Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Abaterusso, Cataldo (2009) Formule di stima del GFR e composizione della massa corporea: potenzialità e limiti. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Prevalence of chronic kidney diseases is increasing as well as projections in terms of prevalence, incidence and dedicated economical budget. An accurate determination of renal function is a central tool in the early diagnosis of the renal damage and its progression, as well as in customizing drug regimens.
Further to morphological and functional modifications in a number of organs and apparatus, the ageing process is associated with the progressive decline in renal function. Determination of the glomerular filtration rate (GFR) is the most accurate test to disclose a renal dysfunction; however, due to its complexity and costs, this technique cannot be used routinely. International guidelines recommend the use of formulae (mostly serum creatinine-based) for GFR estimation (eGFR) and for stratification of the cardiovascular risk in patients with Chronic Kidney Disease (CKD).
That "creatinine-based" eGFR formulae are not accurate in elderly people, in females, malnurished, or obese, or sarcopenic-obese patients is well known. This is due to the lack of sensibility of serum creatinine in the very initial reduction of GFR, in the rough estimation of the lean body mass by formulae in some categories of individuals and eventually in the lack of standardization of the assay for serum creatinine. The interest in using of Cystatin C as and endogenous marker of GFR has much increased recently.

The present manuscript reports results from a prospective study and a cross-sectional investigation.
Prospective study. In a cohort of elderly, healthy people the relationship between renal function and modifications in body composition was evaluated. Renal function was estimated by two endogenous markers (serum creatinine and Cystatin C) and applying more or less common formulae for estimating GFR.

Cross-sectional study: the effect of body composition on the performance of formulae in predicting the early decline of GFR in a cohort of adults was investigated. The implementation of the analysis with other parameters to improve the performance was also investigated.

Subjects and Methods
Elderly (prospective study) and adult (cross-sectional study) people of both genders have been enrolled after obtaining informed consent. Both studies were approved by the Institutional Ethical Committee. Inclusion and exclusion criteria are shortly reported below. In all the following determinations were performed: anthropometric measurements, body composition by Dual energy X-ray Absorptiometry (DXA), bioimpedence, routine biochemistry, serum Cystatin C concentration (CyC).
Prospective study: Elderly, healthy and non-istitutionalized subjects of both genders were recruited. Individuals with renal failure (serum creatinine >1.4 mg/dl in males, >1.2 mg/dl in females) were ruled out. Anthropometric measurements, body composition, nutritional enquiry and routine biochemistry were performed yearly during a 5 yrs follow-up. Estimated GFR was determined by 5 different formulae (Cockcroft-Gault, Virga, MDRD, Taylor, Hoek), either creatinine- or Cystatin C-based.
Cross-sectional study: CKD 1 and 2 adult patients of both genders were enrolled consecutively. Serum creatinine had to be <2mg/dl in males and <1.8mg/dl in females. All patients underwent GFR measurement (mGFR) by the Iohexol plasmatic clearance. Using the same formulae of above, eGFR was also estimated.
Prospective study: 91 females who at the beginning of the study were 71.9 ± 2.4 yrs old, and had BMI 26.34 ± 4.44 Kg/m² and 62 males (72.5± 2.29 yrs and BMI 27.01± 3.39 Kg/ m²) were followed-up. After 5 yrs follow-up, a decrease in the lean body mass (total and appendicular) was observed in both genders, but particularly in males, without any modification of the nutritional state. At the end of follow-up serum creatinine was reduced proportionally reduced more than the decrease of lean body mass (percent variation of serum creatinine and lean mass was -1.4% vs -0.5% per year, respectively).
On the contrary, Cystatin C increased in both genders. Variations in serum Cystatin C were independent from lean mass changes and age. Only the Hoek’s formula (Cystatin C-based), at odds with the other formulae (all creatinine-based), disclosed the physiological decrease of GFR awaited with ageing.
Cross sectional study: It was carried out in a cohort of 83 subjects (34 females). Serum creatinine was on average (mean±SD) 1.19±0.39 mg/dL,. (serum creatinine 1.27±0.39 and 1.08±0.37 mg/dL, male and female, respectively). BMI was almost uniformly distributed among normal, overweight and obese (approx. 30% each). Measured GFR was 73.9±25.9 ml/min/1.73m2 (range 23-137.7 ml/min/1.73m2). The accuracy of different formulae, calculated by the prevalence of subjects having a percent difference between eGFR and mGFR (100 x [eGFR-mGFR]/mGFR) in 15% of the true GFR, disclosed a good predictive value in reference to the Virga (52% ). The accuracy of C-G and MDRD formulae were better than other for predicting eGFR <30% of true value (80 and 89%, respectively), confirming previous reports.
By the use of mathematical models of multiple linear regression it was possible to estimate the individual creatinine production rate (CrPROD in mg/min), which was 0.89±0.31 mg/min (Cr-PROD: 1.04±0.28 and 0.67±.0.21 mg/min, in male and female gender, respectively).. In particular, CrPROD was estimated considering LBM, or anthropometric measurements only as variables by the following equations:
1) Cr-prod = 0.9821 + 0.03842 * (Lean-app in Kg -25).
Intercept (±SE) 0.9821±0.04, coefficient (±SE) per (Lean-app in Kg-25): 0.03842, (p<0.0001). In other words, as an example, an normal individuals with an appendicular lean mass of 25 Kg should produce approx. 1mg/min creatinine, that is 1.44 g/24 hrs.
2) Cr-PROD = -0.366115 + (0.28081 if male) – (0.00275 * Circ-abdomen in cm) + 0.042854 * Circ-arm (in cm)
Male gender: coefficient(±SE) 0.280811±0.04, (p<0.0001); Circ-abd: coefficient(±SE) -0.00275±0.002, (p=0.05); Circ-arm: coefficient(±SE) 0.042854±0.008, (p<0.0001).
Perspective study
During the aging process, serum creatinine looses its ability to predict renal function partly because of the lean body mass reduction. Thus, creatinine-based eGFR formulae are less accurate in the elder, and may lead to a paradoxical, apparent increase in GFR. Lean mass reduction, earlier in males, is associated with a proportionally higher decrease in the synthetical and metabolical muscle activity.
Our findings sugget that Cystatin C is particularly useful in the evaluation of renal function in elderly people because it is independent on age-related modifications in body composition.
Cross sectional study
Serum creatinine alone is not capable to disclose in a sufficient accurate way the early renal damage in CKD. The present study confirms the large variability and low accuracy of the more frequently used formulae for GFR estimation, particularly in patients with initial reduction in GFR, in obesity and in the feminine gender. The recently proposed Virga’s formula, although not yet validated in large case populations, has shown a good performance in detecting mild, initial reduction of GFR with an error <15% of the true value of measured GFR. The estimation of the creatinine production rate seems to be possible by the use of simple, and repeatable direct anthropometric measurements that do not need any expensive diagnostic method.

Albeit the relatively modest number of investigated subjects in both studies, present data suggest that uncertainty in the quantitative and quali-quantitative estimation of lean mass in adults (cross-sectional study) and in elderlies (perspective study), respectively, is the major biasing factor in the estimation of GFR. The hypothesis raised by the Prospective study, if experimentally confirmed, suggests that elderly-dedicated formulae for GFR estimation needs to be developed, similarly to those used in children.

Abstract (italian)

Le malattie renali sono in crescente aumento e le previsioni per il futuro in termini di prevalenza, incidenza e costi sanitari sono allarmanti. L'accurata determinazione della funzione renale rappresenta un indispensabile strumento per l'identificazione precoce del danno e della progressione delle malattie renali e per nonchè© per l'adeguamento della posologia di molti farmaci. L'invecchiamento, inoltre, insieme alle modificazioni morfo-funzionali di organi ed apparati, si accompagna anche ad un progressivo declino della funzione renale. La misura della velocitè di filtrazione glomerulare (GFR) è¨ il test piè¹ accurato per evidenziare una disfunzione renale, tuttavia la complessitè dei metodi ed i costi rendono non proponibili tali metodiche nella pratica clinica. Le linee guida internazionali raccomandano l'impiego di formule, generalmente basate sull'impiego della creatinina sierica, per la stima del GFR (eGFR) e la stratificazione del rischio cardiovascolare nei pazienti con malattie renali croniche (Chronic Kidney Disease, CKD) E' noto che le formule di eGFR '€œcreatinine-based'€ risultano spesso poco accurate specialmente in determinate categorie di soggetti: anziani, donne, malnutriti, obesi, obesi-sarcopenici. I limiti sono da ricercare nella scarsa sensibilitè della creatinina a segnalare l'iniziale declino del GFR, nella inesatta stima della massa magra in alcune categorie di soggetti e, infine, nei problemi analitici legati alla standardizzazione, non ancora ottimale, del dosaggio della creatininemia.
Da alcuni anni crescente interesse ha suscitato l'utilizzo della la Cistatina C come marker endogeno di GFR.

In questo lavoro sono presentati i risultati di due Studi, il primo prospettico e il secondo trasversale.
Studio I (prospettico): lo scopo è¨ stato quello di valutare prospetticamente, in una coorte di anziani sani, le relazioni tra la funzionalitè renale, determinata attraverso l'impiego di due marcatori endogeni come creatininemia e cistatina C e l'applicazione di alcune comuni e meno comuni formule di stima del GFR, e le modificazioni della composizione corporea.
Studio II (trasversale): scopo del secondo studio è¨ stato quello di valutare l'impatto della composizione corporea sulla capacitè delle formule di predire l'iniziale declino del GFR in una coorte di soggetti adulti e di valutare possibili regressori in grado di implementare l'accuratezza delle stesse. Inoltre valutare il miglior metodo di indicizzazione del GFR misurato (mGFR).

Soggetti e Metodi
Sono stati arruolati soggetti anziani (Studio I) e adulti (Studio II) di ambo i sessi previo consenso informato scritto. Entrambi gli Studi hanno ottenuto l'approvazione del Comitato Etico di Verona. I criteri di inclusione ed esclusione sono in sintesi riportate di seguito, Tutti i soggetti sono stati sottoposti a determinazione delle misure antropometriche, della composizione corporea mediante Dual energy X-ray Absorptiometry (DXA), esame di bioimpedenza, esami bioumorali di routine, misura del valore plasmatico di Cistatina C (CyC).

Studio I: Sono stati arruolati e seguiti prospetticamente soggetti anziani di ambo i sessi in buone condizioni di salute, non istituzionalizzati e in assenza di patologie croniche debilitanti. Erano esclusi dallo studio soggetti con insufficienza renale (creatininemia >1.4 mg/dl per i maschi, >1.2 mg/dl per le femmine). I parametri antropometrici, la composizione corporea, l'anamnesi alimentare ed esami bioumorali di routine sono stati determinati annualmente per un follow-up mediano di 5 anni. L'eGFR è¨ stato determinato mediante l'applicazione di cinque formule (Cockcroft-Gault, Virga, MDRD, Taylor, Hoek) che utilizzano la creatininemia o la cistatina C come marcatori endogeni di GFR.

Studio II: Sono stati arruolati, consecutivamente, soggetti adulti con malattia renale cronica CKD I-II stadio e creatininemia <2mg/dl nel maschio e <1,8mg/dl nella femmina. Tutti i pazienti sono stati sottoposti, inoltre, alla misurazione del filtrato glomerulare (mGFR) con la tecnica della clearance plasmatica dello Ioexolo. L'eGFR è¨ stato ricavato con le stesse formule usate nello Studio I.

Studio I: Lo studio I è¨ stato condotto in una coorte di 91 donne con etè all'inizio dello studio di 71.9 '± 2.4 anni e BMI di 26.34 '± 4.44 Kg/m'² e 62 uomini di etè di 72.5'± 2.29 anni e BMI di 27.01'± 3.39 Kg/ m'². Al termine dei 5 anni di follow-up si è¨ osservata in entrambi i sessi, fatto perè² piè¹ evidente nei maschi, una riduzione della massa magra totale ed appendicolare in assenza di significative modificazioni dello stato nutrizionale. I valori di creatininemia sono risultati ridotti in proporzione maggiore rispetto alla variazione di composizione corporea (variazione percentuale media annua di creatinina e massa magra: -1.4% vs -0.5%, rispettivamente). Al contrario la cistatina C è¨ risultata in aumento in entrambi i sessi. La variazione del valore della cistatina C è¨ risultata indipendente dalla variazione di massa magra ed etè . Soltanto la formula di Hoek (cistatin C-based) rispetto alle altre formule (creatinine-based) analizzate, ha decritto il declino del GFR come atteso nel fisiologico processo di invecchiamento di un soggetto sano

Studio II: Lo Studio II è¨ stato condotto in una coorte di 83 soggetti (34 femmine). Il valore della creatininemia risultava (media'±SD) 1.19'±0.39 mg/dL (creatininemia 1.27'±0.39 e 1.08'±0.37, rispettivamente nei maschi e nelle femmine). Il BMI era distribuito uniformemente (circa 30%) per normopeso, sovrappeso e obesitè . Il GFR misurato è¨ risultato in media 73.9'±25.9 ml/min/1.73m2 con range compreso tra 23-137.7 ml/min per 1.73m2.
L'accuratezza delle varie formule è¨ stata definita come prevalenza dei soggetti con differenza percentuale tra eGFR e mGFR (100 x [eGFR-mGFR]/mGFR) entro il 15% e 30% del GFR reale. La formula di Virga si mostra leggermente superiore alle altre nella previsione di eGFR <15% del valore reale in una maggiore percentuale di soggetti (52% vs 46% vs 42% vs 35% vs 45%, rispettivamente Vir vs CG vs MDRD vs MCQ vs Tay). Invece sia CG che MDRD risultano superiori alle altre riuscendo a prevedere il valore di eGFR <30% rispetto al reale, nel 80 e 89% dei pazienti, rispettivamente.
Utilizzando modelli matematici di regressione lineare multipla è¨ stato possibile dedurre quota di produzione di creatinina individuale (CrPROD in mg/min), determinata attraverso un modello matematico è¨ risultato: Cr-PROD: 0.89'±0.31 mg/min (Cr-PROD: 1.04'±0.28 e 0.67'±.0.21 mg/min, rispettivamente nel sesso maschile e nel sesso femminile). Attraverso l'analisi di regressione lineare a variabili multiple è¨ stato possibile stimare CrPROD essendo nota la LBM ovvero le sole misure antropometriche con le seguenti funzioni:
1) Cr-prod = 0.9821 + 0.03842 * (Lean-app in Kg -25).
Intercetta ('±SE) 0.9821'±0.04, coefficiente ('±SE) per (Lean-app in Kg-25) 0.03842; p<0.0001. In altri termini, ad esempio, un soggetto medio con 25 kg di massa magra appendicolare dovrebbe produrre ca. 1mg/min di creatinina pari a circa 1.44 g/die.
2) Cr-PROD = -0.366115 + (0.28081 se maschio) (0.00275 * Circ-addome in cm) + 0.042854 * Circ-braccio (in cm)
Sesso maschile: coefficiente('±SE) 0. 280811'±0.04, p<0.0001; Circ-add: coefficiente('±SE) -0.00275'±0.002, p=0.05; Circ-braccio: coefficiente('±SE) 0.042854'±0.008, p<0.0001.

Il semplice dosaggio della creatininemia non è¨ in grado di individuare con sufficiente accuratezza lo stadio funzionale CKD in un ampissima quota della popolazione. Questo studio conferma la grande variabilitè e la scarsa accuratezza delle principali formule per la stima del GFR, soprattutto nei pazienti con iniziale decurtazione della funzionale renale, obesitè e sesso femminile. La recente formula di Virga, non ancora validata in ampie casistiche, ha mostrato una buona accuratezza, paragonabile alla formula MDRD, anche per GFR intorno alla normalitè e con buona performance per la predizione di eGFR <15% di errore rispetto al valore reale.
La valutazione attraverso misurazioni dirette della LBM e la correzione del GFR per questo dato hanno evidenziato una relazione molto superiore rispetto ai parametri surrogati di composizione corporea, come l'età , il peso, l'altezza. La stima della quota di produzione della creatinina è¨ possibile, sebbene i dati siano ancora preliminari, attraverso semplici e ripetibili determinazioni antropometriche dirette che non richiedono il ricorso a costose tecniche diagnostiche.
Nonostante la popolazione esaminata sia esigua, l'ipotesi che l'incertezza nella corretta definizione quantitativa della massa magra, da cui origina la creatinina di ogni soggetto, sia il principale determinante del bias delle formule è¨ stato confermato in questo studio.
Sarà necessario verificare con ulteriori studi se l'espansione del numero e della complessitè clinica dei soggetti studiati possa consentire l'elaborazione di un modello matematico piè¹ preciso ed affidabile per la stima del GFR nelle fasi iniziali delle nefropatie.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Gambaro, Giovanni
Ph.D. course:Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE NEFROLOGICHE
Data di deposito della tesi:31 January 2009
Anno di Pubblicazione:2009
Key Words:GFR, eGFR, body composition, cystatin C, iohexol
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/14 Nefrologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Mediche e Chirurgiche
Codice ID:1722
Depositato il:31 Jan 2009
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1-Renal data system.2005annual data report:atlas of end-stage renal disease in the united states. Bethesda,Md.:National Institute of Diabetes and Digestive and Kidney Diseases,2005. Cerca con Google

2-Coresh J,Bird-Holt D,Astor BC,et al. Chronic Kidney disease awareness,prevalence, and trends among U.S.adults,1999 to 2000.J Am Soc Nephrol 2005;16:180-8. Cerca con Google

3-National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation,classification,and stratification.Am J Kidney Dis 2002;39:suppl 1:S1-S266. Cerca con Google

4- Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risk of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296-305. Cerca con Google

5- Heymsfield SB, Arteaga C, McManus C, et al.: Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 37: 478-494, 1983. Cerca con Google

6- Horber FF, Scheidegger J, Frey FJ: Overestimation of renal function in glucocortcoid treated patients. Eur J Clin Pharmacol 28: 537-541,1985. Cerca con Google

7- James GD, Sealey JE, Alderman M, et al: A longitudinal study of urinary creatinine and creatinine clearance in normal subjects: Race, sex, and age differences. Am J Hypertens 1:124-131,1988. Cerca con Google

8- Lew SQ, Bosch JP: Effect of diet on creatinine clearance and excretion in young and elderly healty subjects and patients with renal disease. J Am Soc Nephrol 2:856-865,1991. Cerca con Google

9- Mayersohn M, Conrad KA, Achari R: The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. Br J Clin Pharmacol 15:227-230,1983. Cerca con Google

10- Shemesh O., Golbetz H., Kriss JP, Myers BD: Limitations of creatinine as a filtration marker in a glomerulopathic patients.Kidney Int 1985;28: 830-838. Cerca con Google

11- Lesley A. Stevens, Andrew S. Levey: Clinical implications of Glomerular Filtration Rate (GFR) Estimating Equations. Nephrology Rounds 2006;Vol.4 Issue2. Cerca con Google

12- Bonsnes RW, Taussky HH: On the colorimetric deterrmination of creatinine by Jaffè reaction. J Biol Chem 1945;158:581-591. Cerca con Google

13- Jaffè M: Uber den Niederschlang welchen pikrinsaure in normalen Harn erzeigt und über eine neue Reaction des Kreatinins. Z Physiol Chem. 1886;10:391-400 Cerca con Google

14- Young DS: Effects of drugs on clinical laboratory tests,3rd ed Washington DC, American Association of clinical Chemistry Press,1990,pp3-128. Cerca con Google

15- Kroll MH, Hagengruber C, Elin RJ: Reaction of picrate with creatinine and cepha antibiotics. Clin Chem 1984;30:1664-1666. Cerca con Google

16- Doolan PD, Alpen EL, Theil GB: A Clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med 1962; 32: 65-79. Cerca con Google

17- Fabiny DL, Ertingshausen G: Automated reaction-rate method for determination of serum creatinine with the Centrifichem. Clin Chem 1971;17: 696-700. Cerca con Google

18- Gerard SK, Khayam-Bashi H: Characterization of creatinine error in ketotic patients: A prospective comparison of alkaline picrate methods with an enzymatic method. Am J Clin Pathol 1985;84:659-664 Cerca con Google

19- Hood B, Attman P, Ahlmèn J, Jagenburg R: Renal hemodynamics and limitations of creatinine clearance in determining filtration rate in glomerular disease. Scand J Urol Nephrol 1971;5:154-161. Cerca con Google

20- Lesley A. Stevens, Josef Coresh, Tom Greene, Andrei S. Levey: Assessing Kidney Function – Measured and Estimated Glomerular Filtration Rate. N Engl J Med 2006; 354: 2473-83 Cerca con Google

21- James GD, Sealey JE, Alderman M, et al: A longitudinal study of urinary creatinine and creatinine clearance in normal subjects: Race, sex, and age differences. Am J Hypertens 1988;1:124-131. Cerca con Google

22- Horber FF, Scheidegger J, Frey FJ: Overestimation of renal function in glucocortcoid treated patients. Eur J Clin Pharmacol 1985;28: 537-541. Cerca con Google

23- Brod J, Sirota JH: The renal clearance of endogenous "creatinine" in man. J Clin Invest1948; 27:645-654. Cerca con Google

24- Bauer JH, Brooks CS, Burch RN: Renal function studies in man with advanced renal insufficiency. Am J Kidney Dis 1982;2:30-35. Cerca con Google

25- Fuller NJ, Elia M: Factors influencing the production of creatinine: Implications for determination of urinary creatinine and creatine in man. Clin Chim Acta 1988;175:199-210. Cerca con Google

26- Carrie BJ, Golbetz HV, Michaels AS, Myers BD: Creatinine: An inadequate filtration marker in glomerular diseases. Am J Med 1980;69: 177-182. Cerca con Google

27- Pasternack A, Kuhlbäck B: Diurnal variations of serum and urine creatine and creatinine. Scand J Clin Lab Invest 1971;27: 1-7. Cerca con Google

28- Rosano TG, Brown HH: Analytical and biological variabilty of serum creatinine and creatinine clearance: Implications for clinical interpretation. Clin Chem 1982; 28: 2330-2331. Cerca con Google

29- Simonsen O, Grubb A, Thysell H: The blood serum concentration of cystatin C ( gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 1985;45: 97-101. Cerca con Google

30- Barrett AJ, Davies ME, Grubb A. The place of human gamma-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem Biophys Res Commun 1984;120:631– 6. Cerca con Google

31- Brzin J, Popovic T, Turk V, Borchart U, Machleidt W. Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 1984;118:103– 9. Cerca con Google

32- Cerca con Google

32- Schwabe C, Anastasi A, Crow H, McDonald JK, Barrett AJ. Cystatin Amino acid sequence and possible secondary structure. Biochem J 1984;217:813 7. Cerca con Google

33- Turk V, Brzin J, Longer M, et al. Protein inhibitors of cysteine proteinases: III. Amino-acid sequence of cystatin from chicken egg white. Hoppe-Seyler’s Z Physiol Chem 1983;364:1487 – 96. Cerca con Google

34- Abrahamson M, Olafsson I, Palsdottir A, et al. Structure and expression of the human cystatin C gene. Biochem J 1990;268: 287– 294. Cerca con Google

35- Grubb AO. Cystatin C—Properties and use as diagnostic marker. Adv Clin Chem 2000;35:63–99. Cerca con Google

36- Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002;40:221– 6. Cerca con Google

37- Risch L, Herklotz R, Blumberg A, Huber AR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 2001;47:2055–9. Cerca con Google

38- Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int 2003;63: 1944– 1947. Cerca con Google

39- Wiesli P, Schwegler B, Spinas GA, Schmid C. Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta 2003;338:87–90. Cerca con Google

40- Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am. J. Kidny Dis. 2002;40:221-226. Cerca con Google

41- Tanaka A. Suemaru K. Araki H. A new approch for evaluating renal function end its practical application. J. Pharm. Sc. 2007; Sep 8. Cerca con Google

42- Finney H, Newman DJ, Thakkar H et al Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75, 2000. Cerca con Google

43- Norlund L, Fex G, Lanke J: Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum beta 2-microglobulin/cystatin C-ratio. Scand J Clin Lab Invest 57:463–470, 1997. Cerca con Google

44- Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A: Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 59:587–592, 1999. Cerca con Google

45- Pucci L, Triscornia S, Lucchesi D, Fotino C, Pellegrini G, Pardini E, Miccoli R, Del Prato S, Penno G: Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients. Clin Biochem 2007; 53 (3) 480-8. Cerca con Google

45- Perkins BA, Nelson R, Ostrander B, Blouch K, Krolewski A, Myers B, Warram J. Detection of renal function decline in patients with diabetes and normal or elevate GFR by serial measurements of serum cystatin C concentration: results of a 4 years follow-up study. J Am Soc Nephrol 2005; 216: 1404-12. Cerca con Google

46- Menon V, Shlipak MG, Wang X, Coresh J, Green T, Stevens L, Kusek JW, Beck GJ, Collins AJ, Levey AS, Sarnak MJ. Cystatin C as a risk factor for outcome in chronic kidney disease. An Intern Med 2007; 147: 19-27. Cerca con Google

47- Shlipak MG, Sarnak MJ, Katz R, Fried LS, Selinger SL, Newman AB, Siscovick DS, Stehman-Breen C. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005; 352 (20): 2049-60. Cerca con Google

48- Levey AS: Measurement of renal function in chronic renal disease. Kidney Int 1990;38:167-184 Cerca con Google

49- Smith HW, Goldring W, Chasis H: The measurement of tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. J Clin Invest 1938;17:263-278. Cerca con Google

50- Nosslin, B.: Determination of clearance and distribution volume with the single injection tecnique. Acta med scan. Suppl 1965;442:97. Cerca con Google

51- Schnurr E, Lahme W, Küppers H: Measurement of renal clearance of inulin and PAH in the steady state without urine collection. Clin Nephrol 1980;13:26-29. Cerca con Google

52- Frennby B., Sterner G. : Contrast media as marker of GFR. Eur Radiol. 2002;12:475-484 . Cerca con Google

53- Sambataro, M., Thomaseth, K., Pacini, G., Robaudo, C., Carraro, A., Bruseghin, M., Brocco, E., Abaterusso, C., DeFerrari, G., Fioretto, P., Maioli, M., Tonolo, G.C., Crepaldi, G., and Nosadini, R. Plasma clearance rate of 51Cr-EDTA provides a precise and convenient technique for measurement of glomerular filtration rate in diabetic humans. J Am Soc Nephrol 1996;7:118-127. Cerca con Google

54- Broechner-Mortensen ,J.: A simple method for determination of glomerular filtration rate. Scan. J. Clin Lab. Invest 1972;30, 271-274. Cerca con Google

55- Prueksaritanont T, Chen ML, Chiou WL : Simple and micro high-prformnce liquid chromatographic method for simultaneous determination of p- aminohippuric acid and iothalamate in biological fluids. J Chromatogr 1984;306:89-97. Cerca con Google

56- O’Reilly PH, Brooman PJC, Martin PJ, et al.: Accuracy and reproducibility of a new contrast clearance method for the determination of glomerular filtration rate. BMJ 1986;293:234-236. Cerca con Google

57- Schwartz GJ, Furth S., Cole SR, Warady B., Muñoz A.: Glomerular Filtration Rate via plasma iohexol disappearance: pilot study for chronic Kidney disease in children.Kidney Int 2006; 69,2070-2077. Cerca con Google

58- Stake G, Monn E, Rootwelt K, Monclair T:The clearance of iohexol as a measure of the glomerular filtration rate in children with chronic renal failure. Scand J Clin Lab Invest 1991;51:729-734. Cerca con Google

59-Brown SCW, O’Reilly PH: Iohexolo clearance for the determination of glomerular filtration rate in clinical practice: Evidence for a new gold standard. J Urol 1991;146:675-679. Cerca con Google

60- Gaspari F, Perico N, Matalone M, et al.: Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J Am Soc Nephrol 1998;9:310-313. Cerca con Google

61- Gaspari F., Perico N., Ruggenenti P., Mosconi L., Amucastegui C.S., Guerini E., et al. Plasma clearance of nonradioactive ioihexol as a measure of glomerular filtration rate J Am Soc Nephrol1995; 6:257-263. Cerca con Google

62- Turner ST, Reilly SL: Fallacy of indexing renal and systemic hemodynamic measurement for body surface area. Am J Physiol 1995;268: R978-R988. Cerca con Google

63- Mc Cance RA, Widdowson EM: The correct physiological basis on wich to compare infant and adult renal function. Lancet 1952; 2:860-862. Cerca con Google

64- Du Bois D, Du Bois EF: A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 1916;17:863-871. Cerca con Google

65- Peters AM, Allison H, Ussov WY: Simultaneous measurement of extracellular fluid distribution and renal function with a single injection of 99m Tc DTPA.Nephr Dial Transplant 1995;10:1829-1833. Cerca con Google

66- Boer P: Estimated lean body mass a san index for normalization of body fluid volumes in humans. Am J Physiol 1984;247: F632-F636. Cerca con Google

67- Wesson LG Jr: Renal hemodynamics in physiological states.In physiology of the Human Kidney. New York, Grune & Stratton, 1969, pp96-154. Cerca con Google

68- Van Beek E,Houben AJHM, van Es PN, et al.: Peripheral haemodynamics of renal function in relation to the menstrual cycle. Clin Sci 1996;91: 163-168. Cerca con Google

69- Zuccalà A, Zucchelli P: Use and misure of the renal functional riserve concept in clinical nephrology. Nephrol Dial Transplant 1990;5:410-417. Cerca con Google

70- Cockcroft DW, Gault MH: Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41. Cerca con Google

71- Taylor GO, Bamgboye EA, Oyedriran ABOO, Longe O: Serum Creatinine and prediction formulae for creatinine clearance. Afr J Med Sci 1982;11:175-181. Cerca con Google

72- Rolin HA III, Hall PM, Wei R: Inaccuracy of estimated creatinine clearance for prediction of iothalamate glomerular filtration rate. Am J Kidney Dis 1984;4: 48-54. Cerca con Google

73- Klahr S, Levey AS, Beck GJ, et al. : The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N Engl J Med 1994;330:877-884. Cerca con Google

74- Levey AS, Bosch JP, Lewis JB, et al. :A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation . Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130: 461-470. Cerca con Google

75- Norden G, Bj?rck S, Granerus G, Nyberg G: Estimation of renal function in diabetic nephropathy: Comparison of five methods. Neprhon 1987;47:36-42. Cerca con Google

76- Waz WR, Feld LG, Quattrin T: Serum creatinine height, and weight do not predict glomerular filtration rate in children with IDDM. Diabetes Care 1993;16: 1067-1070. Cerca con Google

77-Li Zuo, Ying-Chun Ma, Yu-Hong Zhou, Mei Wang, Guo-Bin Xu, Hai-Yan Wang: Application of GFR- Estimating Equations in Chinese Patients With Chronic Kidney Disease. Am J Kidney Dis, Vol 45, No3, 2005:pp 463-472. Cerca con Google

78- Stoves J, Lindley EJ, Barnfield MC, et al.: MDRD equation estimates of glomerular filtration rate in potential living Kidney donors and renal transplant recipients with impaired graft function. Nephrol Dial Transplant 2002;17: 2036-2037. Cerca con Google

79- Rule AD., Larson T S.,. Bergstralh EJ et al.: Using Serum Creatinine to estimatee Glomerular filtration rate: Accuracy in good health and in Chronic Kidney Disease. Ann Intern Med. 2004;141:929-937. Cerca con Google

80- Taylor TP, Wang W, Shrayyef MZ, De Anna C,. Hutchison FN, Gadegbeku CA: Glomerular filtration rate can be accurately predicted using lean mass measured by dual-energy X-ray absorptiometry. Nephrol Dial Transplant 2006;21:84-87. Cerca con Google

81- Virga G, Gaspari F., Thomaseth K, Cara M., Mastrosimone R., Rossi V.: A new equation for estimating renal function using Age, Body Weight and serum creatinine. Nephron Clin Pract 2007;105: c43-c53. Cerca con Google

82- Fliser D, Ritz E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am. J Kidney Dis. 2001 Jan; 37 (1): 79-83. Cerca con Google

83- Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivela SL, Irjala K. Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin C. J Inter Med. 2004 Jul; 256 (1): 70-8. Cerca con Google

84- Zamboni M, Armellini F, Harris T, Turcato E, Micciolo R, Bergamo-Andreis IA, Bosello O. Effects of age on body fat distribution and cardiovascular risk factors in women. Am J Clin Nutr 1997; 66: 111-115. Cerca con Google

85- Zamboni M, Turcato E, Santana H, Maggi S, Harris T, Pietrobelli A, Heymsfield SB, Micciolo R, Bosello O. The relationship between body composition and physical performance in older women. J Am Geratr Soc 1999. Cerca con Google

86- Kehayas J, Fiatarone MA, Zhuang H, Roubenoff R. Total body potassium and body fat: relevance to aging. Am J Cl Nutr 1997; 66: 904-910 Cerca con Google

87- Baumgartner RN, Stauber PM, Mc Hugh D, Koehler KM, Garry PJ. Crosssectional age differences in body composition in person 60+ years of age. J Gerontol Med Sci 1995; 50(6): 307-316. Cerca con Google

88- Zamboni M, Armellini F, Muller D, Sorkin J, Turcato E, Andres R, Bosello O. Methodological and clinical aspects of subcutaneous fat distribution. In: Angel A, Anderson H, Bouchard C, Lau D, Leiter L, Mendelson R (eds). Progress in obesity research: 7. Jhon Libbey, London, Paris, Rome, 1996, pp 145-150 Cerca con Google

89- Enzi G, Gasparo M, Bianchetti PR, Fiore D, Semisa M, Zurlo F. Subcutaneous and visceral fat distribution according to sex, age and overweight, evaluated by computed tomography. Am J Clin Nutr 1986; 44: 739-746. Cerca con Google

90- Borkan G, Hults D, Gerzof S, Robbins A, Silbert C. Age changes in body composition revealed by computed tomography. J Gerontology 1983; 38: 673. Cerca con Google

91- Kuk JL, Lee SJ, Heymsfield SB, Ross R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 2005; 81: 1330-1334. Cerca con Google

92- Dutta C. Significance of sarcopenia in the elderly. Am Soc Nutr Sci 1997; 992S-993S. Cerca con Google

93- Roubenoff RN, HughesVA. Sarcopenia: current concepts. J Gerontol 2000; 55(12): M716-M724. Cerca con Google

94- Visser M, Langlois J, Guralnik JM, Cauley JA, Kronmal RA, Robbins J, Williamson JD, Harris TB. High body fatness, but not low fat-free mass, predicts disability in older men and women: the cardiovascular Health Study. Am J Clin Nutr. 1998; 68: 584-590. Cerca con Google

95- Visser M, Kritchevsky SB, Goodpaster BH, Newmann AB, Nvitt M, Stamm E, Harris TB. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition Study. J Am Geriatr Soc 2002; 50: 897-904. Cerca con Google

96- Gallagher D, Visser M, Wang Z, Harris TB, Pierson RN Jr, Heymsfield SB. Metabolically active component of fat-free mass: influence of age, adiposity and gender. Metabolism 1996; 45(8):992-997. Cerca con Google

97- St-Onge MP, Wang J, Shen W, Wang ZM, Allison DB, Heshka S, Pierson RN Jr, Heymsfield. Dual-energy X-ray absorpiometry measured lean soft tissue mass: different relation to body cell mass across the adult life span. J Gerontology 2004; 59(8): 796-800. Cerca con Google

98- Lexell J. Human aging, muscle mass and fiber type composition. J Gerontology SerA 1995; 50A: 11-16. Cerca con Google

99- Sreekumaran N. Age-related changes in muscle. Mayo Clin Proc 2000; 75(suppl): S14-S18. Cerca con Google

100- Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovascular Dis 2008; 18: 388-395. Cerca con Google

101- Oksa H, Pasternack A, Luomala M, Sirviö M: Progression of chronic renal failure. Nephron 1986;35:31-34. Cerca con Google

102- Kirschbaum BB: Analysis of reciprocal creatinine plots in renal failure. Am J Med Sci 1986;29:401-404. Cerca con Google

103- Coresh J, Astor BC, McQuillan G, et al. : Calibration and random variation of the serum assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002;39: 920-929. Cerca con Google

104- Gaspari F., Ferrari S, Stucchi N, Centemeri E, Carrara F, Pellegrino M, et al.: Performance of different prediction equations foe estimating renal function in Kidney transplantation. Am J Transplant 2004; 4:1826-1835. Cerca con Google

105- Hoek FJ, Kemperman FAW, Krediet RT. A comparison between cystatin C plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transpl 2003; 18: 2024-31. Cerca con Google

106- Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;i; 307-310. Cerca con Google

107- Baumgartner RN, Stauber PM, McHugh D, Koehler KM et al. Cross-sectional age differences in body composition in persons 60+ years of age. J Gerontol Med Sci 1995; 50: 307-16. Cerca con Google

108- Forbes GB. Longitudinal change in adult fat free mass: influence of body weight. Am J Clin Nutr 1999; 70: 1025-31. Cerca con Google

109- Pollock Ml, Mengelkoch LJ, Graves JE et al. Twenty-year follow-up of aerobic power and body composition of older track athletes. J Appl Physiol 1997; 82:1508-16. Cerca con Google

110- Zamboni M, Zoico E, Scartezzini T et al. Body composition changes in stable weight elderly subjects: the effect of sex. Aging Clin Exp Res 2003; 15:321-7. Cerca con Google

111- Filler G, Bökenkamp A, Hofmann, Le Bricon T., et al.: Cystatin C as a marker of GFR: history, indication, and future research. Clinical Biochemistry 2005; 38:1-8. Cerca con Google

112- Macdonald, Martora S., Jibani M., Roberts G., et al.: GFR Estimation using Cystatin C Is not indipendent of Body Composition.Am J Kidney Dis 2006; 48 (5):712-19. Cerca con Google

113- Keller CR, Odden MC, Fried LF et al. Kidney function and markers of inflammationi in elderly persons without chronic kidney disease: the Health Aging and Body Composition Study. Kidney Int 2007; 71: 239-44. Cerca con Google

114- Poggio ED, Wang X, Greene T, Van Lente F, Hall PM: Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease.J Am Soc Nephrol 2005;16:459-466. Cerca con Google

115- Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P: Predictive performance of the modification of diet in renal disease and Cockroft-Gault equations for estimating renal function. J Am Soc Nephrol 2005;16: 763-773. Cerca con Google

116- Rule AD, Gussak HM, Pond GR, Bergstralh EJ, Stegall MD, Cosio FG, Larson TS: Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis 2004;43:112-119. Cerca con Google

117- Gaspari F, Ferrari S, Stucchi N, Centemeri E, Carrara F, Pellegrino M, et al.: Performance of different prediction equations foe estimating renal function in Kidney transplantation. Am J Transplant 2004; 4:1826-1835. Cerca con Google

118- Levey AS, Greene T, Kusek JW, Beck GJ: A simplified equation to predict glomerular filtration rate from serum creatinine (abstract).J Am Soc Nephrol 2000;11: A0828. Cerca con Google

119- Cirillo M, Anastasio P, De Santo NG: Relation of gender, age, and body mass index to errors in predicted kidney function. Nephrol Dial Transplant 2005; 20:1791-1798. Cerca con Google

120- Donadio C, Annalisa L, Tramonti G, Bianchi C.:Creatinine clearance predicted from body cell mass is a good indicator of renal function. Kidney int 1997; [Suppl 63]: S166-S168. Cerca con Google

121- Millward DJ. Sufficient protein for our elders? Am J Clin Nutr 2008; 88:1187-8. Cerca con Google

122- Campbell WW, Craig AJ, McCabe JP, Carnell NS. Dietary protein requirements of younger and older adults. Am J Clin Nutr 2008; 88: 1322-9. Cerca con Google

123- Walrand S, Short KR, Bigelow ML, Sweat AJ, Hutson SM, Nair KS. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab 2008; 295: E921-E928. Cerca con Google

124- Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2008 Jan;7(1):2-12. Cerca con Google

125- Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 2008; 9(4):213-28. Cerca con Google

126- Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, Rahman M, Deysher AE, Zang Y, Schmid CH, Levey AS.: Evaluation of the Modification of Diet in renal Disease Study equation in a large, diverse population. J Am Soc Nephrol 2007; 18:2749-57. Cerca con Google

127- Lim WH, Lim EEM, McDonald S.: Lean body mass-adjusted Cockcroft and Gault formula improves the estimation of glomerular filtration rate in subjects with normal-range serum creatinine. Nephrology 2006; 11: 250-6 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record