Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Moretti, Irene (2009) Role of the transcription factor MRF4 in adult skeletal muscle. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

Myogenesis is a dynamic process in which mononucleated undifferentiated myoblasts first proliferate, then withdraw from the cell cycle and finally differentiate and fuse to form the multinucleated mature muscle fibers. This process is controlled by members of a family of muscle-specific basic helix-loop-helix (bHLH) proteins that, in concert with members of the ubiquitous E2A and myocytes enhancers factor 2 (MEF2) families, activate the differentiation program by inducing transcription of regulatory and structural muscle specific gene. The MRF proteins contains one or two transactivation domain, a conserved basic DNA-binding domain essential for sequence-specific DNA binding, and an HLH motif required for heterodimerization.
MRFs specific knockout studies suggest that MyoD and Myf5 are required for commitment to the myogenic lineage, whereas myogenin plays a critical role in the expression of the terminal muscle phenotype; Mrf4 partly subserves both roles.
In the adult skeletal muscle, the expression of MRFs considerably changes: Myf5 is not expressed in adult fibers, MyoD and myogenin are expressed at low levels and respectively in fast muscle and in slow muscle, Mrf4 is the only muscle regulatory factors expresses at high levels in adult skeletal muscle, but its role is still unknown.
The aim of this work is study the expression and the physiological role of Mrf4 in the adult skeletal muscle.
We demonstrate that Mrf4 is similarly expressed at mRNA and protein levels in the slow soleus muscle and in the fast EDL muscle, but this transcription factor has a predominantly nuclear localization in soleus and a predominantly cytosolic localization in EDL. We also demonstrate that Mrf4 expression is activity dependent using two experimental models: elettrostimulation and denervation (inactivity condition). When EDL muscles were stimulates with a slow pattern, Mrf4 translocates to the nucleus, whereas with a fast pattern Mrf4 remains in the cytoplasm. Moreover, after denervation Mrf4 accumulates in to the nucleus. This observation suggests that MRF4 may undergo nucleo-cytoplasmic shuttling, as in the case of other transcription factors, but not describes for the MRFs.
To get further insight about the function of Mrf4 in adult muscle we examined the effect of Mrf4 overexpression and knockdown using an in vivo transfection approach in adult rat skeletal muscles. We evaluated if Mrf4 is involved in the regulation of two features of muscle phenotype: the muscle growth and the fiber type specification.
Muscle growth: we demonstrate that Mrf4 silencing in adult and regenerating muscles induces hypertrophy. On the other hand, the overexpression of Mrf4 cDNA in regenerating muscles, but not in the adult muscles, causes a decrease of cross sectional area of transfected fibers. Moreover the MRF4 knockdown prevents denervation atrophy. This data suggest that Mrf4 acts as a negative regulator of muscle fiber growth.
Fiber type specification: we used two luciferase reporter under control of the MyHC slow (MyHC slow-Luc) and the MyHC 2B (MyHC 2B-Luc) promoter. We demonstrate that Mrf4 knockdown in adult skeletal muscle inhibits the activity of MyHC slow-Luc and induces the activity of MyHC 2B-Luc; on the other hand, this reporter is activated by Mrf4 overexpression. We have also study the effect of Mrf4 silencing on endogenous gene: we demonstrate that Mrf4 knockdown blocks the expression of endogenous MyHC slow. This data suggest that Mrf4 is involved in the induction and in the maintenance of slow gene program.

Abstract (italiano)

Lo sviluppo del muscolo scheletrico è controllato da una famiglia di fattori trascrizionali, chiamati Muscle Regulatory Factors (MRFs), i cui membri sono MyoD, Myf5, Mrf4 e miogenina. Questi fattori trascrizionali sono in grado di dare inizio al programma miogenico, convertendo cellule non muscolari in derivati miogenici.
Gli MRFs appartengono alla famiglia di proteine bHLH (basic helix-loop-helix) e presentano motivi strutturali caratteristici: uno o due domini di transattivazione, un dominio basico di legame al DNA molto conservato e la regione HLH, necessaria per l’eterodimerizzazione. È stato osservato in vitro ed in vivo che i fattori MRF sono in grado di eterodimerizzare con un’altra famiglia di proteine bHLH, le proteine E, e di legarsi al DNA su una sequenza consenso specifica, detta E box (CANNTG). Questo legame permette l’attivazione trascrizionale di specifici geni muscolari, come ?-actina, MCK (Muscle Creatin Kinase) e troponina I.
L’analisi di diversi knockout degli MRFs ha permesso di definire ruoli diversi nello sviluppo muscolare per i vari membri della famiglia. In particolare, Myf5 e MyoD sono induttori del programma miogenico, mentre miogenina ha un’azione fondamentale nelle fasi successive del differenziamento dei mioblasti. Mrf4 è l’unico fattore ad essere coinvolto sia nella fase iniziale di induzione, che in stadi avanzati del differenziamento miogenico.
Nel muscolo scheletrico adulto l’espressione degli MRFs viene mantenuta, ad eccezione di Myf5. In particolare, MyoD e miogenina sono espressi a livelli bassi, e sono più abbondanti rispettivamente nelle fibre di tipo rapido e di tipo lento. Mrf4 è l’unico dei quattro fattori trascrizionali a mantenere livelli di espressione molto elevati nel muscolo scheletrico adulto, ma la sua distribuzione in diversi tipi di muscoli (rapidi e lenti) ed il suo ruolo fisiologico non sono stati ancora caratterizzati.
Questo progetto ha avuto come obiettivo principale quello di definire il profilo di espressione e il ruolo di Mrf4 nel muscolo scheletrico adulto.
Abbiamo pertanto analizzato l’espressione di Mrf4 in un muscolo tipicamente lento, il soleo, ed in un muscolo rapido, l’extensor digitorum longus (EDL). I nostri risultati indicano che la sua espressione è paragonabile nei due tipi di muscoli, sia a livello di mRNA che a livello di proteina. Abbiamo invece messo in luce delle differenze nella localizzazione di Mrf4, che risulta essere prevalentemente nucleare nel soleo, mentre l’EDL presenta solo alcuni nuclei positivi ed una marcatura diffusa nel citoplasma. Per chiarire se l’espressione di Mrf4 fosse controllata dall’attività nervosa, ci siamo serviti di due modelli sperimentali in vivo su ratto: l'eletrostimolazione e la denervazione (condizione di inattività). Mrf4, in seguito a stimolazione di tipo lento, trasloca nei nuclei, mentre rimane nel citosol se stimolato con un pattern di tipo rapido. In seguito a denervazione Mrf4 sia accumula nei nuclei sia nel soleo che nell’EDL. Queste osservazioni suggeriscono che Mrf4 possa andare incontro ad un fenomeno di shuttling nucleo-citoplasmatico, fenomeno comune a vari fattori trascrizionali ma non descritto nel caso degli MRFs.
Per comprendere il suo ruolo fisiologico nel muscolo scheletrico adulto, abbiamo effettuato esperimenti di iperespressione e di silenziamento genico. Abbiamo valutato se Mrf4 potesse essere coinvolto nella regolazione di due aspetti del fenotipo muscolare: la crescita e la specificazione del tipo di fibre.
Regolazione della crescita muscolare: abbiamo dimostrato che il silenziamento genico di Mrf4 in muscoli adulti e rigeneranti induce ipertrofia delle fibre trasfettate; per contro l’iperespressione di Mrf4 in muscoli rigeneranti, ma non adulti, causa una diminuzione dell’area delle fibre trasfettate. Abbiamo inoltre dimostrato che Mrf4 previene l’atrofia indotta da denervazione. Questi dati suggeriscono che Mrf4 agisce come regolatore negativo della crescita.
Specificazione del tipo di fibra: abbiamo utilizzato due reporter luciferasi sotto il controllo dei promotori della catena pesante della miosina lenta (MyHC slow-Luc) e della miosina rapida 2B (MyHC 2B-Luc). Abbiamo dimostrato che il silenziamento genico di Mrf4 in muscolo scheletrico adulto inibisce l’attività del reporter MyHC slow-Luc mentre induce quella del reporter MyHC 2B-Luc. Al contrario l’iperespressione di Mrf4 con il promotore della miosina rapida induce diminuzione dell’attività, mentre non modifica l’attività della miosina lenta. Abbiamo inoltre analizzato l’effetto del silenziamento di Mrf4 su geni endogeni in muscolo rigenerante e abbiamo dimostrato che il silenziamento genico di Mrf4 blocca l’espressione della miosina lenta indotta dal nervo. Questi esperimenti dimostrano quindi che Mrf4 attiva il programma genico lento e inibisce quello rapido, contribuendo ai meccanismi di induzione e di mantenimento dei programmi genici coinvolti nella specificazione del tipo di fibra.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Schiaffino, Stefano
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > NEUROBIOLOGIA
Data di deposito della tesi:30 Gennaio 2009
Anno di Pubblicazione:Gennaio 2009
Parole chiave (italiano / inglese):MRF4, muscle growth, fiber type
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:1783
Depositato il:30 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alessi, D.R., M. Andjelkovic, B. Caudwell, P. Cron, N. Morrice, P. Cohen, and B.A. Hemmings. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541-51. Cerca con Google

Alessi, D.R., S.R. James, C.P. Downes, A.B. Holmes, P.R. Gaffney, C.B. Reese, and P. Cohen. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 7:261-9. Cerca con Google

Amirouche, A., A.C. Durieux, S. Banzet, N. Koulmann, R. Bonnefoy, C. Mouret, X. Bigard, A. Peinnequin, and D. Freyssenet. 2009. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology. 150:286-94. Cerca con Google

Amthor, H., G. Nicholas, I. McKinnell, C.F. Kemp, M. Sharma, R. Kambadur, and K. Patel. 2004. Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol. 270:19-30. Cerca con Google

Andjelkovic, M., D.R. Alessi, R. Meier, A. Fernandez, N.J. Lamb, M. Frech, P. Cron, P. Cohen, J.M. Lucocq, and B.A. Hemmings. 1997. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 272:31515-24. Cerca con Google

Andjelkovic, M., T. Jakubowicz, P. Cron, X.F. Ming, J.W. Han, and B.A. Hemmings. 1996. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A. 93:5699-704. Cerca con Google

Arber, S., G. Halder, and P. Caroni. 1994. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell. 79:221-31. Cerca con Google

Arnold, H.H., and B. Winter. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev. 8:539-44. Cerca con Google

Ausoni, S., L. Gorza, S. Schiaffino, K. Gundersen, and T. Lomo. 1990. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci. 10:153-60. Cerca con Google

Benezra, R., R.L. Davis, D. Lockshon, D.L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 61:49-59. Cerca con Google

Bergstrom, D.A., B.H. Penn, A. Strand, R.L. Perry, M.A. Rudnicki, and S.J. Tapscott. 2002. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell. 9:587-600. Cerca con Google

Bergstrom, D.A., and S.J. Tapscott. 2001. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Mol Cell Biol. 21:2404-12. Cerca con Google

Berkes, C.A., and S.J. Tapscott. 2005. MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol. 16:585-95. Cerca con Google

Biesiada, E., Y. Hamamori, L. Kedes, and V. Sartorelli. 1999. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol Cell Biol. 19:2577-84. Cerca con Google

Black, B.L., and E.N. Olson. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 14:167-96. Cerca con Google

Blackwell, T.K., and H. Weintraub. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science. 250:1104-10. Cerca con Google

Bober, E., G.E. Lyons, T. Braun, G. Cossu, M. Buckingham, and H.H. Arnold. 1991. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol. 113:1255-65. Cerca con Google

Bodine, S.C., T.N. Stitt, M. Gonzalez, W.O. Kline, G.L. Stover, R. Bauerlein, E. Zlotchenko, A. Scrimgeour, J.C. Lawrence, D.J. Glass, and G.D. Yancopoulos. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 3:1014-9. Cerca con Google

Bohni, R., J. Riesgo-Escovar, S. Oldham, W. Brogiolo, H. Stocker, B.F. Andruss, K. Beckingham, and E. Hafen. 1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell. 97:865-75. Cerca con Google

Bottinelli, R., and C. Reggiani. 2000. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol. 73:195-262. Cerca con Google

Braun, T., E. Bober, M.A. Rudnicki, R. Jaenisch, and H.H. Arnold. 1994. MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development. 120:3083-92. Cerca con Google

Braun, T., M.A. Rudnicki, H.H. Arnold, and R. Jaenisch. 1992. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell. 71:369-82. Cerca con Google

Braun, T., B. Winter, E. Bober, and H.H. Arnold. 1990. Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5. Nature. 346:663-5. Cerca con Google

Buckingham, M. 2001. Skeletal muscle formation in vertebrates. Curr Opin Genet Dev. 11:440-8. Cerca con Google

Bueno, O.F., B.J. Wilkins, K.M. Tymitz, B.J. Glascock, T.F. Kimball, J.N. Lorenz, and J.D. Molkentin. 2002. Impaired cardiac hypertrophic response in Calcineurin Abeta -deficient mice. Proc Natl Acad Sci U S A. 99:4586-91. Cerca con Google

Burnett, P.E., R.K. Barrow, N.A. Cohen, S.H. Snyder, and D.M. Sabatini. 1998. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 95:1432-7. Cerca con Google

Caiozzo, V.J., M.J. Baker, and K.M. Baldwin. 1998. Novel transitions in MHC isoforms: separate and combined effects of thyroid hormone and mechanical unloading. J Appl Physiol. 85:2237-48. Cerca con Google

Caiozzo, V.J., F. Haddad, M. Baker, S. McCue, and K.M. Baldwin. 2000. MHC polymorphism in rodent plantaris muscle: effects of mechanical overload and hypothyroidism. Am J Physiol Cell Physiol. 278:C709-17. Cerca con Google

Carvajal, J.J., A. Keith, and P.W. Rigby. 2008. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5. Genes Dev. 22:265-76. Cerca con Google

Ceccarelli, E., M.J. McGrew, T. Nguyen, U. Grieshammer, D. Horgan, S.H. Hughes, and N. Rosenthal. 1999. An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation. Dev Biol. 213:217-29. Cerca con Google

Chakraborty, T., T. Brennan, and E. Olson. 1991. Differential trans-activation of a muscle-specific enhancer by myogenic helix-loop-helix proteins is separable from DNA binding. J Biol Chem. 266:2878-82. Cerca con Google

Chen, C.M., N. Kraut, M. Groudine, and H. Weintraub. 1996. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell. 86:731-41. Cerca con Google

Chen, W.S., P.Z. Xu, K. Gottlob, M.L. Chen, K. Sokol, T. Shiyanova, I. Roninson, W. Weng, R. Suzuki, K. Tobe, T. Kadowaki, and N. Hay. 2001. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15:2203-8. Cerca con Google

Chin, E.R., E.N. Olson, J.A. Richardson, Q. Yang, C. Humphries, J.M. Shelton, H. Wu, W. Zhu, R. Bassel-Duby, and R.S. Williams. 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12:2499-509. Cerca con Google

Choi, J., M.L. Costa, C.S. Mermelstein, C. Chagas, S. Holtzer, and H. Holtzer. 1990. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A. 87:7988-92. Cerca con Google

Choi, K.M., L.P. McMahon, and J.C. Lawrence, Jr. 2003. Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem. 278:19667-73. Cerca con Google

Christ, B., and C.P. Ordahl. 1995. Early stages of chick somite development. Anat Embryol (Berl). 191:381-96. Cerca con Google

Coleman, M.E., F. DeMayo, K.C. Yin, H.M. Lee, R. Geske, C. Montgomery, and R.J. Schwartz. 1995. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 270:12109-16. Cerca con Google

Cossu, G., and S. Biressi. 2005. Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol. 16:623-31. Cerca con Google

Crabtree, G.R., and E.N. Olson. 2002. NFAT signaling: choreographing the social lives of cells. Cell. 109 Suppl:S67-79. Cerca con Google

Cross, D.A., D.R. Alessi, P. Cohen, M. Andjelkovich, and B.A. Hemmings. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785-9. Cerca con Google

Davis, R.L., P.F. Cheng, A.B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 60:733-46. Cerca con Google

Davis, R.L., H. Weintraub, and A.B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 51:987-1000. Cerca con Google

DeVol, D.L., P. Rotwein, J.L. Sadow, J. Novakofski, and P.J. Bechtel. 1990. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol. 259:E89-95. Cerca con Google

Dunglison, G.F., P.J. Scotting, and P.M. Wigmore. 1999. Rat embryonic myoblasts are restricted to forming primary fibres while later myogenic populations are pluripotent. Mech Dev. 87:11-9. Cerca con Google

Dunn, S.E., J.L. Burns, and R.N. Michel. 1999. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem. 274:21908-12. Cerca con Google

Dunn, S.E., E.R. Chin, and R.N. Michel. 2000. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol. 151:663-72. Cerca con Google

Duxson, M.J., Y. Usson, and A.J. Harris. 1989. The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development. 107:743-50. Cerca con Google

Eftimie, R., H.R. Brenner, and A. Buonanno. 1991. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A. 88:1349-53. Cerca con Google

Enesco, M., and D. Puddy. 1964. Increase in the Number of Nuclei and Weight in Skeletal Muscle of Rats of Various Ages. Am J Anat. 114:235-44. Cerca con Google

Evans, D., H. Baillie, A. Caswell, and P. Wigmore. 1994. During fetal muscle development, clones of cells contribute to both primary and secondary fibers. Dev Biol. 162:348-53. Cerca con Google

Fuentes, J.J., L. Genesca, T.J. Kingsbury, K.W. Cunningham, M. Perez-Riba, X. Estivill, and S. de la Luna. 2000. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet. 9:1681-90. Cerca con Google

Goberdhan, D.C., N. Paricio, E.C. Goodman, M. Mlodzik, and C. Wilson. 1999. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13:3244-58. Cerca con Google

Gomes, M.D., S.H. Lecker, R.T. Jagoe, A. Navon, and A.L. Goldberg. 2001. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 98:14440-5. Cerca con Google

Gonzalez-Cadavid, N.F., W.E. Taylor, K. Yarasheski, I. Sinha-Hikim, K. Ma, S. Ezzat, R. Shen, R. Lalani, S. Asa, M. Mamita, G. Nair, S. Arver, and S. Bhasin. 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A. 95:14938-43. Cerca con Google

Gorman, A.L., and A. Hermann. 1982. Quantitative differences in the currents of bursting and beating molluscan pace-maker neurones. J Physiol. 333:681-99. Cerca con Google

Gossett, L.A., D.J. Kelvin, E.A. Sternberg, and E.N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 9:5022-33. Cerca con Google

Grimby, G., C. Broberg, I. Krotkiewska, and M. Krotkiewski. 1976. Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med. 8:37-42. Cerca con Google

Gustafson, T.A., and L. Kedes. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol Cell Biol. 9:3269-83. Cerca con Google

Hagiwara, N., M. Yeh, and A. Liu. 2007. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn. 236:2062-76. Cerca con Google

Haldar, M., G. Karan, P. Tvrdik, and M.R. Capecchi. 2008. Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev Cell. 14:437-45. Cerca con Google

Hamamori, Y., H.Y. Wu, V. Sartorelli, and L. Kedes. 1997. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol. 17:6563-73. Cerca con Google

Hara, K., Y. Maruki, X. Long, K. Yoshino, N. Oshiro, S. Hidayat, C. Tokunaga, J. Avruch, and K. Yonezawa. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 110:177-89. Cerca con Google

Hara, K., K. Yonezawa, Q.P. Weng, M.T. Kozlowski, C. Belham, and J. Avruch. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 273:14484-94. Cerca con Google

Hardt, S.E., and J. Sadoshima. 2002. Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res. 90:1055-63. Cerca con Google

Hardy, S., Y. Kong, and S.F. Konieczny. 1993. Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol Cell Biol. 13:5943-56. Cerca con Google

Hasegawa, K., E. Arakawa, S. Oda, and Y. Matsuda. 1997. Molecular cloning and expression of murine smooth muscle myosin heavy chains. Biochem Biophys Res Commun. 232:313-6. Cerca con Google

Hasty, P., A. Bradley, J.H. Morris, D.G. Edmondson, J.M. Venuti, E.N. Olson, and W.H. Klein. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 364:501-6. Cerca con Google

Hennig, R., and T. Lomo. 1987. Effects of chronic stimulation on the size and speed of long-term denervated and innervated rat fast and slow skeletal muscles. Acta Physiol Scand. 130:115-31. Cerca con Google

Hill, J.J., M.V. Davies, A.A. Pearson, J.H. Wang, R.M. Hewick, N.M. Wolfman, and Y. Qiu. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem. 277:40735-41. Cerca con Google

Hinits, Y., D.P. Osborn, J.J. Carvajal, P.W. Rigby, and S.M. Hughes. 2007. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns. 7:738-45. Cerca con Google

Horsley, V., B.B. Friday, S. Matteson, K.M. Kegley, J. Gephart, and G.K. Pavlath. 2001. Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol. 153:329-38. Cerca con Google

Huey, K.A., R.R. Roy, K.M. Baldwin, and V.R. Edgerton. 2001. Temporal effects of inactivty on myosin heavy chain gene expression in rat slow muscle. Muscle Nerve. 24:517-26. Cerca con Google

Hughes, S.M., J.M. Taylor, S.J. Tapscott, C.M. Gurley, W.J. Carter, and C.A. Peterson. 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 118:1137-47. Cerca con Google

Inoki, K., Y. Li, T. Zhu, J. Wu, and K.L. Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 4:648-57. Cerca con Google

Ito, T., T. Ikehara, T. Nakagawa, W.L. Kraus, and M. Muramatsu. 2000. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Genes Dev. 14:1899-907. Cerca con Google

Jackman, R.W., and S.C. Kandarian. 2004. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 287:C834-43. Cerca con Google

Jagoe, R.T., and A.L. Goldberg. 2001. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care. 4:183-90. Cerca con Google

Johnson, S.E., X. Wang, S. Hardy, E.J. Taparowsky, and S.F. Konieczny. 1996. Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation. Mol Cell Biol. 16:1604-13. Cerca con Google

Joulia-Ekaza, D., and G. Cabello. 2007. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 7:310-5. Cerca con Google

Kablar, B., A. Asakura, K. Krastel, C. Ying, L.L. May, D.J. Goldhamer, and M.A. Rudnicki. 1998. MyoD and Myf-5 define the specification of musculature of distinct embryonic origin. Biochem Cell Biol. 76:1079-91. Cerca con Google

Kamei, Y., S. Miura, M. Suzuki, Y. Kai, J. Mizukami, T. Taniguchi, K. Mochida, T. Hata, J. Matsuda, H. Aburatani, I. Nishino, and O. Ezaki. 2004. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem. 279:41114-23. Cerca con Google

Kassar-Duchossoy, L., B. Gayraud-Morel, D. Gomes, D. Rocancourt, M. Buckingham, V. Shinin, and S. Tajbakhsh. 2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature. 431:466-71. Cerca con Google

Kassar-Duchossoy, L., E. Giacone, B. Gayraud-Morel, A. Jory, D. Gomes, and S. Tajbakhsh. 2005. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 19:1426-31. Cerca con Google

Kaul, A., M. Koster, H. Neuhaus, and T. Braun. 2000. Myf-5 revisited: loss of early myotome formation does not lead to a rib phenotype in homozygous Myf-5 mutant mice. Cell. 102:17-9. Cerca con Google

Kegley, K.M., J. Gephart, G.L. Warren, and G.K. Pavlath. 2001. Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol. 232:115-26. Cerca con Google

Kelly, A.M., and S.I. Zacks. 1969. The histogenesis of rat intercostal muscle. J Cell Biol. 42:135-53. Cerca con Google

Kim, D.H., D.D. Sarbassov, S.M. Ali, J.E. King, R.R. Latek, H. Erdjument-Bromage, P. Tempst, and D.M. Sabatini. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 110:163-75. Cerca con Google

Kirschbaum, B.J., A. Heilig, K.T. Hartner, and D. Pette. 1989. Electrostimulation-induced fast-to-slow transitions of myosin light and heavy chains in rabbit fast-twitch muscle at the mRNA level. FEBS Lett. 243:123-6. Cerca con Google

Kirschbaum, B.J., H.B. Kucher, A. Termin, A.M. Kelly, and D. Pette. 1990. Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle. J Biol Chem. 265:13974-80. Cerca con Google

Kong, Y., M.J. Flick, A.J. Kudla, and S.F. Konieczny. 1997. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol. 17:4750-60. Cerca con Google

Kraus, B., and D. Pette. 1997. Quantification of MyoD, myogenin, MRF4 and Id-1 by reverse-transcriptase polymerase chain reaction in rat muscles--effects of hypothyroidism and chronic low-frequency stimulation. Eur J Biochem. 247:98-106. Cerca con Google

Lai, K.M., M. Gonzalez, W.T. Poueymirou, W.O. Kline, E. Na, E. Zlotchenko, T.N. Stitt, A.N. Economides, G.D. Yancopoulos, and D.J. Glass. 2004. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol. 24:9295-304. Cerca con Google

Lassar, A., and A. Munsterberg. 1994. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr Opin Cell Biol. 6:432-42. Cerca con Google

Lassar, A.B., J.N. Buskin, D. Lockshon, R.L. Davis, S. Apone, S.D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 58:823-31. Cerca con Google

Lassar, A.B., B.M. Paterson, and H. Weintraub. 1986. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell. 47:649-56. Cerca con Google

Lee, S.J., and A.C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A. 98:9306-11. Cerca con Google

Lee, S.W., G. Dai, Z. Hu, X. Wang, J. Du, and W.E. Mitch. 2004. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol. 15:1537-45. Cerca con Google

Leevers, S.J., D. Weinkove, L.K. MacDougall, E. Hafen, and M.D. Waterfield. 1996. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J. 15:6584-94. Cerca con Google

Lemercier, C., R.Q. To, R.A. Carrasco, and S.F. Konieczny. 1998. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD. EMBO J. 17:1412-22. Cerca con Google

Li, L., R. Heller-Harrison, M. Czech, and E.N. Olson. 1992. Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. Mol Cell Biol. 12:4478-85. Cerca con Google

Liu, J.P., J. Baker, A.S. Perkins, E.J. Robertson, and A. Efstratiadis. 1993. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 75:59-72. Cerca con Google

Lu, J., R. Webb, J.A. Richardson, and E.N. Olson. 1999. MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci U S A. 96:552-7. Cerca con Google

Maggs, A.M., P. Taylor-Harris, M. Peckham, and S.M. Hughes. 2000. Evidence for differential post-translational modifications of slow myosin heavy chain during murine skeletal muscle development. J Muscle Res Cell Motil. 21:101-13. Cerca con Google

Mak, K.L., R.Q. To, Y. Kong, and S.F. Konieczny. 1992. The MRF4 activation domain is required to induce muscle-specific gene expression. Mol Cell Biol. 12:4334-46. Cerca con Google

Matsui, T., T. Nagoshi, and A. Rosenzweig. 2003. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle. 2:220-3. Cerca con Google

McCullagh, K.J., E. Calabria, G. Pallafacchina, S. Ciciliot, A.L. Serrano, C. Argentini, J.M. Kalhovde, T. Lomo, and S. Schiaffino. 2004. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A. 101:10590-5. Cerca con Google

McLennan, I.S. 1994. Neurogenic and myogenic regulation of skeletal muscle formation: a critical re-evaluation. Prog Neurobiol. 44:119-40. Cerca con Google

McPherron, A.C., A.M. Lawler, and S.J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 387:83-90. Cerca con Google

Meissner, Y., Y. Pellequer, and A. Lamprecht. 2006. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int J Pharm. 316:138-43. Cerca con Google

Miner, J.H., and B. Wold. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A. 87:1089-93. Cerca con Google

Moelling, K., K. Schad, M. Bosse, S. Zimmermann, and M. Schweneker. 2002. Regulation of Raf-Akt Cross-talk. J Biol Chem. 277:31099-106. Cerca con Google

Molkentin, J.D., B.L. Black, J.F. Martin, and E.N. Olson. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 83:1125-36. Cerca con Google

Molkentin, J.D., J.R. Lu, C.L. Antos, B. Markham, J. Richardson, J. Robbins, S.R. Grant, and E.N. Olson. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93:215-28. Cerca con Google

Molloy, S.S., L. Thomas, J.K. VanSlyke, P.E. Stenberg, and G. Thomas. 1994. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 13:18-33. Cerca con Google

Montagne, J., M.J. Stewart, H. Stocker, E. Hafen, S.C. Kozma, and G. Thomas. 1999. Drosophila S6 kinase: a regulator of cell size. Science. 285:2126-9. Cerca con Google

Moss, F.P. 1968. The relationship between the dimensions of the fibres and the number of nuclei during normal growth of skeletal muscle in the domestic fowl. Am J Anat. 122:555-63. Cerca con Google

Moss, F.P., and C.P. Leblond. 1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 170:421-35. Cerca con Google

Moss, J.B., E.N. Olson, and R.J. Schwartz. 1996. The myogenic regulatory factor MRF4 represses the cardiac alpha-actin promoter through a negative-acting N-terminal protein domain. J Biol Chem. 271:31688-94. Cerca con Google

Murgia, M., A.L. Serrano, E. Calabria, G. Pallafacchina, T. Lomo, and S. Schiaffino. 2000. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol. 2:142-7. Cerca con Google

Musaro, A., K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E.R. Barton, H.L. Sweeney, and N. Rosenthal. 2001. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 27:195-200. Cerca con Google

Myer, A., E.N. Olson, and W.H. Klein. 2001. MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells. Dev Biol. 229:340-50. Cerca con Google

Nabeshima, Y., K. Hanaoka, M. Hayasaka, E. Esumi, S. Li, and I. Nonaka. 1993. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 364:532-5. Cerca con Google

Nave, B.T., M. Ouwens, D.J. Withers, D.R. Alessi, and P.R. Shepherd. 1999. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 344 Pt 2:427-31. Cerca con Google

Naya, F.J., B. Mercer, J. Shelton, J.A. Richardson, R.S. Williams, and E.N. Olson. 2000. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem. 275:4545-8. Cerca con Google

Nicholas, G., M. Thomas, B. Langley, W. Somers, K. Patel, C.F. Kemp, M. Sharma, and R. Kambadur. 2002. Titin-cap associates with, and regulates secretion of, Myostatin. J Cell Physiol. 193:120-31. Cerca con Google

Olson, E.N., H.H. Arnold, P.W. Rigby, and B.J. Wold. 1996. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell. 85:1-4. Cerca con Google

Olson, E.N., and W.H. Klein. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8:1-8. Cerca con Google

Olson, E.N., M. Perry, and R.A. Schulz. 1995. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol. 172:2-14. Cerca con Google

Pallafacchina, G., E. Calabria, A.L. Serrano, J.M. Kalhovde, and S. Schiaffino. 2002. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A. 99:9213-8. Cerca con Google

Pankov, R., E. Cukierman, K. Clark, K. Matsumoto, C. Hahn, B. Poulin, and K.M. Yamada. 2003. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem. 278:18671-81. Cerca con Google

Patapoutian, A., J.K. Yoon, J.H. Miner, S. Wang, K. Stark, and B. Wold. 1995. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development. 121:3347-58. Cerca con Google

Pavlath, G.K., J.A. Dominov, K.M. Kegley, and J.B. Miller. 2003. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4. Am J Pathol. 162:1685-91. Cerca con Google

Pinney, D.F., S.H. Pearson-White, S.F. Konieczny, K.E. Latham, and C.P. Emerson, Jr. 1988. Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell. 53:781-93. Cerca con Google

Polesskaya, A., I. Naguibneva, L. Fritsch, A. Duquet, S. Ait-Si-Ali, P. Robin, A. Vervisch, L.L. Pritchard, P. Cole, and A. Harel-Bellan. 2001. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J. 20:6816-25. Cerca con Google

Powell-Braxton, L., P. Hollingshead, C. Warburton, M. Dowd, S. Pitts-Meek, D. Dalton, N. Gillett, and T.A. Stewart. 1993. IGF-I is required for normal embryonic growth in mice. Genes Dev. 7:2609-17. Cerca con Google

Puri, P.L., M.L. Avantaggiati, C. Balsano, N. Sang, A. Graessmann, A. Giordano, and M. Levrero. 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16:369-83. Cerca con Google

Rao, A., C. Luo, and P.G. Hogan. 1997. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 15:707-47. Cerca con Google

Relaix, F., D. Rocancourt, A. Mansouri, and M. Buckingham. 2005. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. 435:948-53. Cerca con Google

Resjo, S., O. Goransson, L. Harndahl, S. Zolnierowicz, V. Manganiello, and E. Degerman. 2002. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal. 14:231-8. Cerca con Google

Reynolds, A., D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, and A. Khvorova. 2004. Rational siRNA design for RNA interference. Nat Biotechnol. 22:326-30. Cerca con Google

Reynolds, T.H.t., S.C. Bodine, and J.C. Lawrence, Jr. 2002. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem. 277:17657-62. Cerca con Google

Rommel, C., S.C. Bodine, B.A. Clarke, R. Rossman, L. Nunez, T.N. Stitt, G.D. Yancopoulos, and D.J. Glass. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 3:1009-13. Cerca con Google

Rommel, C., B.A. Clarke, S. Zimmermann, L. Nunez, R. Rossman, K. Reid, K. Moelling, G.D. Yancopoulos, and D.J. Glass. 1999. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 286:1738-41. Cerca con Google

Rothermel, B., R.B. Vega, J. Yang, H. Wu, R. Bassel-Duby, and R.S. Williams. 2000. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J Biol Chem. 275:8719-25. Cerca con Google

Rudnicki, M.A., T. Braun, S. Hinuma, and R. Jaenisch. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 71:383-90. Cerca con Google

Rudnicki, M.A., P.N. Schnegelsberg, R.H. Stead, T. Braun, H.H. Arnold, and R. Jaenisch. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 75:1351-9. Cerca con Google

Sabourin, L.A., and M.A. Rudnicki. 2000. The molecular regulation of myogenesis. Clin Genet. 57:16-25. Cerca con Google

Sacheck, J.M., A. Ohtsuka, S.C. McLary, and A.L. Goldberg. 2004. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab. 287:E591-601. Cerca con Google

Sandri, M., C. Sandri, A. Gilbert, C. Skurk, E. Calabria, A. Picard, K. Walsh, S. Schiaffino, S.H. Lecker, and A.L. Goldberg. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117:399-412. Cerca con Google

Schiaffino, S., and S.P. Bormioli. 1973. Adaptive changes in developing rat skeletal muscle in response to functional overload. Exp Neurol. 40:126-37. Cerca con Google

Schiaffino, S., L. Gorza, S. Sartore, L. Saggin, S. Ausoni, M. Vianello, K. Gundersen, and T. Lomo. 1989. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 10:197-205. Cerca con Google

Schiaffino, S., and C. Reggiani. 1994. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol. 77:493-501. Cerca con Google

Schienda, J., K.A. Engleka, S. Jun, M.S. Hansen, J.A. Epstein, C.J. Tabin, L.M. Kunkel, and G. Kardon. 2006. Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A. 103:945-50. Cerca con Google

Schwarz, J.J., T. Chakraborty, J. Martin, J.M. Zhou, and E.N. Olson. 1992. The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription. Mol Cell Biol. 12:266-75. Cerca con Google

Scott, P.H., G.J. Brunn, A.D. Kohn, R.A. Roth, and J.C. Lawrence, Jr. 1998. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 95:7772-7. Cerca con Google

Serrano, A.L., M. Murgia, G. Pallafacchina, E. Calabria, P. Coniglio, T. Lomo, and S. Schiaffino. 2001. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A. 98:13108-13. Cerca con Google

Shioi, T., J.R. McMullen, P.M. Kang, P.S. Douglas, T. Obata, T.F. Franke, L.C. Cantley, and S. Izumo. 2002. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 22:2799-809. Cerca con Google

Smerdu, V., I. Karsch-Mizrachi, M. Campione, L. Leinwand, and S. Schiaffino. 1994. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol. 267:C1723-8. Cerca con Google

Spangenburg, E.E., D. Le Roith, C.W. Ward, and S.C. Bodine. 2008. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol. 586:283-91. Cerca con Google

Spicer, D.B., J. Rhee, W.L. Cheung, and A.B. Lassar. 1996. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science. 272:1476-80. Cerca con Google

Stambolic, V., A. Suzuki, J.L. de la Pompa, G.M. Brothers, C. Mirtsos, T. Sasaki, J. Ruland, J.M. Penninger, D.P. Siderovski, and T.W. Mak. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 95:29-39. Cerca con Google

Steinbach, W.J., J.L. Reedy, R.A. Cramer, Jr., J.R. Perfect, and J. Heitman. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol. 5:418-30. Cerca con Google

Stitt, T.N., D. Drujan, B.A. Clarke, F. Panaro, Y. Timofeyva, W.O. Kline, M. Gonzalez, G.D. Yancopoulos, and D.J. Glass. 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395-403. Cerca con Google

Suelves, M., F. Lluis, V. Ruiz, A.R. Nebreda, and P. Munoz-Canoves. 2004. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J. 23:365-75. Cerca con Google

Sumariwalla, V.M., and W.H. Klein. 2001. Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. Genesis. 30:239-49. Cerca con Google

Swoap, S.J. 1998. In vivo analysis of the myosin heavy chain IIB promoter region. Am J Physiol. 274:C681-7. Cerca con Google

Termin, A., R.S. Staron, and D. Pette. 1989. Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles. A single-fiber study. Eur J Biochem. 186:749-54. Cerca con Google

Thompson, A.L., G. Filatov, C. Chen, I. Porter, Y. Li, M.M. Rich, and S.D. Kraner. 2005. A selective role for MRF4 in innervated adult skeletal muscle: Na(V) 1.4 Na+ channel expression is reduced in MRF4-null mice. Gene Expr. 12:289-303. Cerca con Google

Tothova, J., B. Blaauw, G. Pallafacchina, R. Rudolf, C. Argentini, C. Reggiani, and S. Schiaffino. 2006. NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci. 119:1604-11. Cerca con Google

Vandenburgh, H.H., P. Karlisch, J. Shansky, and R. Feldstein. 1991. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol. 260:C475-84. Cerca con Google

Vitadello, M., M.V. Schiaffino, A. Picard, M. Scarpa, and S. Schiaffino. 1994. Gene transfer in regenerating muscle. Hum Gene Ther. 5:11-8. Cerca con Google

Vivanco, I., and C.L. Sawyers. 2002. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489-501. Cerca con Google

Vivian, J.L., E.N. Olson, and W.H. Klein. 2000. Thoracic skeletal defects in myogenin- and MRF4-deficient mice correlate with early defects in myotome and intercostal musculature. Dev Biol. 224:29-41. Cerca con Google

von Hofsten, J., S. Elworthy, M.J. Gilchrist, J.C. Smith, F.C. Wardle, and P.W. Ingham. 2008. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep. 9:683-9. Cerca con Google

Voytik, S.L., M. Przyborski, S.F. Badylak, and S.F. Konieczny. 1993. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn. 198:214-24. Cerca con Google

Walters, E.H., N.C. Stickland, and P.T. Loughna. 2000. MRF-4 exhibits fiber type- and muscle-specific pattern of expression in postnatal rat muscle. Am J Physiol Regul Integr Comp Physiol. 278:R1381-4. Cerca con Google

Wang, H., Q. Zhang, and D. Zhu. 2003. hSGT interacts with the N-terminal region of myostatin. Biochem Biophys Res Commun. 311:877-83. Cerca con Google

Wang, Y., and R. Jaenisch. 1997. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently. Development. 124:2507-13. Cerca con Google

Wasserman, W.W., and J.W. Fickett. 1998. Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol. 278:167-81. Cerca con Google

Weintraub, H., S.J. Tapscott, R.L. Davis, M.J. Thayer, M.A. Adam, A.B. Lassar, and A.D. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 86:5434-8. Cerca con Google

Weis, J., M. Kaussen, S. Calvo, and A. Buonanno. 2000. Denervation induces a rapid nuclear accumulation of MRF4 in mature myofibers. Dev Dyn. 218:438-51. Cerca con Google

Weiss, A., D. McDonough, B. Wertman, L. Acakpo-Satchivi, K. Montgomery, R. Kucherlapati, L. Leinwand, and K. Krauter. 1999. Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci U S A. 96:2958-63. Cerca con Google

Wentworth, B.M., M. Donoghue, J.C. Engert, E.B. Berglund, and N. Rosenthal. 1991. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc Natl Acad Sci U S A. 88:1242-6. Cerca con Google

Wheeler, M.T., E.C. Snyder, M.N. Patterson, and S.J. Swoap. 1999. An E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle. Am J Physiol. 276:C1069-78. Cerca con Google

Wigmore, P.M., and D.J. Evans. 2002. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. Int Rev Cytol. 216:175-232. Cerca con Google

Windisch, A., K. Gundersen, M.J. Szabolcs, H. Gruber, and T. Lomo. 1998. Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol. 510 ( Pt 2):623-32. Cerca con Google

Xu, Z., D. Stokoe, L.P. Kane, and A. Weiss. 2002. The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells. Cell Growth Differ. 13:285-96. Cerca con Google

Zhang, H., J.P. Stallock, J.C. Ng, C. Reinhard, and T.P. Neufeld. 2000. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14:2712-24. Cerca con Google

Zhang, M., and I.S. McLennan. 1998. Primary myotubes preferentially mature into either the fastest or slowest muscle fibers. Dev Dyn. 213:147-57. Cerca con Google

Zhang, W., R.R. Behringer, and E.N. Olson. 1995. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev. 9:1388-99. Cerca con Google

Zhu, X., S. Topouzis, L.F. Liang, and R.L. Stotish. 2004. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 26:262-72. Cerca con Google

Zhu, Z., and J.B. Miller. 1997. MRF4 can substitute for myogenin during early stages of myogenesis. Dev Dyn. 209:233-41. Cerca con Google

Zimmers, T.A., M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, and S.J. Lee. 2002. Induction of cachexia in mice by systemically administered myostatin. Science. 296:1486-8. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record