is to investigate the role of rainfall spatial variability in flash flood triggering. First a standard procedure to describe the variability catchment scale is needed. It will be so possible to study the relationship between rainfall input distribution and flood propagation dynamics. Then a simplified hydrological model is used to investigate the role of spatial variability in precipitation patterns: systematic studies are carried to describe the accuracy of rainfall volumes at basin scale and the effect of spatial variability within the basin. Often the studies about flash flood dynamics are slow down or stopped because no measured data are directly to hand, or, if so, because they are not considered sufficiently accurate. This work shows the possibility to combine together data with an assured degree of uncertainty, the only available or collectable existing data, and processed them with simple statistical and hydrological tools to obtain a more precise knowledge about past flash floods. The remainder of this dissertation is organised as follows. Chapter 1 “Introduction”. The work starts with the aim to define what a “flash flood” is, underlying the importance to characterize such event according spatial and temporal proprieties. From this definition it follows that a generic flood can be classified according its own spatial and temporal proprieties and located in a specific point of a segment delimitated by the two ideal cases of “flash flood” and “flood at large scale”. Chapter 2 “Literature review”. Spatial and temporal characterization lead to describe typical features of flash flood in different climates. Meteorological conditions able to trigger this kind of events are described and analyzed, with particular care about convective cells system organized in mesoscale structures. Finally some literature examples are reported to show different possible approach and to underline usual uncertainty when dealing with flash flood. Chapter 3 “Materials an methods”. This chapter summarizes and describes the tools used in this thesis to carry on flash flood analysis. 3.1 Weather radar data are used to describe rainfall spatial distribution and obtain quantitative estimations of rainfall patterns. Data acquiring and processing are described and most common errors are summarized along with most common procedures and algorithms to avoid and correct them. It is finally shown how merging radar and conventional raingauge network information can provide a more exhaustive description of rainfall fields, with quantitative estimation. This data processing is very useful for further characterization and analysis of past flash flood events. 3.2 Post event surveys are presented as an essential tool to collect the richest possible documentation. Measure campaigns are valorised to obtain qualitative and quantitative description of past floods. The goal is to complete the spatial and temporal precipitation knowledge and dynamic description, focusing on discharge estimation along hydrological network in term of peak values and timing. 3.3 Hydrological models can be routed for a better comprehension of flood dynamics at event scale. Two hydrological models, then used for flash flood analysis, are described in detail. The first one is applied at large event scale and starts from a distributed precipitation input. Hortonian runoff generation is applied punctually and superficial flood propagation is computed basing on fixed hillslope and channel velocity. The second model is built to be applied at very small catchment scale and simulate infiltration and transport processes for surface and subsurface flow through uniform hypothesis equations. Chapter 4 “Analysis of past flash flood events”. Some specific post flood analysis are collected in three section. 4.1 Five flash flood events occurred in Romania are analysed with HYDRATE European project contribution. This study shows that even if the conventional hydrometeorological data are poor, weather radar information and hydrological modelling can help in understanding specific past flood dynamics. 4.2 HYDRATE project was also involved in the analysis of a flash flood occurred in Slovenia in September 2007, including radar processing and post event surveys. It is shown how this approach, characterize by time and cost significant efforts, is a precious tool to collect data and information for a detailed description that would be not possible through traditional hydrometeorological network. 4.3 A detailed model is used to describe surface and subsurface flow dynamics during the debris flow occurred in two small subcatchments in Fella river valley (North Est of Italy), hit by a flash flood on August 29, 2003. The study mainly consists on liquid and solid mass balance during the different phases of the event. Chapter 5 “Spatial variability in flash flood events”. An analysis on rainfall spatial distribution is carried with the same tools on two different basin interested by flash flood event. The studies includes a fist detailed analysis on rainfall spatial variability within selected subcatchments at different scales: spatial variability is described through time distance calculated in base of hydrological network. Then a simplified hydrological model is used to investigate spatial aggregation effects on mean areal rainfall and peak discharge value at subcatchment scale. 5.3 For Fella river basin (in Friuli Venezia Giulia region), ten subcatchments from 10.5 and 623km² are choosen. 5.4 For Cervo River (Piomente region, North West Italy) the study is applied to three flood events characterized by different rainfall spatial variability, and focused on four subcatchments (from 75 to 983km²). Chapter 6 “Conclusions”. Are here reported and summarized the main observations coming from the specific studies describe in the two previous chapters as long as recommendation for future research.
piena improvvisa, modellistica idrologica, variabilità spaziale della precipitazione, flash flood, hydrological modelling, precipitation spatial variability
Flash flood analysis and modelling in mountain regions / Sangati, Marco. - (2009).
File in questo prodotto:
File Dimensione Formato  
tesi_dottorato_Marco_Sangati_090129.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3427208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact