Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Grumati, Paolo (2009) Ruolo dell'autofagia nella patogenesi delle miopatie legate al collagene VI. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
56Mb

Abstract (inglese)

Collagen VI is a large protein forming a microfilamentous network in the extracellular matrix of muscles and other tissues. Inherited mutations of genes encoding for collagen VI chains in humans cause three skeletal muscle diseases: Bethlem Myopathy, Ullrich Congenital Muscular Dystrophy and Myosclerosis Myopathy.
Previous work, performed in mice with genetic inactivation of Col6a1 gene and in patients, showed that complete or partial deficiency of collagen VI cause spontaneous apoptosis of muscle fibers. Myofibers death is due to sarcoplasmic reticulum alterations and mitochondrial dysfunction.
Although these studies have provided key information on the pathophysiological defects of collagen VI disorders, it is still unclear which molecular mechanisms are responsible for myopatic phenotype and, in particular, what is the link between collagen VI, organelle alterations and muscle fiber death. Therefore, for this thesis work, I focused on studies aimed at elucidating the molecular mechanisms affected by collagen VI deficiency in muscle, using Col6a1–/– mice as an experimental model. Initially, I searched for possible differences between knockout and wild-type muscles on proteins and pathways regulating cell death. Analysis of Bcl2 family members and of AKT kinase did not reveal any obvious alteration in Col6a1–/– muscles. However, the AMPK kinase was markedly activated, indicating an energetic unbalance, and this finding drove me to investigate autophagy, another mechanism of cell death. Macroautophagy (often simply called ‘autophagy’) is a self-degradative process involved both in basal turnover of cellular components and in their removal in response to nutrient starvation or organelle damage.

Abstract (italiano)

Il collagene VI è una proteina ampiamente diffusa nella matrice extracellulare dei muscoli scheletrici e di altri organi. Mutazioni a carico dei geni codificanti le catene ?1, ?2 e ?3 della proteina causano nell’uomo tre patologie muscolari: la miopatia di Bethlem, la distrofia congenita di Ullrich e la miosclerosi.
Gli studi eseguiti in precedenza, prima sui topi con inattivazione mirata del gene Col6a1 e poi confermate sui pazienti, hanno dimostrato come la mancanza totale o parziale del collagene VI porti all’apoptosi nelle fibre muscolari. La morte delle miofibre è causata dalle alterazioni del reticolo sarcoplasmatico e dei mitocondri, ai quali è associata una disfunzione latente.
Nonostante questi studi abbiano fornito informazioni cruciali sui difetti patofisiologici nelle malattie legate al collagene VI, rimane ancora poco chiaro quale sia il meccanismo molecolare responsabile del fenotipo miopatico, ed in particolar modo quale sia il legame tra il collagene VI, le alterazioni agli organelli e la morte delle fibre muscolari. In questo lavoro di tesi mi sono quindi dedicato allo studio dei meccanismi molecolari affetti dalla carenza di collagene VI nel muscolo, utilizzando i topi Col6a1–/– come modello sperimentale. Ho ricercato, inizialmente, se vi fossero delle differenze tra topi knockout e topi selvatici nei principali fattori che regolano la morte cellulare. L’analisi delle proteine della famiglia Bcl2 e della chinasi AKT non hanno evidenziato alterazioni di rilievo nei muscoli Col6a1–/–. Tuttavia, la chinasi AMPK è risultata significativamente alterata nei muscoli Col6a1–/–, suggerendo una condizione di deficit energetico che mi ha indotto ad indagare un altro meccanismo di morte cellulare: l’autofagia. La macroautofagia o autofagia è un processo autodegradativo coinvolto sia nella normale sostituzione dei componenti cellulari, sia nella loro rimozione in risposta a situazioni di mancanza di nutrimento o di organelli danneggiati.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bonaldo, Paolo
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:30 Gennaio 2009
Anno di Pubblicazione:30 Gennaio 2009
Parole chiave (italiano / inglese):Collagene VI, autofagia, muscolo
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche
Codice ID:1792
Depositato il:30 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Angelin A., Tiepolo T., Sabatelli P., Grumati P., Bergamin N., Golfieri C., Mattioli E., Gualandi F., Ferlini Cerca con Google

A., Merlini L., Maraldi N.M., Bonaldo P., Bernardi P. (2007). Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc. Natl. Acad. Sci. U S A, 104: 991-996. Cerca con Google

Askanas V., and Engel W.K. (2006). Inclusion-body myositis: a myodegenerative conformational disorder associated with Aβ, protein misfolding, and proteasome inhibition. Neurology 66, 39-48. Cerca con Google

Ball S., Bella J., Kielty C., Shuttleworth A. (2003). Structural basis of type collagen dimmer formation. J. Biol. Chem., 278, 15326-32. Cerca con Google

Baker NL, Morgelin M, Peat R, Goemans N, North KN, Bateman JF, Lamande SR. (2005). Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet., 14, 279-93. Cerca con Google

Baldock C., Sherratt M.J., Shuttleworth C.A. and Kielty C.M. (2003). The supramolecular organization of collagen VI microfibrils. J. Mol. Biol., 330, 297-307. Cerca con Google

Bhaskar P.T., Hay N. (2007). The two TORCs and Akt, Dev. Cell 12, 487-502. Cerca con Google

Bechet D., Tassa A., Taillandier D., Combaret L.,Attaix D. (2005). Lysosomal proteolysis in skeletal muscle. International Journal of Biochemistry and Cell Biology, 37: 2098-2114. Cerca con Google

Bernardi P., Petronilli V., Di Lisa F., Forte M. (2001). A mitochondria perspective on cell death. Trend Biochem. Sci., 26, 112-117. Cerca con Google

Bertini E. and Pepe G. (2002). Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. Eur. J. Paed. Neurol., 6, 193-198. Cerca con Google

Bethlem J., Wijngaarden G.K. (1976). Benign myopathy, with autosomal dominant inheritance. A report on three pedigrees. Brain, 99, 91-100. Cerca con Google

Blake D.J., Weir A., Newey S.E. and Davies K.E. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev., 82, 291-329. Cerca con Google

Bodine S.C., Latres E., Baumhueter S., Lai V.K., Nunez L., Clarke B.A., Poueymirou W.T., Panaro F.J., Na E., Dharmarajan K., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708. Cerca con Google

Bonaldo P. and Colombatti A. (1989). The carboxyl terminus of the chicken α3 chain of collagen VI is a unique mosaic structure with glycoprotein Ib-like, fibronectin type III, and Kunitz modules. J. Biol. Chem., 264, 20235-20239. Cerca con Google

Bonaldo P., Russo V., Bucciotti F., Bressan G.M. and Colombatti A. (1989). α1 chain of chick type VI collagen. J. Biol. Chem., 264, 5575-5580. Cerca con Google

Bonaldo P., Russo V., Bucciotti F., Doliana R., Colombatti A. (1989). α1 chain of chick type VI collagen. J. Biol. Chem., 10, 5575-5580. Cerca con Google

Bonaldo P., Russo V., Bucciotti F., Doliana R. and Colombatti A. (1990). Structural and functional features of the α3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry, 29, 1245-54. Cerca con Google

Bonaldo P., Braghetta P., Zanetti M., Piccolo S., Volpin D., Bressan G. M. (1998). Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Human Molecular Genetics, 7, 2135-2140. Cerca con Google

Bolanos-Meade, J., Zhou, L., Hoke, A., Corse, A., Vogelsang, G. and Wagner K.R. (2005). Hydroxychloroquine causes severe vacuolar myopathy in a patient with chronic graft-versus-host disease. Am. J. Hematol. 78, 306–309. Cerca con Google

Boya P., Gonzales-Polo R.A., Casares A., Perfettini J.L., Dessen P., Larochette N., Metivier D., Meley D., Souquere S., Yoshimori T., Pierrot G., Codogno P., Kroemer G. (2005). Inhibition of macroautophagy triggers apoptosis. Molecular and Cellular Biology,3, 1025-1040. Cerca con Google

Bradley W.G., Hudgson P., Gardner-Medwin D. and Walton J.N. (1973). The syndrome of myosclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 36, 651-660. Cerca con Google

Brazil D.P., Park J., and Hemmings B.A. (2002). PKB binding proteins: getting in on the Akt. Cell, 111, 293-303. Cerca con Google

Burton E.A. and Davies K.E. (2002). Muscular dystrophy-reason for optimism? Cell, 108, 5-8. Cerca con Google

Bushby K.M. (1999). The limb-girdle muscular dystrophies-multiple genes, multiple mechanisms. Hum. Mol. Genet. 8, 1875-1882. Cerca con Google

Cai D., Frantz J.D., Tawa N.E., Jr. Melendez P.A., Oh B.C., Lidov H.G., Hasselgren P.O., Frontera W.R., Lee J., Glass D.J., et al. (2004). IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285–298. Cerca con Google

Camacho Vanegas O., Bertini E., Zhang R., Petrini S., Minosse C., Sabatelli P., Giusti B., Chu M.L. And Pepe G. (2001). Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc. Natl. Acad. Sci. U.S.A., 98, 7516-7521. Cerca con Google

Campbell K.P., and Stull J.T. (2003). Skeletal muscle basement membrane-sarcolemma-cytoskeleton interaction minireview series. J. Biol. Chem., 278, 12599-12600. Cerca con Google

Cao, Y., Espinola, J.A., Fossale, E., Massey, A.C., Cuervo, A.M., MacDonald M.E. and Cotman, S.L. Cerca con Google

(2006). Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J. Biol. Chem. 281, 20483-20493. Cerca con Google

Chu ML, Mann K, Deutzmann R, Pribula-Conway D, Hsu-Chen CC, Bernard MP, Timpl R. (1987). Characterization of three constituent chains of collagen type VI by peptide sequences and cDNA clones. Eur J Biochem., 168, 309-17. Cerca con Google

Ciechanover A. e Schwartz A.L. (1998). The ubiquitin-proteasome pathway:the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. U S A, 95, 2727-2730. Cerca con Google

Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.C., Kipps T.J., Negrini M. and Croce C.M. (2005). miR- 15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U S A, 102, 13944-49. Cerca con Google

Colombatti A. and Bonaldo P. (1987). Biosynthesis of chick type VI collagen, II. Processing and secretion in fibroblasts and smooth muscle cells. J. Biol. Chem., 262, 14461-14466. Cerca con Google

Colombatti A., Bonaldo P., Ginger K., Bressan G.M., Volpin D. (1987). Biosynthesis of chick type VI. J. Biol. Chem, 262, 14454-14460. Cerca con Google

Colombatti A. and Bonaldo P. (1991). The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood, 77, 2305-2315. Cerca con Google

Colombatti A., Mucignat M.T. and Bonaldo P. (1995). Secretion and matrix assembly of recombinant type VI collagen. J. Biol. Chem., 270, 13105-13111. Cerca con Google

Danial N.N. and Korsmeyer S.J. (2004). Cell death: critical control points. Cell, vol. 116, 205-219. Cerca con Google

Deconinck A.E., Rafael J.A., Skinner J.A., Brown S.C., Potter A.C., Metzinger L., Watt D.J., Dickson J.G., Cerca con Google

Tinsley J.M. and Davies K.E. (1997). Utrophin-dystrophyn-deficient mice as a model for Duchenne Molecular Dystrophy. Cell.. 90, 717-727. Cerca con Google

Demir E., Sabatelli P., Allamand V., Ferreiro A., Moghadaszadeh B., Makrelouf M., Topaloglu H., Echenne B., Merlini L., Guicheney P. (2002). Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet.,70, 1446-58. Cerca con Google

De Duve C. and Wattiaux R. (1966). The lysosome. Annu. Rev. Physiol. 28, 435-492. Cerca con Google

Diskin T., Tal-Or P., Erlich S., Mizrachy L., Alexandrovich A., Shohami E. and Pinkas- Kramarski R. (2005). Closed Head Injury Induces Upregulation of Beclin 1 at the Cortical Site of Injury. J. Neurotrauma, 22, 750-62. Cerca con Google

Doliana R., Bonaldo P. and Colombatti A. (1990). Multiple forms of chicken a3(VI) collagen chain generated by alternative splicing in type A repeated domains. The Journal of Cell Biology, 111, 2197- 2205. Cerca con Google

Durbeej M. and Campbell K.P. (2002). Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Current Opinion in Genetics & Development, 12, 349- 361. Cerca con Google

Du K., Herzig S., Kulkarni R.N., Montminy M. (2003). TRB3: A tribbles Homolog That Inhibits Akt/PKB Activation by Insulin in Liver. Science, 300, 1574-1577. Cerca con Google

Dupont-Versteegden E.E. (2006). Apoptosis in skeletal muscle and its relevance to atrophy. World Journal of Gastroenterology, 12, 7463-66. Cerca con Google

Dziadek M., Kazenwadel J.S., Hendrey J.A., Pan T.C., Zhang R.Z., Chu M.L. (2002). Alternative splicing of transcripts for the alpha3 chain of mouse collagen VI: identification of an abundant isoform lacking domains N7-N10 in mouse and human. Matrix Biology, 21, 227-241. Cerca con Google

Ekblom P., Vestweber D. and Kelmer R. (1986). Cell-matrix interactions and cell adhesion during development. Cell. Biol., 2, 27-47. Cerca con Google

Erlich S., Shohami E., Pinkas-Kramarski R. (2006). Neurodegeneration induces upregulation of Beclin1. Autophagy, 2, 49-51. Cerca con Google

Ferraro E. and Cecconi F. (2007). Autophagic and apoptotic response to stress signals in mammalian cells. Archives of Biochemistry and Biophysics, 462, 210-219. Cerca con Google

Fornai F., Longone P., Cafaro L., Kastsiuchenka O., Ferrucci M., Manca M.L., Lazzeri G., Spalloni A., Bellio N., Lenzi P., Modugno N., Siciliano G., Isidoro C., Murri L., Ruggieri S., Paparelli A. (2008). Lithium delays progression of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A, 105, 2052-7. Cerca con Google

Fornai F., Longone P., Ferrucci M., Lenzi P., Isidoro C., Ruggieri S., Paparelli A. (2008b). Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. Autophagy,4, 527-30. Cerca con Google

Forte M, Bernardi P. (2005). Genetic dissection of the permeability transition pore. J Bioenerg Biomembr., 37. 121-8. Cerca con Google

Fukuda T., Ahearn M., Roberts A., Mattaliano R.J., Zaal K., Ralston E., Plotz P.H., Raben N. (2006). Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Molecular Therapy, 14, 831-39. Cerca con Google

Gara S.K., Grumati P., Urciuolo A., Bonaldo P., Kobbe B., Koch M., Paulsson M., and Wagener R.(2008). Three novel collagen VI chains with high homology to the α3 chain. J Biol Chem. 283, 10658-70. Cerca con Google

Gomes M.D., Lecker S.H., Jagoe R.T., Navon A., Goldberg A.L. (2001). Atrogin-1, a muscle-specific Fbox protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 98, 14440-5. Cerca con Google

Grady R.M., Teng H., Nichol M.C., Cunningham J.C., Wilkinson R.S. and Sanes J.R. (1997). Skeletal and cardioac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne Muscular Dystrophy. Cell, 90,729-738. Cerca con Google

Hamacher-Brady A., Brady N.R., Gottlieb R.A., Gustafsson A.B. (2006). Autophagy as a Protective Response to Bnip3-Mediated Apoptotic Signaling in the Heart. Autophagy, 2, 307-309. Cerca con Google

Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885-889. Cerca con Google

Hayashi Y.K., Chou F.L., Engvall E., Ogawa M., Matsuda C., Hirabayashi S., Yokochi K., Ziober B.L., Kramer R.H., Kaufman S.J., Ozawa E., Goto Y., Nonaka I., Tsukahara T., Wang J.Z., Hoffman E.P., Arahata K. (1998). Mutations in the integrin alpha7 gene cause congenital myopathy. Nat. Genet., 19, 94- 7. Cerca con Google

He C. and Klionsky D.J. (2007). Atg9 trafficking in autophagy-related pathways. Autophagy, 3, 271-274. Cerca con Google

Heiskanen M., Saitta B., Palotie A., Chu M.,L., (1995). Head to tail organization of the human COL6A1 and COL6A2 genes by fiber-FISH. Genomics., 29, 801-803 Cerca con Google

Hershko A, Ciechanover A. (1998). The ubiquitin system. Annu Rev Biochem., 67, 425-79. Cerca con Google

Hetschko H., Voss V., Senft C., Seifert V., Prehn J.H.M. and Kögel D. (2008). BH3 mimetics reactivate autophagic cell death in anoxia-resistant malignant glioma cells. Neoplasia, 10, 873-885. Cerca con Google

Higuchi I., Shiraishi T., Hashiguchi T., Suehara M., Niiyama T., Nakagawa M., Arimura K., Maruyama I. and Osame M. (2001). Frameshift mutation in the collagen VI causes Ullrich’s disease. Ann. Neurol., 50, 261-265. Cerca con Google

Hochstrasser M. (1996). Protein degradation or regulation: Ub the judge. Cell, 22, 813-5. Cerca con Google

Ibraghimov-Beskrovnaya O., Ervasti J.M., Leveille C.J., Slaughter C.A., Sernett S.W. and Campbell K.P. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355, 696-702. Cerca con Google

Iyengar P., Espina V., Williams T., Lin Y., Berry D., Jelicks L.A., Lee H.K., Temple K., Graves R., Pollard J., Chopra N., Russell R.G., Sasisekharan R., Trock B.J., Lippman M., Calvert V.S., Petricoin III E.F., Liotta L., Dadachova E., Pestell R.G., Lisanti M.P., Bonaldo P. and Scherer P.E. (2005). Adipocytederived collagen VI affects early mammary tumor progression in vivo: demonstrating a critical interaction in the tumor/stroma microenvironment. Journal of Clinical Investigation, 115, 1163-1176. Cerca con Google

Inoki K., Corradetti M.N., Guan K.L. (2005). Dysregulation of the TSC2-mTOR pathway in human disease. Nat. Genet. 37, 19-24. Cerca con Google

Iozzo R.V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annual Reviews Biochemical, 67, 609-52. Cerca con Google

Irwin W. A., Bergamin N., Sabatelli P., Reggiani C., Megighian A., Merlini L., Braghetta P., Columbaro M., Volpin D., Bressan G.M., Bernardi P., Bonaldo P. (2003). Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genetics, 4: 367-371. Cerca con Google

Jimenez-Mallebrera C., Maioli M.A., Kim J., Brown S.C., Feng L., Lampe A.K., Bushky K., Hicks D., Fllanigan K.M., Bonnemann C., Sewry C.A., Muntoni F. (2006). A comparative analysis of collagen VI production in muscle, skin and fibroblasts from 14 Ullrich congenital muscular dystrophy patiets with dominant and recessive COL6A2 mutations. Neuromuscular Disord., 16,571-582. Cerca con Google

Jobsis G.J., Keizers H., Vreijling J.P., de Visser M., Speer M.C., Volterman R.A., Baas F. and Bolhuis P.A. (1996). Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nature Genetics, 14, 113-115. Cerca con Google

Jobsis G.J., Boers J.M., Barth P.G. and de Visser M. (1999). Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain, 122, 649-655. Cerca con Google

Kalimo H., Savontaus M.L., Lang H., Paljärvi L., Sonninen V., Dean P.B., Katevuo K., Salminen A. (1988). X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann. Neurol., 23, 258-65. Cerca con Google

Karantza-Wadsworth V., White E. (2007). Role of autophagy in breast cancer. Autophagy, 3, 610-3. Cerca con Google

Kasper C.E., White T.P. and Maxwell L.C. (1990). Running during recovery from hindlimb suspension induces transient muscle injury. J. Appl.Physiol., 68, 533-539. Cerca con Google

Keene D.R., Engvall E., Glanville R.W. (1988). Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell. Biol. 107, 1995-2006. Cerca con Google

Kim I., Rodriquez-Enriquez S. and Lemasters J.J. (2007). Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 462, 245-53. Cerca con Google

Kissova I., Salin B., Schaeffer J., Bhatia S., Manon S., Camougrand N. (2007). Selective and nonselective autophagic degradation of mitochondria in yeast. Autophagy, 3, 329-336. Cerca con Google

Kobayashi S., Troy Lackey T., Huang Y., Bisping E., Pu W.T., Boxer L.M. and Liang Q. (2006). Transcription factor GATA4 regulates cardiac BCL2 gene expression in vitro and in vivo. FASEB. Cerca con Google

Koike, M., Shibata, M., Waguri, S., Yoshimura, K., Tanida, I., Kominami, E., Gotow, T., Peters, C., von Figura, K., Mizushima, N., et al. (2005). Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol., 167, 1713-1728. Cerca con Google

Komatsu M., Paguri S., Chiba T., Murata S., Iwata J.I., Tanica I., Ueno T., Koike M., Uchiyama Y., Kominami E., Tanaka K. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880-884. Cerca con Google

Koneri, K., Goi, T., Hirono, Y., Katayama, K., and Yamaguchi, A. (2007). Beclin1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res. 27, 1453–1457. Cerca con Google

Koller E., Winterhalter K.H., Trueb B. (1989). The globular domains of type VI collagen are related to the collagen-binding domains of cartilage matrix protein and von Willbrand factor. EMBO J., 8, 1073-1077. Cerca con Google

Klionsky D.J. et al. (2007). Autophagy: from phenomenology to molecular under-standing in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937. Cerca con Google

Krieger C. and Duchen M.R. (2002). Mitochondria, Ca2+ and neurodegenerative disease. European J. Pharmac,. 447, 117-188. Cerca con Google

Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., Ohsumi Y., Tokuisha T., and Mizushima N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-36. Cerca con Google

Kuo H.J., Maslen C.L., Keene D.R. and Glanville R.W. (1997). Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J. Biol. Chem., 272, 26522-26529. Cerca con Google

Labi V., Grespi F., Baumgartner F., Villunger A. (2008). Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death and Differentiation, 15, 977-987. Cerca con Google

Lamande S.R., Sigalas E., Pan T.C., Chu M.L., Dziadek M., Timpl R., Bateman J.F. (1998). The role of the alpha 3 chain in collagen VI assembly. Expression of an alpha 3(VI) lacking N-terminal modules N10- N7 restores collagen VI assembly, secretion, and matrix deposition in an alpha 3(VI)-deficient cell line. J. Biol. Chem., 273, 7423-7430. Cerca con Google

Lamande S.R., Bateman J.F., Hutchinson W., McKinlay Gardner R.J., Bower S.P., Byrne E. and Dahl H.M. (1998). Reduced collagen VI causes Bethlem myopathy : a heterozygous COL6A1 nonsense mutation results in mRNA decay and functional haploinsufficiency. Human Molecular Genetics, 7, 981- 989. Cerca con Google

Lamandé S.R., Shields K.A., Kornberg A.J., Shield L.K., Bateman J.F. (1999). Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J Biol Chem., 274, 21817-22. Cerca con Google

Lamandé S.R., Mörgelin M., Selan C., Jöbsis G.J., Baas F., Bateman J.F. (2002). Kinked collagen VI tetramers and reduced microfibril formation as a result of Bethlem myopathy and introduced triple helical glycine mutations. J Biol Chem., 277, 1949-56. Cerca con Google

Lampe A.K., Bushby K.M. (2005). Collagen VI related muscle disorders. J.Med. Genet., 42(9), 673-685. Lampe AK, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Laval SH, Marie SK, Chu ML, Swoboda K, Muntoni F, Bonnemann CG, Flanigan KM, Bushby KM, Weiss RB. (2005). Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy. J Med Genet., 42, 108-20. Cerca con Google

Lecker SH, Goldberg AL, Mitch WE. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol., 17, 1807-19. Cerca con Google

Lee C.H., Inoki K., Guan K.L. (2007). mTOR pathway as a target in tissue hypertrophy. Ann. Rev. Phamacol. Toxicol. 47 443-467. Cerca con Google

Leist M, Single B., Castoldi A.F. Kunkle S. and Nicotera P. (1997). Intracellular adenosine triphosohate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp. Med,. 185, 1481- 1486. Cerca con Google

Levine, B. (2007). Cell biology: autophagy and cancer. Nature 446, 745–747. Cerca con Google

Levine B., and Deretic V. (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767–777. Cerca con Google

Levine B., and Klionsky D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477. Cerca con Google

Levine B. and Kroemer G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27-42. Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H. and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676. Cerca con Google

Lockshin R.A., Williams C.M. (1965). Programmed cell death. I. Cytology of the degeneration of the intersegmental muscle of the Pernyi silkmoth. J. Insect Physiol., 11, 123-33. Cerca con Google

Lum J.J., Bauer D.E., Kong M., Harris M.H., Li C., Lindsten T., and Thompson C.B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248. Cerca con Google

Maiuri M.C., Zalckvar E., Kimchi A. and Kroemer G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Molecular Cell Biology 8, 741-752. Cerca con Google

Mammuccari C.,Milan G., Romanello V., Masiero E:, Ruediger R., Del Piccolo P., Burden S.J., Di Lisi R., Sandri C., Zhao J., Goldberg A.L., Schiaffino S., Sandri M. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism, 6: 458-471. Cerca con Google

Manning B.D., Cantley L.C. (2007). AKT/PKB signalling: navigating downstream. Cell, 129, 1261-74. Martinez-Vicente M. and Cuervo A.M. (2007). Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 6, 352-361. Cerca con Google

Marvulli D., Volpin d., Bressan GM. (1996). Spatial and temporal changes of type VI collagen expression Cerca con Google

during mouse development. Dev. Dyn. 206, 447-454 Cerca con Google

Mayer U., Saher G., Fassler R., Bornemann A., Echtermeyer F., von der Mark H., Miosge N., Poschl E. and von der Mark K. (1997). Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat. Genet., 17, 318-323. Cerca con Google

Mayer U. (2003). Integrins: redundant or important players in skeletal muscle? J Biol Chem., 278, 14587- 90. Cerca con Google

Mathew R., Karantza-Wadsworth V. and White E. (2007a). Role of autophagy in cancer. Nat. Rev. Cancer 7, 961-67. Cerca con Google

Matter L.M. and Ruoslahti E. (2001). A Signaling Pathway from the α5β1 and􏰀αvβ3 Integrins That Elevates bcl-2 Transcription. J Biol Chem., 276, 27757-63. Cerca con Google

Mayer U. (2003). Integrins : redundant or important players in skeletal muscle? J. Biol. Chem., 278, 14587-14590. Cerca con Google

Merlini L., Morandi L., Granata C., Ballestrazzi A. (1994). Bethlem myopathy: early-onset benign autosomal dominant myopathy with contractures. Description of two new families. Neuromuscul Disord., 4, 503-11. Cerca con Google

Merlini L., Angelin A., Tiepolo T., Braghetta P., Sabatelli P., Zamparelli A., Ferlini A., Maraldi N.M., Bonaldo P., Bernardi P. (2008a). Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc. Natl. Acad. Sci. U S A, 105(13):5225-9. Cerca con Google

Merlini L., Martoni E., Grumati P., Sabatelli P., Squarzoni S., Urciuolo A., Ferlini A., Gualandi F. and Bonaldo P. (2008b). Autosomal recessive myosclerosis myopathy is a collagen VI disorder. Neurology 71, 1245-53. Cerca con Google

Midwood K.S. and Salter D.M. (2001). NG2/HMPG modulation of human articular chondrocyte adhesion to type VI collagen is lost in osteoarthritis. J. Pathol., 195, 631-635. Cerca con Google

Miosge N., Klenczar C., Herken R., Willem M. and Mayer U. (1999). Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. Lab Invest, 79, 1591-1599. Cerca con Google

Miracco C., Cosci E., Oliveri G., Luzi P., Pacenti L., Monciatti I., Mannucci S., De Nisi M.C., Toscano M., Malagnino V., et al. (2007). Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumors. Int. J. Oncol. 30, 429-436. Cerca con Google

Mizushima N. (2004). Methods for monitoring autophagy. IJBCB 36: 2491-2502. Cerca con Google

Mizushima N. (2007). Autophagy: process and function. Genes & Dev., 21, 2861-73. Cerca con Google

Mizushima N. and Klionsky D.J. (2007). Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19-40. Cerca con Google

Mizushima N., Levine B., Cuervo A.M. and Klionsky D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-75. Cerca con Google

Mordier S., Deval C., Béchet D., Tassa A., Ferrara M. (2000). Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem., 275, 29900-6. Cerca con Google

Nair U. and Klionsky D.J. (2005). Molecular mechanisms and regulation of specific and non-specific autophagy pathways in yeast. J. Biol. Chem., 280, 41785-88. Cerca con Google

Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med., 13, 619-624. Cerca con Google

Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St Croix B. (2004).TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer Res., 64,817- 20. Cerca con Google

Nishino, I. (2006). Autophagic vacuolar myopathy. Semin. Pediatr. Neurol. 13, 90-95. Cerca con Google

Oltersdorf T. et al., (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature,435, 677-81. Cerca con Google

Orrenius S., Zhivotovsky B. and Nicotera P. (2003). Regulation of cell death: the calcium-apoptosis link. Nature Rev Mol. Cell. Biol,. 4, 552-565. Cerca con Google

Pan T.C., Zhang R.Z., Sudano D.G., Marie S.K., Bonnemann C.G. and Chu M.L. (2003). New molecular mechanism for Ullrich congenital muscular dystrophy: a heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am. J. Hum. Genet., 73, 355-369. Cerca con Google

Pattingre S., Tassa A., Qu X., Garuti R., Liang X.H., Mizushima N., Packer M., Schneider M.D., and Levine B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939. Cerca con Google

Pepe G., de Visser M., Bertini E., Bushby K., Vanegas O.C., Chu M.L., Lattanzi G., Merlini L., Muntoni F., Urtizberea A. (2002). Bethlem myopathy (BETHLEM) 86th ENMC international workshop, 10-11 November 2000, Naarden, The Netherlands. Neuromuscul Disord. 12, 296-305 Cerca con Google

Perianayagam M.C., Madias N.E., B. J. G. Pereira B.J.G. and Jaber B.L. (2006). CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. European Journal of Clinical Investigation, 36, 353-361. Cerca con Google

Perkin K.J., Davies K.E. (2002). The role or utrophin in the therapy of Duchenne muscular dystrophy. Neuromuscul. Disord. 12, 78-89. Cerca con Google

Petrini S., Tessa A., Carrozzo R., Verardo M., Pierini R., Rizza T. and Bertini E. (2005). Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers. Abnormal expression in merosin-negative and Duchenne muscular dystrophies. Molecular and Cellular Neuroscience, 23, 219-231. Cerca con Google

Petronilli V., Penzo D., Scorrano L., Bernardi P., Di LisaF. (2001). The mitochondrial permeability transition, realese of cytochrome c and cell death. Correlation with the duration of pore opening in situ. J. Biol.Chem. 276, 12030-12034. Cerca con Google

Qu X., Zou Z., Sun Q., Luby-Phelps K., Cheng P., Hogan R.N., Gilpin C. and Levine B. (2007). Cerca con Google

Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931- 946. Cerca con Google

Raben N., Hill V., Shea L., Takikita S., Baum R., Mizushima N., Ralston E., Plotz P. (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet. 15, 3897-908. Cerca con Google

Ranger A.M., Malynn B.A., Korsmeyer S.J. (2001). Mouse models of cell death. Nat Genet., 28, 113-8. Rizzuto R. (2003). The collagen-mitochondria connection. Nat Genet. ,35, 300-1. Cerca con Google

Rodriguez-Enriquez S., He L., Lemasters J.J. (2004). Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int. J. Biochem. Cell. Biol., 36, 2463-72. Cerca con Google

Rubinsztein D.C., Gestwicki J.E., Murphy L.O. and Klionsky D.J. (2007). Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304-312. Cerca con Google

Sacheck J.M., Hyatt J.P., Raffaello A., Jagoe R.T., Roy R.R., Edgerton V.R., Lecker S.H., and Goldberg A.L. (2007). Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 21, 140–155. Cerca con Google

Sabatelli P., Bonaldo P., Lattanzi G., Braghetta P., Bergamin N., Capanni C., Mattioli E., Columbaro M., Ognibene A., Pepe G., Bertini E., Merlini L., Maraldi N.M. and Squarzoni S. (2001). Collagen VI deficiency affects the organization of fibronectin in the extracellular matrix of cultured fibroblast. Matrix Biol., 20, 475-486. Cerca con Google

Saitta B., Stokes D.G., Vissing H., Timpl R., Chu M.L. (1990). Alternative splicing of the human alpha 2(VI) collagen gene generates multiple mRNA transcripts which predict three protein variants with distinct carboxyl termini. J. Biol. Chem., 265, 6473-80. Cerca con Google

Saitta B, Timpl R, Chu ML. (1992). Human alpha 2(VI) collagen gene. Heterogeneity at the 5'- untranslated region generated by an alternate exon. J Biol Chem., 267. 6188-96. Cerca con Google

Sandoval H., Thiagarajan P., Dasgupta S.K., Schumacher A., Prchal J.T., Chen M. and Wang J. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232-236. Cerca con Google

Sandri M., Carraro U. (1999). Apoptosis of skeletal muscles during development and disease. The International Journal of Biochemistry & Cell Biology, 31, 1373-1390. Cerca con Google

Sandri M., Sandri C., Gilbert A., Skurk C., Calabria E., Picard A., Walsh K., Schiaffino S., Lecker S.H., and Goldberg A.L. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412. Cerca con Google

Sanes J.R. (2003). The basement membrane/basal lamina of skeletal muscle. J. Biol. Chem., 278, 12601-04. Cerca con Google

Sarbassov D.D., Ali S.M., Sabatini D.M. (2005). Growing roles for the mTOR pathway, Curr. Opin. Cell Biol. 17, 596-603. Cerca con Google

Sarkar S. and Rubinsztein D.C. (2008). Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J. 275, 4263-70. Cerca con Google

Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC. (2008). A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet., 17, 1097- 108. Cerca con Google

Scacheri P.C., Gillanders E.M., Subramony S.H., Vedanarayanan V., Crowe C.A., Thakore N., Bingler M. and Hoffman E.P. (2002). Novel mutations in collagen VI genes: expansion of Bethlem myopathy phenotype. Neurology, 58, 593-602. Cerca con Google

Scarlatti F, Bauvy C, Ventruti A, et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and upregulation of Beclin 1. J Biol Chem, 279, 18384–91. Cerca con Google

Schiaffino S, Hanzlíková V. (1972a). Autophagic degradation of glycogen in skeletal muscles of the newborn rat. J Cell Biol., 52, 41-51. Cerca con Google

Schiaffino S, Hanzlíková V. (1972b). Studies on the effect of denervation in developing muscle. II. The lysosomal system. J Ultrastruct Res. 39, 1-14. Cerca con Google

Schmid D., and Munz C. (2007). Innate and adaptive immunity through autophagy. Immunity 27, 11-21. Shacka J.J., Klocke B.J., Young C., Shibata M., Olney J.W., Uchiyama Y., Saftig P. and Roth K.A. (2007). Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J. Neurosci., 27, 2081-90. Cerca con Google

Sherman-Baust C.A., Weeraratna A.T., Rangel L.B.A., Pizer E.S., Cho K.R., Scwartz D.R., Shock T. and Morin J.P. (2003). Remodelling of extracellular matrix throught overexpression of collagen VI contributes mto cisplatin resistance in ovarian cancer cells. Cancer Cell, 3, 377-386. Cerca con Google

Shibata M., Lu T., Furuya T., Degterev A., Mizushima N., Yoshimori T., MacDonald M., Yankner B. and Yuan J. (2006). Regulation of intracellular accumulation of mutant Huntingtin by Beclin1. J. Biol. Chem., Cerca con Google

281, 14474-85. Cerca con Google

Shintani T. and Klionsky D.J. (2004). Autophagy in health and disease: a double-edged sword. Science, 306, 990-995. Cerca con Google

Squarzoni S., Sabatelli P., Bergamin N., Guicheney P., Demir E., Merlini L., Lattanzi G., Ognibene A., Capanni C., Mattioli E., Columbaro M., Bonaldo P. Maraldi N.M. (2005). Ultrastructural defects of collagen Cerca con Google

VI filaments in an Ullrich syndrome patient with loss of the alpha3(VI) N10-N7 domains. J.Cell. Physiol., 206,160-166. Cerca con Google

Stallcup W.B. (2002). The NG2 proteoglycan: past insights and future prospects. Journal of Neurocytology, 31, 423-435. Cerca con Google

Stokes DG, Saitta B, Timpl R, Chu ML. (1991). Human alpha 3(VI) collagen gene. Characterization of exons coding for the amino-terminal globular domain and alternative splicing in normal and tumor cells. J Biol Chem., 266, 8626-33. Cerca con Google

Schweers R.L., Zhang J., Randall M.S., Loyd M.R., Li W., Dorsey F.C., Kundu M., Opferman J.T., Cleveland J.L., Miller J.L., and Ney P.A. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. U S A, 104, 19500-504. Cerca con Google

Takacs-Vellai K., Vellai T, Puoti A., Passannante M., Wicky C., Streit A., Kovacs A.L., Müller F. (2005). Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol. 15, 1513- 17. Cerca con Google

Tanida I., Sou Y., Ezaki J., Minematsu-Ikeguchi N., Ueno T. and Kominami E. (2004). Cerca con Google

HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein- Phospholipid Conjugates. J. Biol. Chem., 278, 36268-276. Cerca con Google

Taverna D, Disatnik MH, Rayburn H, Bronson RT, Yang J, Rando TA, Hynes RO. (1998). Dystrophic muscle in mice chimeric for expression of alpha5 integrin. J Cell Biol.,143, 849-59. Cerca con Google

Terman, A., and Brunk, U.T. (2005). Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc. Res. 68, 355-365. Cerca con Google

Tews D.S. (2002). Apoptosis and muscle fiber loss in neuromuscular disorders. Neuromuscular disorders, 12, 613-22. Cerca con Google

Tidball J.G., Albrecht D.E., Lokensgard B.E. and Spencer M.J.(1995). Apoptosis precedes necrosis of dystrophin-deficient muscle. J. Cell. Sci., 108, 2197-2204. Cerca con Google

Timpl R. (1996). Macromolecular organization of basement membranes. Current Opinion in Cell Biology, 8, 618-624. Cerca con Google

Tiller E., Gential B., Garrone R., Stallcup W.B., (1997). NG2 proteoglycan mediates beta 1 integrinindipendent Cerca con Google

cell adhesion and spreading on collagen VI. J. Cell. Biochem., 4, 726-736. Cerca con Google

Tiller E., Ruggiero F., Nishiyama A. and Stallcup W.B. (1997). The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J. Biol. Chem., 16, 10769-10776. Cerca con Google

Vainzof M., Ayub-Guerrieri D., Onofre P.C., Martins P.C., Lopes V.F., Zilberztajn D., Maia L.S., Sell K., Yamamoto L.U. (2008). Animal models for genetic neuromuscular diseases. J. Mol. Neurosci., 34, 241- 8. Cerca con Google

Wiberg C., Klatt A.R., Wagener R., Paulsson M., Bateman J.F., Heinegard D. and Mörgelin M. (2003). Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem., 278, 37698-37704. Cerca con Google

Williams A., Jahreiss L., Sarkar S., Saiki S., Menzies F.M., Ravikumar B. and Rubinsztein D.C. (2006). Cerca con Google

Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89-101. Cerca con Google

Williams A., Sarkar S., Cuddon P., Ttofi E.K., Saiki S., Siddiqi F.H., Jahreiss L., Fleming A., Pask D., Goldsmith P., O'Kane C.J., Floto R.A., Rubinsztein D.C. (2008). Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol., 4, 295-305. Cerca con Google

Wullschleger S., Loewith R., Hall M.N. (2006). TOR signaling in growth and metabolism, Cell 124, 471- 484. Cerca con Google

Xu H., Wu X.R., Wewer U.M., Engvall E. (1994). Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lam2) gene. Nat. Genet.,8, 297-302. Cerca con Google

79 Cerca con Google

Yamamoto A., Morisawa Y., Verloes A., Murakami N., Hirano M., Nonaka I., Nishino I. (2001). Infantileautophagic vacuolar myopathy is distinct from Danon disease. Neurology, 57, 903-905. Cerca con Google

Yorimitsu T., Klionsky D. (2007). Eating the endoplasmic reticulum: quality control by autophagy. Trends in Cell Biology, Vol.17, 279-285. Cerca con Google

Yue Z., Jin S., Yang C., Levine A. J. and Heintz N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077-82. Cerca con Google

Zanussi S., Doliana R., Segat D., Bonaldo P., Colombatti A. (1992). The human type VI collagen gene, mRNA and protein variants of the alpha 3 chain generated by alternative splicing of an additional 5-end exon. J. Biol. Chem., 267, 24082-9. Cerca con Google

Zamzami N, Kroemer G. (2001). The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol. 2, 67-71. Cerca con Google

Zamzami N, Larochette N, Kroemer G. (2005). Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ., 2, 1478-80. Cerca con Google

Zhenyu Y., Shengkan J., Chingwen Y., Levine A.J. and Heintz N. (2003).Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 100, 15077-82. Cerca con Google

Zhang Y., Qi H., Taylor R., Xu W., Liu L.F. and Jin S. (2007). The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3, 337-346. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record