Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sciuto, Katia (2008) Cianobatteri e variazioni ambientali: meffetti sui lipidi di membrana e sulle desaturasi. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

Cyanobacteria are a group of prokaryotic microorganisms, including both unicellular and multicellular filamentous species, are able to perform oxygenic photosynthesis as algae and plants.
Cyanobacteria constitute the phylum Cyanophyta, which is divided in four orders: Chroococcales, Oscillatoriales, Nostocales and Stigonematales. Their prokaryotic nature, the presence of many cryptic species and the coexistence of different classification systems make particularly difficult the taxonomic identification of these organisms. Currently, in order to characterize cyanobacteria, most authors use a polyphasic approach.
Cyanobacteria have specific morphological and physiological features that enable them to colonize different types of substrates and to adapt themselves to great environmental changes.
A mechanism by cyanobacteria to face extreme environmental conditions is the maintenance of the fluidity, and so of the efficiency, of biological membranes (homeoviscous adaptation) under variations of the environmental parameters. In fact, biological membranes are seats of several metabolic activities.
Among the basic components of cyanobacterial membranes there are four glycerolipids (MGDG, DGDG, SQDG, PG) and several types of carotenoids.
The fluidity and the efficiency of cyanobacterial membranes are strictly connected with the unsaturation degree of fatty acids esterified to glycerolipids and with the carotenoid types present.
Fatty acid desaturases are enzymes involved in the regulation of fatty acid unsaturation degree. In fact, they are able to insert double bonds in the fatty acid acyl chains. So far, in cyanobacteria four types of fatty acid desaturases have been found (?6 desaturasi, ?9 desaturasi, ?12 desaturasi, ?3 desaturasi), that differ for the position in which they insert the double bond.
This Ph.D. project had the aim to characterize a filamentous cyanobacterium isolated from the muds of the Euganean thermal District (PD). In fact, during the maturation process the mud is colonized by many microorganisms, but especially by cyanobacteria, which are considered responsible for most of the therapeutic properties of the mud.
The characterization of this filamentous strain (strain ETS-02) was performed with a polyphasic approach, including morphological, ultrastructural, biochemical, physiological and molecular investigations. According to these analyses the organism results to belong to the Oscillatoriales order, to the Phormidiaceae family and to the Phormidium genus. So, it has been named Phormidium sp. ETS-02.
This strain shows some peculiarities, as the ability of nitrogen fixation. Besides, it has been found the presence of phycoerythrocyanin, a phycobiliprotein restricted to few cyanobacteria, and a particular form of C-phycocyanin.
The Euganean thermal spring environment is subjected to large diurnal and seasonal variations of temperature and light. So, another aim of this Ph.D. project was the study of the adaptation of Phormidium sp. ETS-02 at membrane level, maintaining it to different temperature and light conditions. Particular attention has been paid to the variation in fatty acid and carotenoid composition. Possible variations in the morphology and ultrastructure of ETS-02 at the different maintaining conditions were be considered too.
The performed analyses showed that fatty acids and carotenoids contribute in a synergic and complementary way to the maintenance and functionality of Phormidium sp. ETS-02 biological membranes.
Moreover, not only the temperature, as expected, but also the light influences the membrane fatty acid composition. In particular, the temperature affects the general fatty acid unsaturation degree, while the light acts on the presence of certain acylic species (?-linolenic acid).
Regarding to carotenoids, the myxoxanthophyll content shows the greater variations between the different temperature and light conditions.
The final part of this research project aimed to individualize and to determine the completed sequences of the fatty acid desaturase genes of Phormidium sp. ETS-02.
The genome of this organism contains three fatty acid desaturase genes: desA, desB and desC, coding the ?12, ?3 and ?9 desaturases, respectively. The obtained amminoacidic sequences have been employed, together with those found in the Genbank database, for a molecular evolution analysis of these enzymes in the phylum Cyanophyta.
Clades observed in the phylogenetic reconstruction, obtained using the maximum likelihood method, seem to reflect the phylogenetic relationships between the different taxa and the environment of origin of the cyanobacteria to which the sequences belong.

Abstract (italiano)

I cianobatteri (phylum Cyanophyta) sono un gruppo di microrganismi procarioti, comprendente sia forme unicellulari sia specie filamentose pluricellulari, in grado di effettuare la fotosintesi ossigenica come alghe e piante.
I cianobatteri costituiscono il phylum Cyanophyta, che risulta suddiviso in quattro ordini: Chroococcales, Oscillatoriales, Nostocales e Stigonematales. La loro natura procariotica, la presenza di numerose specie criptiche e la coesistenza di diversi sistemi di classificazione rendono particolarmente complessa l’identificazione tassonomica di questi organismi. Attualmente, per caratterizzare i cianobatteri, la maggior parte degli autori utilizza un approccio di tipo polifasico.
I cianobatteri presentano specifiche caratteristiche morfologiche e fisiologiche che consentono loro di colonizzare vari tipi di substrato e di adattarsi ad ampi cambiamenti ambientali.
Uno dei meccanismi adottati dai cianobatteri per far fronte a condizioni ambientali estreme è il mantenimento della fluidità e, quindi dell’efficienza, delle membrane biologiche al variare di diversi parametri ambientali (adattamento omeoviscoso). Le membrane biologiche, infatti, hanno un ruolo centrale nelle cellule, essendo la sede di numerose attività metaboliche.
Fra le componenti fondamentali delle membrane dei cianobatteri ci sono quattro diversi glicerolipidi (MGDG, DGDG, SQDG, PG) e vari tipi di carotenoidi. La fluidità e l’efficienza delle membrane cianobatteriche sono strettamente connesse con il grado di insaturazione degli acidi grassi esterificati ai glicerolipidi e con il tipo di carotenoidi presenti.
Alcuni enzimi coinvolti nella regolazione del grado di insaturazione degli acidi grassi sono le desaturasi degli acidi grassi. Questi enzimi, infatti, inseriscono doppi legami nelle catene aciliche delle molecole lipidiche. Nei cianobatteri sono state finora ritrovate quattro tipi di desaturasi (?6 desaturasi, ?9 desaturasi, ?12 desaturasi, ?3 desaturasi) che differiscono per la posizione in cui inseriscono il doppio legame nella catena acilica.
Il primo scopo di questo progetto di Dottorato è stata la caratterizzazione di un cianobatterio filamentoso isolato dai fanghi del Comprensorio termale Euganeo (PD). Durante il processo di maturazione, infatti, il fango delle vasche è colonizzato da numerosi microrganismi, ma principalmente da cianobatteri, considerati responsabili della maggior parte delle proprietà terapeutiche del fango.
La caratterizzazione di questo ceppo filamentoso (ceppo ETS-02) è stata condotta utilizzando un approccio polifasico, comprendente indagini morfologiche, ultrastrutturali, biochimiche, fisiologiche e molecolari. Da tali analisi l’organismo è risultato appartenente all’ordine Oscillatoriales, alla famiglia Phormidiaceae e all’VIII gruppo del genere Phormidium. Esso è stato, quindi, denominato Phormidium sp. ETS-02.
Questo ceppo presenta alcune peculiarità, come la capacità di fissare l’azoto. E’ stata trovata, poi, la presenza di ficoeritrocianina, una ficobiliproteina limitata a un numero ristretto di cianobatteri, e di una particolare forma di C-ficocianina.
L’ambiente delle vasche del Comprensorio Euganeo è soggetto a considerevoli variazioni diurne e stagionali di temperatura e di luce. Un ulteriore scopo di questa tesi di Dottorato è stato, quindi, lo studio dell’adattamento a livello delle membrane di Phormidium sp. ETS-02, mantenendolo in diverse condizioni di temperatura e luce. L’attenzione è stata focalizzata, in particolare, sulla variazione nella composizione in acidi grassi e in carotenoidi. Sono state prese, anche, in considerazione eventuali variazioni nella morfologia e nell’ultrastruttura di ETS-02, alle diverse condizioni di mantenimento.
Le analisi condotte hanno messo in luce che gli acidi grassi e i carotenoidi contribuiscono in maniera sinergica e complementare al mantenimento e alla funzionalità delle membrane biologiche di Phormidium sp. ETS-02.
Inoltre, non solo la temperatura, come atteso, ma anche la luce influenza la composizione in acidi grassi delle membrane. In particolare, la temperatura agisce sul grado di insaturazione generale, mentre la luce sulla presenza di determinate specie aciliche (acido ?-linolenico).
Per quanto riguarda i carotenoidi, il contenuto delle mixoxantofille presenta le maggiori variazioni fra le diverse condizioni di temperatura e di luce.
Un’ultima parte del progetto di ricerca ha avuto come scopo l’individuazione e la determinazione delle sequenze complete dei geni delle desaturasi degli acidi grassi di Phormidium sp. ETS-02.
Il genoma di tale organismo contiene tre geni di desaturasi: desA, desB e desC, codificanti per la ?12, la ?3 e la ?9 desaturasi rispettivamente. Le sequenze aminoacidiche ottenute sono state impiegate, assieme a quelle disponibili nel database Genbank, per un’analisi dell’evoluzione molecolare di questi enzimi a livello del phylum Cyanophyta.
I cladi osservati nella ricostruzione filogenetica, ottenuta con il metodo del maximum likelihood, sembrano rispecchiare le relazioni filogenetiche fra i vari taxa e/o l’ambiente di provenienza dei cianobatteri a cui le sequenze appartengono.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Andreoli, Carlo
Correlatore:Moro, Isabella
Dottorato (corsi e scuole):Ciclo 21 > Corsi per il 21simo ciclo > BIOLOGIA EVOLUZIONISTICA
Data di deposito della tesi:30 Gennaio 2009
Anno di Pubblicazione:31 Dicembre 2008
Parole chiave (italiano / inglese):cianobatteri, Phormidium, desaturasi, acidi grassi, ambiente termale
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/01 Botanica generale
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:1803
Depositato il:30 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aakermann T., Skulberg O.M. & Liaaen-Jensen S. (1992) “A comparison of the carotenoids of strains of Oscillatoria and Spirulina (cyanobacteria).” Biochem. Syst. Ecol. 20: 761-769. Cerca con Google

Adachi J., Waddell P.J., Martin W. & Hasegawa M. (2000) “Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA.” J. Mol. Evol. 50: 348-358. Cerca con Google

Adams D.G., Ashworth D.& Nelmes B.(1999) “Fibrillar Array in the Cell Wall of a Gliding Filamentous Cyanobacterium.” J. Bacteriol. 181: 884-892. Cerca con Google

Adams D.G. (2001) “How do cyanobacteria glide?” Microbiology Today 28: 131-133. Cerca con Google

Adams D.G. & Duggan P.S. (2008) “Cyanobacteria–bryophyte symbioses.” J. Exp. Bot. 59: 1047-1058. Cerca con Google

Aguilar P.S.,. Cronan J.E Jr. & de Mendoza D. (1998) “A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase.” J. Bacteriol. 180: 2194-2200. Cerca con Google

Ahlgren G.l & Hyenstrand P. (2003) “Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae)” J. Phycol. 39: 906-917. Cerca con Google

Allakhverdiev S.I., Kinoshita M., Inaba M., Suzuki I. & Murata N. (2001) “Unsaturated Fatty Acids in Membrane Lipids Protect the Photosynthetic Machinery against Salt-Induced Damage in Synechococcus.” Plant Physiol. 125: 1842–1853. Cerca con Google

Alonso D.L., García-Maroto F., Rodríguez-Ruiz J., Garrido J.A., & Vilches M.A. (2003) “Evolution of the membrane bound fatty acid desaturases.” Biochem. Syst. Ecol. 31: 1111-1124. Cerca con Google

Altschul S. F., Gish W., Miller W., Myers E. W. e Lipman D. J. (1990) “Basic Local Alignment Search Tool.” J. Mol. Biol. 215: 403-410. Cerca con Google

Anagnostidis K. & Komárek J. (1985) “Modern approach to the classification system of the cyanophytes. 1: Introduction.” Arch. Hydrobiol., Algol. Stud. 38-39: 291-303. Cerca con Google

Anagnostidis K. & Komàrek J. (1988) “Modern approach to the classification system of the cyanophytes. 3: Oscillatoriales.” Arch. Hydrobiol., Algol. Stud. 50: 327-472. Cerca con Google

Anagnostidis K. & Komárek J. (1990) “Modern approach to the classification system of the cyanophytes. 5: Stigonematales.” Arch. Hydrobiol., Algol. Stud. 59: 1-73. Cerca con Google

Andreoli C. & Rascio N. (1975) “The algal flora in the thermal baths of Montegrotto Terme (Padua). Its distribution over one-year period.” Int. Revue Ges. Hydrobiol. 60: 857-871. Cerca con Google

Avelange-Macherel M., Macherel D., Wada H. & Murata N.(1995) “Site-directed mutagenesis of histidine residues in the ?12 acyl-lipid desaturase of Synechocystis.” FEBS Lett. 361: 111-114. Cerca con Google

Ballot A., Dadheech P. & Krienitz L. (2004) “Phylogenetic relationship of Arthrospira, Phormidium, and Spirulina strains from Kenyan and Indian waterbodies.” Arch. Hydrobiol. Suppl., Algol. Stud. 113: 37-56. Cerca con Google

Ballot A., Dadheech P.K., Haande S. & Krienitz L. (2008) “Morphological and Phylogenetic Analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from Tropical Inland Water Bodies.” Microb. Ecol. 55: 608-618. Cerca con Google

Balme A., Hervas M., Campos L. A., Sancho J., De la Rosa M. e Navarro A. (2001) “A comparative study of the thermal stability of plastocyanin, cytochrome c(6) and photosystem I in thermophilic and mesophilic cyanobacteria.” Photosynth. Res.70: 281-289. Cerca con Google

Bardy S.L., Ng S.Y.M. &. Jarrell K.F. (2003) “Prokaryotic motility structures”. Microbiol. 149: 295-304. Cerca con Google

Becker S., Singh A. K., Postius C., Böger P. & Ernst A. (2004) “Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance.” FEMS Microbiol. Ecol. 49: 181-190. Cerca con Google

Bennet A. & Bogorad L.. (1973) “Complementary chromatic adaption in filamentous blue-green alga.” J. Cell Biol. 58: 419-435. Cerca con Google

Bergman B. & Carpenter E. J. (1991). “Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii.” J. Phycol. 27: 158-165. Cerca con Google

Bergman B., Gallon J.R., Rai A.N. & Stal L.J. (1997) “N2 Fixation by non-heterocystous cyanobacteria.” FEMS Microbiol. Rev. 19: 139-185. Cerca con Google

Bergsland K.J. & Haselkorn R. (1991) “Evolutionary Relationships among Eubacteria, Cyanobacteria and Chloroplasts: Evidence from the rpoCl Gene of Anabaena sp. Strain PCC 7120.” J. Bacteriol. 173: 3446-3455. Cerca con Google

Bhaya D. (2004) “Light matters: phototaxis and signal transduction in unicellular cyanobacteria.” Mol. Microbiol. 53: 745-754. Cerca con Google

Bialek-Bylka G.E., Fujii R., Chen C., Oh-oka H., Kamiesu A., Satoh K., Koike H. & Koyama Y. (1998) “15-Cis-carotenoids found in the reaction center of a green sulfur bacterium Chlorobium tepidum and in the Photosystem I reaction center of a cyanobacterium Synechococcus vulcanus.” Photosynth. Res. 58: 135-142. Cerca con Google

Bryant D.A. (1982) “Phycoerythrocyanin and phycoerytrin: properties and occurrence in cyanobacteria.” J.Gen. Microbiol. 128: 835-844. Cerca con Google

Boyer S.L., Flechtner V.R. & Johansen J.R. (2001) “Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria.” Mol. Biol. Evol. 18: 1057-1069. Cerca con Google

Brehm U., Krumbein W.E. & Palinska K.A. (2003) “Microbial spheres: a novel cyanobacterial–diatom symbiosis.” Naturwissenschaften 90: 136-140. Cerca con Google

Brookes J.D., Ganf G.G., Green D. & Whittington J. (1999) “The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis.” J. Plankton Res. 21: 327-341. Cerca con Google

Browse J. (1996) “Towards rational engineering of plant oils: crystal structure of the 18:0-ACP desaturase.” Trends Plant Sci. 1: 403-404. Cerca con Google

Canto De Loura I., Dubacq J.P. & Thomas J.C. (1987) “The Effects of Nitrogen Deficiency on Pigments and Lipids of Cyanobacteria.” Plant Physiol. 83: 838-843. Cerca con Google

Cara C. (2005-2006) “Indagini morfologiche e molecolari su cianobatteri che colonizzano i fanghi termali del Comprensorio Euganeo.” Tesi di Laurea specialistica in Biotecnologie Industriali. Università di Padova, pp. 66. Cerca con Google

Carmichael W. W. (1992). “Cyanobacteria secondary metabolites: the cyanotoxins.” J. Appl. Bacteriol. 72: 445-459. Cerca con Google

Casamatta D.A., Johansen J.R., Vis M.L. & Broadwater S.T. (2005) “Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria).” J. Phycol. 41: 421-438. Cerca con Google

Castenholz R.W. (1968) “The behavior of Oscillatoria terebriformis in hot springs.” J. Phycol. 4: 132-139. Cerca con Google

Castenholz R. W. (1969) “Thermophilic Blue-Green Algae and the Thermal Environment.” Bacteriol. Rev. 33: 476-504. Cerca con Google

Castenholz R.W. (1973) “Ecology of blue-green algae in hot springs.” In Carr N.G. e Whitton B.A.. (eds.), “The Biology of blue-green algae”, Blackwell and Univ. Calif., 379-414. Cerca con Google

Castenholz R. W. (2001) “General characteristics of the cyanobacteria.” In Bergey’s manual of systematic bacteriology. D. R. Boone & R. W. Castenholz (eds). 2nd edn. New York, U.S.A., Springer-Verlag, pp.474-487. Cerca con Google

Castenholz R. W. & Norris T. B. (2005) “Revisionary concepts of species in the cyanobacteria and their applications.” Algol. Stud. 117: 53-69. Cerca con Google

Ceschi-Berrini C., De Appolonia F., Dalla Valle L., Komárek J. & Andreoli C. (2004). “Morphological and molecular characterization of a thermophilic cyanobacterium (Oscillatoriales) from Euganean Thermal Springs (Padua, Italy).” Arch. Hydrobiol., Algol. Stud. 113: 73-85. Cerca con Google

Chi X., Yang Q., Zhao F., Qin S., Yang Y., Shen J. & Lin H. (2008) “Comparative Analysis of Fatty Acid Desaturases in Cyanobacterial Genomes.” Comp. Funct. Genom. volume 2008 (Article ID 284508): 1-25. Cerca con Google

Chintalapati S., Prakash J.S.S., Gupta P., Ohtani S., Suzuki I., Sakamoto T., Murata N. & Shiva S. (2006) “A novel ?9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn?2 position of glycerolipids.” Biochem. J. 398: 207-214. Cerca con Google

Choi J., Chungl Y., Moon Y., Kimtl C., Watanabe M., Song P., Joe C., Bogorad L. & Park Y.M. (1999) “Photomovement of the Gliding Cyanobacterium Synechocystis sp.PCC 6803.” Photochem. Photobiol. 70: 95-102. Cerca con Google

Christie W.W. (1982) “A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters.” J. Lipid Res. 23: 1072-1075. Cerca con Google

Coehen Y., Castenholz R.W. & Halvorson H.O. (1984) “Microbial mats: stromatolites.” New York: Alan R. Liss. Inc. Cerca con Google

Coehen Y. & Gurevitz M (1999) “The Cyanobacteria-Ecology, Physiology, and Molecular Genetics.” In Dworkin M. et al. (eds)., “The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community”, 3rd edition, release 3.0, May 21, 1999, Springer-Verlag, New York (http://link.springer-ny.com/link/service/books/10125/) Vai! Cerca con Google

Crosbie N.D., Pöckl M. & Weisse T. (2003) “Dispersal and Phylogenetic Diversity of Nonmarine Picocyanobacteria Inferred from 16S rRNA Gene and cpcBA-IntergenicSpacer Sequence Analyses.” Appl. Environ. Microbiol. 69: 5716-5721. Cerca con Google

Crowe J.H., Hoekstra F.A. & Crowe L.M. (1992) “Anhydrobiosis.” Annu. Rev. Physiol. 54: 579-599. Cerca con Google

De Figueiredo D.R., Reboleira A.S.S.P., Antunes S.C., Abrantes N., Azeiteiro U., Gonçalves F. & Pereira M.J. (2006) “The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake.” Hydrobiol. 568: 145-157. Cerca con Google

De Philippis R. & Vincenzini M. (1998) “Exocellular polysaccharides from cyanobacteria and their possible applications.” FEMS Microbiol. Rev. 22: 151-175. Cerca con Google

Deshnium P., Paithoonrangsarid K., Suphatrakul Amporn, Meesapyodsuk D., Tanticharoen M., Cheevadhanarak S. (2000) “Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438).” FEMS Microbiol. Lett. 184: 207-213. Cerca con Google

Doyle J. J. & Doyle. J. L. (1987) “A rapid DNA isolation procedure for small quantities of fresh leaf tissue.” Phytochem. Bull. 19: 11-15. Cerca con Google

Dvornyk V. & Nevo E. (2003) “Genetic polymorphism of cyanobacteria under permanent natural stress: A lesson from the «Evolution Canyons».” Res. Microbiol. 154: 79-84. Cerca con Google

Edwards M.R., MacColl R. & Eisele L.E. (1996) “Some physical properties of an unusual C-phycocyanin isolated from a photosynthetic thermophile.” Biochim. Biophys. Acta 1276: 64-70. Cerca con Google

Edwards M.R., Hauer C., Stack R.F., Eisele L.E. e Maccoll R. (1997) “Thermophilic C-phycocyanin: Effect of temperature, monomer stability, and structure.” Biochim. Biophys. Acta 1321: 157-164. Cerca con Google

Ehling-Schulz M., Bilger W., & Scherer S. (1997) “UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune.” J. Bacteriol. 179: 1940-1945. Cerca con Google

El-Shehawy R., Lugomela C., Ernst A. & Bergman B. (2003) “Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum.” Microbiol. 149: 1139-1146. Cerca con Google

Ernst A., Deicher M., Herman P.M.J. & Wollenzien U.I.A. (2005) “Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels.” Appl. Environ. Microbiol. 71: 3379-3383. Cerca con Google

Felsenstein J. (1985) “Confidence limits on phylogenies: an approach using bootstrap.” Evol. 39: 783-791. Cerca con Google

Fergusson K.M. & Saint C.P. (2000) “Molecular Phylogeny of Anabaena circinalis and Its Identification in Environmental Samples by PCR.” Appl. Environ. Microbiol. 66: 4145-4148. Cerca con Google

Fields P.A. (2001) “Protein function at thermal extremes: balancing stability and flexibility.” Comp. Biochem. Physiol. 129: 417-431. Cerca con Google

Fry S.C. (1988) “The growing plant cell wall: chemical and metabolic analysis.” Longman Scientific and Technical, Harlow. Cerca con Google

Galzigna L., Lalli A., Moretto C. & Bettero A. (1995) “Maturation of thermal mud under controlled conditions and identification of an anti-inflammatory fraction.” Phys. Rehab. Kud. Med. 5: 196-1999. Cerca con Google

Galzigna L., Moretto C. & Lalli A. (1996) “Physical and biochemical change of thermal mud after maturation.” Biomed. Pharmacother. 50: 306-308. Cerca con Google

Galzigna L., Ceschi Berrini C., Moschin E. & Tolomio C. (1998) “Thermal mud-pack as an anti-inflammatory treatment.” Biomed. Pharmacother. 52: 408-409. Cerca con Google

Gasparini C. (2006-2007) “Risultati di uno studio sui cianobatteri colonizzanti i fanghi termali di alcuni hotel del Comprensorio Euganeo.” Tesi di Laurea di primo livello in Biologia. Università di Padova, pp. 16. Cerca con Google

García-González M., Moreno J., Manzano J.C., Florencio F.J., Guerrero M.G. (2005) “Production of Dunaliella salina biomass rich in 9-cis-carotene and lutein in a closed tubular photobioreactor.” J. Biotechnol. 115: 81-90. Cerca con Google

García-Pichel F., Wingard C.E. & Castenholz R.W. (1993). “Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp.” Appl. Environ. Microbiol. 59: 170-176. Cerca con Google

García-Pichel F., Prufert-Bebout L. & Muyzer G. (1996) “Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium.” Appl. Environ. Microbiol. 62: 3284-3291. Cerca con Google

García-Pichel F., López-Cortés A. & Nübel U. (2001) “Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau.” Appl. Environ. Microbiol. 67: 1902-1910. Cerca con Google

Genty B., Briantais J.M. & Baker N.R (1989) “The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.” Biochim. Biophys. Acta 990: 87-92. Cerca con Google

Gombos Z., Wada H., Hideg E. & Murata N. (1994) “The Unsaturation of Membrane Lipids Stabilizes Photosynthesis against Heat Stress.” Plant Physiol. 104: 563-567. Cerca con Google

Gruszecki W.I. & Strzalka K. (2005) “Carotenoids as modulators of lipid membrane physical properties.” Biochim. Biophys. Acta 1740: 108–115. Cerca con Google

Gualerzi C.O. & Pon C.L. (1990) “Initiation of mRNA Translation in Prokaryotes.” Biochemistry 29: 5881-5889. Cerca con Google

Gugger M., Lyra C., Suominen I., Tsitko I., Humbert J-F., Salkinoja-Salonen M. S. & Sivonen K. (2002) “Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria).” Int. J. Syst. .Evol. Micr. 52: 1007-1015. Cerca con Google

Guglielmi G., Cohen-Bazire G. & Bryant D.A. (1981) “The structure of Gloeobacter violaceus and its phycobilisomes.” Arch. Microbiol. 129: 181–189. Cerca con Google

Guindon S. & Gascuel O. (2003) “A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood.” Syst. Biol. 52: 696-704. Cerca con Google

Haney P.J., Badger J.H., Buldak G.L., Reich C.I., Woese C.R. & Olsen G.J. (1999) “Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species.” PNAS 96: 3578-3583. Cerca con Google

Henson B.J., Watson L.E. & Barnum S.R. (2004) “The Evolutionary History of Nitrogen Fixation, as Assessed by NifD.” J. Mol. Evol. 58: 390-399. Cerca con Google

Hindák F. (2001) “Thermal microorganisms from a hot spring on the coast of Lake Bogoria, Kenia.” Nova Hedwigia, Beiheft, 123: 77-93. Cerca con Google

Hoffmann L. (2005) “Nomenclature of Cyanophyta/Cyanobacteria: roundtable on the unification of the nomenclature under the Botanical and Bacteriological Codes.” Algol. Stud. 117: 13-29. Cerca con Google

Hoffmann L., Komárek J., & Kaštovský J. (2005) “System of cyanoprokaryotes (cyanobacteria) -state 2004.” Algol. Stud. 117: 95-115. Cerca con Google

Hoiczyk E. & Baumeister W. (1995) “Envelope Structure of Four Gliding Filamentous Cyanobacteria.” J. Bacteriol. 177: 2387-2395. Cerca con Google

Hoiczyk E. & Baumeister W. (1998) “The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria.” Curr. Biol. 8: 1161-1168. Cerca con Google

Hoiczyk E. (2000) “Gliding motility in cyanobacteria: observations and possible explanations.” Arch. Microbiol. 174: 11-17. Cerca con Google

Hoiczyk E. & Hansel A (2000) “Cyanobacterial cell walls: news from an unusual prokaryotic envelope.” J. Bacteriol. 182: 1191-1199. Cerca con Google

Honda D., Yokota A. & Sugiyama J. (1999) “Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains.” J. Mol. Evol. 48: 723-739. Cerca con Google

Hongsthong A., Deshnium P., Paithoonrangsarid K., Cheevadhanarak S. & Tanticharoen M. (2003) “Differential Responses of Three Acyl-Lipid Desaturases to Immediate Temperature Reduction Occurring in Two Lipid Membranes of Spirulina platensis Strain C1.” J. Biosci. Bioeng. 96: 519-524. Cerca con Google

Hyenstrand P., Burkert U., Pettersson A.& Blomqvist P. (2000) “Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply.” Hydrobiol. 435: 91-98. Cerca con Google

Ikawa M. (2004) “Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms.” UNH Center for Freshwater Biology Research 6: 17-44. Cerca con Google

Ishida T., Yokota A. & Sugiyama J. (1997) “Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence.” J. Gen. Appl. Microbiol. 43: 237-241. Cerca con Google

Iteman I., Rippka R., Tandeau de Marsac N. & Herdman M (2000) “Comparison of conserved structural and regulatory domains within divergent 16S-23S rRNA spacer sequences of cyanobacteria.” Microbiol. 146: 1275-1286. Cerca con Google

Ivanov A.G., Miskiewicz E., Clarke A.K., Greenberg B.M. & Hunner N.P.A. (2000) “Protection of photosystem II against UV-A and UV-B radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and growth irradiance.” Photochem. Photobiol. 72: 772-779. Cerca con Google

Jeffrey S.W., Mantoura R.F.C. & Wright S.W. (1997) “Data for the identification of 47 Key phytoplankton pigments. In Phytoplancton pigments in oceanography.” UNESCO Publishing (Eds.), Paris, pp. 449-553. Cerca con Google

Jimenez, C. & Pick U. (1993) “Differential reactivity of ?-carotene isomers from Dunaliella bardawil toward oxygen radicals.” Plant Physiol. 101: 385-390. Cerca con Google

Jones A.S. & Walker R.T. (1963) “Isolation and Analysis of the Deoxyribonucleic Acid of Mycoplasma mycoides var. capri.” Nature 198: 588-589. Cerca con Google

Jungblut A., Hawes I., Mountfort D., Hitzfeld B., Dietrich D.R., Burns B.P. & Neilan B.A. (2005) “Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica.” Environ. Microbiol. 7: 519-529. Cerca con Google

Kellogg D.E., Rybalkin I., Chen S., Mukhamedova N., Vlasik T., Siebert P.D. & Chenchik A. (1994) “TaqStart antibody: "Hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase.” BioTechniques 16: 1134-1137. Cerca con Google

Kilian O., Steunou A., Fazeli F., Bailey S., Bhaya D. & Grossman A.R. (2007) “Responses of a Thermophilic Synechococcus Isolate from the Microbial Mat of Octopus Spring to Light.” Appl. Environ. Microbiol. 73: 4268-4278. Cerca con Google

Kim S., Rhee S., Ahn C., Ko S., Choi G., Bae J., Park Y. & Oh H. (2006) “Determination of Cyanobacterial Diversity during Algal Blooms in Daechung Reservoir, Korea, on the Basis of cpcBA Intergenic Spacer Region Analysis.” Appl. Environ. Microbiol. 72: 3252-3258. Cerca con Google

Kis M., Zsiros O., Farkas T., Wada H., Nagy F. & Gombos Z. (1998) “Light-induced expression of fatty acid desaturase genes.” PNAS 95: 4209-4214. Cerca con Google

Kiseleva L.L., Horvaéth I., Vigh L., Los D.A. (1999) “Temperature-induced specific lipid desaturation in the thermophilic cyanobacterium Synechococcus vulcanus.” FEMS Microbiol. Lett. 175: 179-183. Cerca con Google

Komárek J. & Anagnostidis K. (1986) “Modern approach to the classification system of the cyanophytes. 2: Chroococcales.” Arch. Hydrobiol., Algol. Stud. 43: 157-226. Cerca con Google

Komárek J. & Anagnostidis K. (1989) “Modern approach to the classification system of the cyanophytes. 4: Nostocales.” Arch. Hydrobiol., Algol. Stud. 56: 247-345. Cerca con Google

Komárek J., Kopecký J. & Cepák V. (1999) “Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus.” Cryptogamie Algol. 20: 209-222. Cerca con Google

Komárek J. (2003) “Problem of the taxonomic category “species” in cyanobacteria.” Algol. Stud. 109: 281-297. Cerca con Google

Komárek J. & Anagnostidis K. (2005) “Cyanoprokaryota. 2. Oscillatoriales.” In: Sü?wasserflora von Mitteleuropa (Büdel et al. Eds), Elsevier, 759 pp. Cerca con Google

Kunkel D.D. (1982) “Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system.” Arch. Microbiol. 133: 97-99. Cerca con Google

Kutschera U. & Niklas K.J (2005) “Endosymbiosis, cell evolution, and speciation.” Theor. Biosci. 124: 1-24. Cerca con Google

Lakatos M., Bilger W. & Büdel B. (2001) “Carotenoid composition of terrestrial Cyanobacteria: response to natural light conditions in open rock habitats in Venezuela.” Eur. J. Phycol. 36: 367-375. Cerca con Google

Lalli A., Andreoli C., Ceschi Berrini C., De Appolonia F. & Marcolongo G. (2004) “Anti-inflammatory active principles in Euganean thermal MUD.” Brevetto n° 05100038.8. Cerca con Google

Lanave C., Preparata G., Saccone C. & Serio G. (1984). “A new method for calculating evolutionary substitution rates.” J. Mol. Evol. 20: 86-93. Cerca con Google

Lange W. (1974) “Competitive exclusion among three planktonic blue-green algal species.” J. Phycol. 10: 411-414. Cerca con Google

Lehninger A.L., Nelson D.L. & Cox M.M. (1994) “Principi di biochimica.” Ed. Zanichelli, Bologna (Italia). Cerca con Google

Leisner J.M.R., Bilger W., Czygan F.-C. & Lange O.L. (1994) “Light exposure and the composition of lipophilous carotenoids in cyanobacterial lichens.” J. Plant Physiol. 143: 514-519. Cerca con Google

Lem N.W. & Stumpf P.K. (1984) “In Vitro Fatty Acid Synthesis and Complex Lipid Metabolism in the Cyanobacterium Anabaena variabilis.” Plant Physiol. 74: 134-138. Cerca con Google

Li R., Yokota A., Sugiyama J., Watanabe M., Hiroki M. & Watanabe M.M. (1998) “Chemotaxonomy of planktonic cyanobacteria based on non-polar and 3-hydroxy fatty acid composition.” Phycol. Res. 46: 21-28. Cerca con Google

Li R. & Watanabe M.M. (2004) “Fatty Acid Composition of Planktonic Species of Anabaena (Cyanobacteria) with Coiled Trichomes Exhibited a Significant Taxonomic Value.” Curr. Microbiol. 49: 376-380. Cerca con Google

Liberton M., Berg R.H., Heuser J., Roth R. & Pakrasi H.B. (2006) “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803.” Protoplasma 227: 129-138. Cerca con Google

Lin S., Henze S., Lundgren P., Bergman B. & Carpenter E. J. (1998) “Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp.” Appl. Environ. Microbiol. 64: 3052-3064. Cerca con Google

Lin Y., Hirai M., Kashino Y., Koike H., Tuzi S. & Satoh K. (2004) “Tolerance to freezing stress in cyanobacteria, Nostoc commune and some cyanobacteria with various tolerances to drying stress.” Polar Biosc. 17: 56-68. Cerca con Google

Lindqvist Y., Huang W., Schneider G. & Shanklin J. (1996) “Crystal structure of ?9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins.” EMBO J. 15: 4081-4092. Cerca con Google

López-Cortés A., García-Pichel F., Nübel U. & Vàzquez-Juàrez R. (2001) “Cyanobacterial diversity in extreme environments in Baja California, Mexico: a polyphasic study.” Int. Microbiol. 4: 227-236. Cerca con Google

Los D.A., Horvath I., Vigh L. & Murata N. (1993) “The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803” FEBS Lett. 318: 57-60. Cerca con Google

Los D.A. & Murata N. (1994) “Low-temperature induced accumulation of the desaturase gene transcript in Synechocystis PCC 6803 results from both acceleration of transcription and increase in mRNA stability.” Russ. J. Plant Physiol. 41: 147-151. Cerca con Google

Los D.A. & Murata N. (1998) “Structure and expression of fatty acid desaturases.” Biochim. Biophys. Acta 1394: 3-15. Cerca con Google

Los D.A., Ray M.K. & Murata N. (1997) “Differences in the control of the temperature-dependent expression of four genes of desaturases in Synechocystis sp. PCC 6803.” Mol. Microbiol. 25: 1167-1175. Cerca con Google

Los D.A. (2004) “Low-Temperature and Substrate Induction of the Gene for ?9 Fatty Acid Desaturase in the Thermophilic Cyanobacterium Synechococcus vulcanus.” Russ. J. Plant Physiol. 51: 164-168. Cerca con Google

Masamoto K., Zsiros O. & Gombos Z. (1999) “Accumulation of zeaxanthin in cytoplasmic membranes of the cyanobacterium Synechococcus sp. strain PCC 7942 grown under high light condition.” J. Plant Physiol. 155: 136-138. Cerca con Google

Manen J. & Falquet J. (2002) “The cpcB–cpcA locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer.” Int. J. Syst. Evol. Microbiol. 52: 861-867. Cerca con Google

Marcon A. (2004-2005) “Indagini morfologiche e molecolari su cianobatteri dei fanghi termali del Comprensorio Euganeo.” Tesi di Laurea di primo livello in Biologia. Università di Padova, pp.16. Cerca con Google

Marquardt J. & Palinska K. A. (2007) “Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites.” Arch. Microbiol. 187: 397-413. Cerca con Google

Martins L.O., Huber R., Huber H., Stetter K.O., Da Costa M.S. & Santos H. (1997) “Organic solutes in iperthermophilic Archaea.” Appl. Environ. Microbiol. 63: 896-902. Cerca con Google

Maslova I.P., Mouradyan E.A.; Lapina S.S.; Klyachko-Gurvich G.L. & Los D.A. (2004) “Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria.” .” Russ. J. Plant Physiol. 51: 353-360. Cerca con Google

McBride M.J. (2001) “Bacterial Gliding Motility: Multiple Mechanisms for Cell Movement over Surfaces.” Annu. Rev. Microbiol. 55: 49–75. Cerca con Google

Meeks J.C. & Elhai J. (2002) “Regulation of Cellular Differentiation in Filamentous Cyanobacteria in Free-Living and Plant-Associated Symbiotic Growth States.” Microbiol. Mol. Biol. Rev. 66: 94-121. Cerca con Google

Mendiola J A., Marín F.R., Hernández S.F., Arredondo B.O., Señoráns F. J., Ibañez E. & Reglero G. (2005) “Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga.” J. Sep. Sci. 28: 1031–1038. Cerca con Google

Messina B. (1981) “Le cure ad Abano e Montegrotto Terme.” Offset Invicta, Padova, 187 pp. Cerca con Google

Mikheyskaya L.V., Ovodova R.G. & Ovodov YU.S. (1977) “Isolation and Characterization of Lipopolysaccharides from Cell Walls of Blue-Green Algae of the Genus Phormidium.” J. Bacteriol. 130: 1-3. Cerca con Google

Miller S.R. & Castenholz R.W. (2000) “Evolution of thermotolerance in hot spring Cyanobacteria of the genus Synechococcus.” Appl. Environ. Microbiol. 66: 4222-4229. Cerca con Google

Miskiewicz E., Ivanov A.G. & Huner N.P.A. (2002) “Stoichiometry of the Photosynthetic Apparatus and Phycobilisome Structure of the Cyanobacterium Plectonema boryanum UTEX 485 Are Regulated by Both Light and Temperature.” Plant Physiol. 130: 1414-1425. Cerca con Google

Mohamed H.E., van de Meene A.M.L., Roberson R.W. & Vermaas W.F.J. (2005) “Myxoxanthophyll Is Required for Normal Cell Wall Structure and Thylakoid Organization in the Cyanobacterium Synechocystis sp. Strain PCC 6803.” J. Bacteriol. 187: 6883-6892. Cerca con Google

Moro I., Rascio N., La Rocca N., Di Bella M. & Andreoli C. (2007). “Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy).” Algol. Stud. 123: 1-15. Cerca con Google

Müller M.C., Rodriguez-Amaya D.B. & Lourenço S.O. (2003) “Carotenóides da cianobactéria Synechocystis pevalekii produzida em condições normais e sob limitação de nutrientes.” Brazilian Journal of Pharmaceutical Sciences 39: 415-423. Cerca con Google

Mullineaux C.W. (1999) “The thylakoid membranes of cyanobacteria: structure, dynamics and function.” Aust. J. Plant Physiol. 26: 671-677. Cerca con Google

Murata N., Wada H. & Gombos Z. (1992) “Modes of Fatty-Acids Desaturation in Cyanobacteria.” Plant. Cell. Physiol. 33: 933-941. Cerca con Google

Murata N. (1994) “Genetic and temperature-induced modulation of cyanobacterial membrane lipids.” In “Temperature Adaptation of Biological Membranes” (A.R. Cossins, ed.), Portland Press, London, pp. 155-162. Cerca con Google

Murata N. & Wada H. (1995) “Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria.” Biochem. J. 308: 1-8. Cerca con Google

Murata N., Deshnium P. & Tasaka Y. (1996) “Biosynthesis of gamma-linoleic acid in the cyanobacterium Spirulina platensis.” Gamma-Linolenic Acid: Metabolism and Role in Nutrition and Medicine. Champaign, IL: Am. Oil Chem. Soc. Cerca con Google

Nechustay R., Muster P., Binder A., Liveanu A. e Nelson N. (1983) “Photosystem I reaction center from the thermophylic cyanobacterium Mastigocladus laminosus.” PNAS 80: 1179-1183. Cerca con Google

Nei M. & Kumar S. (2000) “Molecular Evolution and Phylogenetics.” Oxford University Press, New York, 333 pp. Cerca con Google

Neilan B.A., Jacobs D. & Goodman A.E. (1995) “Genetic diversity and phylogeny on toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus.” Appl. Environ. Microbiol. 61: 3875-3883. Cerca con Google

Neilan B.A., Jacobs D., Deldot T., Blackall L., Hawkins P.R., Cox P.T. e Goodmann A. (1997) “rRNA sequences and evolutionary relationships among toxic and non-toxic cynobacteria of the genus Microcystis.” Int. J. Syst. Bacteriol. 47: 693-697. Cerca con Google

Nevo R., Charuvi D., Shimoni E., Schwarz R., Kaplan A., Ohad I. & Reich Z. (2007) “Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria.” EMBO J. 26: 1467-1473. Cerca con Google

Nilsson M., Rasmussen U. & Bergman B. (2006) “Cyanobacterial chemotaxis to extracts of host and non-host plants” FEMS Microbiol. Ecol. 55: 382-390. Cerca con Google

Nishida I. & Murata N. (1996) “Chilling Sensitivity in Plants and Cyanobacteria: the Crucial Contribution of Membrane Lipids.” Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541–568. Cerca con Google

Nishiyama Y., Los D.A. & Murata N. (1999) “PsbU, a protein associated with photosystem II is required for acquisition of cellular thermotolerance in Synechococcus species PCC 7002.” Plant Physiol. 120: 301-308. Cerca con Google

Norling B., Zarka A. & Boussiba S. (1997) “Isolation and characterization of plasma membranes from cyanobacteria.” Physiol. Plantarum 99: 495-504. Cerca con Google

Ohno H., Sakai H., Washio T. & Tomita M. (2001) “Preferential usage of some minor codons in bacteria.” Gene 276: 107–115. Cerca con Google

Orcutt K.M., Rasmussen U., Webb E.A., Waterbury J.B., Gundersen K. & Bergman B. (2002) “Characterization of Trichodesmium spp. by genetic techniques.” Appl. Environ. Microbiol. 68: 2236-2245. Cerca con Google

Otero A. & Vincenzini M. (2003) “Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity.” J. Biotechnol. 102: 143-152. Cerca con Google

Otero A. & Vincenzini M. (2004) “Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism.” J. Phycol. 40: 74-81. Cerca con Google

Paerl H.W., Pinckney J.L. & Steppe T.F. (2000) “Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments.” Environ. Microbiol. 2: 11-26. Cerca con Google

Pajdak-Stós A., Fialkowska E. & Fyda J. (2001) “Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species.” Aquat. Microb. Ecol. 23: 237–244. Cerca con Google

Pali?ska K.A., Liesack W., Rhiel E. & Krumbein W.E. (1996) “Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates.” Arch. Microbiol. 166: 224-233. Cerca con Google

Pali?ska K.A. & Krumbein W.E. (2000) “Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria.” J. Phycol. 36: 139-145. Cerca con Google

Pali?ska K. A. &•Marquardt J. (2008) “Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales).” Arch. Microbiol. 189: 325-335. Cerca con Google

Papke R.T., Ramsing N. B., Bateson M. M.& Ward D. M. (2003) “Geographical isolation in hot spring cyanobacteria.” Environ. Microbiol. 5: 650-659. Cerca con Google

Perriére G. & Gouy M. (1996) “WWW-Query: An on-line retrieval system for biological sequence banks.” Biochimie 78: 364-369. Vai! Cerca con Google

Piccoli G., Sedea R., Bellati R., Di Lallo E., Medizza F., Girardi A., De Pieri R., De Vecchi G., Gregnanin A., Piccirillo E.M., Norinelli A. & Dal Prá A. (1981) “Note illustrative della carta geologica dei Colli Euganei.” Memorie di Scienze geologiche 34: 523-566. Cerca con Google

Porra R.J., Thompson W.A. & Kriedemann P.E. (1989) “Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.” Biochim. Biophys. Acta 975: 384-394. Cerca con Google

Premanandh J., Priya B., Teneva I., Dzhambazov B., Prabaharan D. e Uma L. (2006) “Molecular Characterization of marine Cyanobacteria from the Indian Subcontinent Deduced from Sequence Analysis of the Phycocyanin Operon (cpcB-IGS-cpcA) and 16S-23S ITS Region.” J. Microbiol. 44: 607-616. Cerca con Google

Pupillo P., Cervone F., Cresti M. e Rascio N. (2003) “Biologia Vegetale.” Ed. Zanichelli, Bologna (Italia). Cerca con Google

Quesada A. & Vincent W.F. (1997) “Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation.” Eur. J. Phycol. 32: 335-342. Cerca con Google

Rajaniemi P., Hrouzek P., Kaštovská, Willame R., Rantala A., Hoffmann L., Komárek J. & Sivonen K. (2005) “Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria).” Int. J. Syst. Evol. Microbiol. 55: 11-26. Cerca con Google

Ramsing N.B., Ferris M.J. & Ward D.M. (1997) “Light-Induced Motility of Thermophilic Synechococcus Isolates from Octopus Spring, Yellowstone National Park.” Appl. Environ. Microbiol. 63: 2347-2354. Cerca con Google

Read N., Connell S. & Adams D.G. (2007) “Nanoscale Visualization of a Fibrillar Array in the Cell Wall of Filamentous Cyanobacteria and Its Implications for Gliding Motility.” J. Bacteriol. 189: 7361-7366. Cerca con Google

Reddy A.S., Nuccio M.L., Gross L.M. & Thomas T.L. (1993) “Isolation of a ?6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120.” Plant Mol. Biol. 27: 293-300. Cerca con Google

Reddy K.J., Soper B.W., Tang J. & Bradley R.L. (1996) “Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp.” World J. Microbiol. Biotechnol. 12: 311-318. Cerca con Google

Reynolds C.S., Oliver R.L. & Walsby A.E. (1987) “Cyanobacterial dominance : the role of buoyancy regulation in dynamic lake environments.” New Zeal. J. Mar. Fresh. 21: 379-390. Cerca con Google

Rippka R., Waterbury J. & Cohen-Bazire G. (1974) “A cyanobacterium which lacks thylakoids.” Arch. Microbiol. 100: 419-436. Cerca con Google

Rippka R., Deruelles J., Waterbury J.B., Herdman M. e Stanier R.Y. (1979) “Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria.” J. Gen. Microbiol. 111: 1-61. Cerca con Google

Robertson B. R., Tezuka N. & Watanabe M. M. (2001) “Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content.” Int. J.System. Evol. Microbiol. 51: 861-871. Cerca con Google

Rosales N., Ortega J., Mora R. & Morales E. (2005) “Influence of salinity on the growth and biochemical composition of the cyanobacterium Synechococcus sp.” Cienc. Mar. 31: 349–355. Cerca con Google

Rosselló-Mora R. & Amann R. (2001) “The species concept for prokaryotes.” FEMS Microbiol. Rev. 25: 39-67. Cerca con Google

Rothschild L.J. & Mancinelli R.L. (2001) “Life in extreme environments.” Nature 409: 1092-1101. Cerca con Google

Rützler K. (1988) “Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system?” Dis. Aquat. Org. 5: 143-149. Cerca con Google

Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B. & Erlich H.A. (1988) “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.” Science 239: 487-491. Cerca con Google

Sakamoto T., Los D.A., Higashi S., Wada H., Nishida I., Ohmori M. & Murata N. (1994) “Cloning of ?3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation.” Plant Mol. Biol. 26: 249-264. Cerca con Google

Sakamoto T. & Bryant D.A. (1997) “Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002.” Mol. Microbiol. 23: 1281-1292. Cerca con Google

Sakamoto T., Higashi S., Wada H., Murata N. & Bryant D.A. (1997) “Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002.” FEMS Microbiol. Lett. 152: 313-320. Cerca con Google

Sakamoto T. & Bryant D.A. (1998) “Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002.” Arch. Microbiol. 169: 10-19. Cerca con Google

Sakamoto T., Shen G., Higashi S., Murata N. & Bryant D.A. (1998) “Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation.” Arch. Microbiol. 169: 20–28. Cerca con Google

Samsonoff W.A. & McColl R. (2001). “Biliproteins and phycobilisomes from cyanobacteria and red algae at the estremes of habitat.” Arch. Microbiol. 176: 400-405. Cerca con Google

Schagerl M. & Müller B. (2006) “Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria.” J. Plant Physiol. 163: 709-716. Cerca con Google

Schlüter L., Garde K. & Kaas H. (2004) “Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea.” Mar. Ecol. Prog. Ser. 275: 69-78. Cerca con Google

Schmidt H.A., Strimmer K.., Vingron M. & von Haeseler A. (2002) “TREEPUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing.” Bioinformatics 18: 502-504. Cerca con Google

Sellner K.G. (1997) “Physiology, ecology, and toxic properties of marine cyanobacteria blooms.” Limnol. Oceanogr. 42: 1089-1104. Cerca con Google

Sellner K.G., Doucette G.J. & Kirkpatrick G.J. (2003) “Harmful algal blooms: causes, impacts and detection.” J. Ind. Microbiol. Biotechnol. 30: 383-406. Cerca con Google

Selstam E. & Campbell D. (1996) “Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol.” Arch. Microbiol. 166: 132-135. Cerca con Google

Seo P. e Yokota A. (2003) “The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences.” J. Gen. Appl. Microbiol. 49: 191-203. Cerca con Google

Shanklin J., Whittle E. & Fox B.G. (1994) “Eight Histidine Residues Are Catalytically Essential in a Membrane-Associated Iron Enzyme, Stearoyl-CoA Desaturase, and Are Conserved in Alkane Hydroxylase and Xylene Monooxygenase.” Biochemistry 33: 12787-12794. Cerca con Google

Shanklin J. & Cahoon E.B. (1998) “Desaturation and related modifications of fatty acids.” Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611-641. Cerca con Google

Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov K.A. & Lukyanov S.A. (1995) “An improved PCR method for walking in uncloned genomic DNA.” Nucleic Acids Res. 23: 1087-1088. Cerca con Google

Siegesmund M.A., Johansen J.R., Karsten U. & Friedl T. (2008) “Coleofasciculus Gen. Nov. (Cyanobacteria): Morphological and Molecular Criteria for Revision of the Genus Microcoleus Gomont.“ J. Phycol. 44: 1572-1585. Cerca con Google

Singh S.C., Sinha R.P. & Häder D. (2002) “Role of Lipids and Fatty Acids in Stress Tolerance in Cyanobacteria.” Acta Protozool. 41: 297-308. Cerca con Google

Skulberg O.M., Codd C.A. & Carmichael W.W. (1984) “Toxic blue-green algal blooms in Europe: a growing problem.” Ambio 13: 244-247. Cerca con Google

Spence E., Sarcina M., Ray N., Moller S.G., Mullineaux C.W., Robinson C. (2003) “Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803.” Mol. Microbiol. 48: 1481-1489. Cerca con Google

Sperling P., Ternes P., Zank T.K. & Heinz E. (2003) “The evolution of desaturases.” Prostag. Leukotr. Ess. 68: 73–95. Cerca con Google

Stackebrandt E. & Goebel B. M. (1994) “Taxonomic note: a for place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.” Int. J. Syst. Bacteriol. 44: 846-849. Cerca con Google

Stal L.J. (1995) “Physiological ecology of cyanobacteria in microbial mats and other communities.” New Phytol. 131: 1-32. Cerca con Google

Stanier R. Y., Sistrom W. R., Hansen T. A., Whitton B. A., Castenholz R. W., Pfennig N., Gorlenko V. N., Kondratieva E. N., Eimhjellen K. E., Whittenbury R., Gherna R. L. & Truper H. G. (1978) “Proposal to place nomenclature of cyanobacteria (blue-green algae) under rules of international code of nomenclature of bacteria.” Int. J. Syst. Bacteriol. 28: 335-336. Cerca con Google

Steiger S., Schäfer L. & Sandmann G. (1999) “High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis sp. PCC 6803.” J. Photochem. Photobiol. 52: 14-18. Cerca con Google

Strimmer K. & von Haeseler A. (1997) “Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment.” PNAS 94: 6815-6819. Cerca con Google

Sumina E.L. (2006) “Behavior of Filamentous Cyanobacteria in Laboratory Culture.” Microbiol. 75: 459-464. Cerca con Google

Sun L., Wang S., Chen L. & Gong X. (2003) “Promising Fluorescent Probes From Phycobiliproteins.” IEEE J. Sel. Top. Quant. 9: 177-188. Cerca con Google

Suzuki I., Los D.A., Kanesaki Y., Mikami K. & Murata N. (2000) “The pathway for perception and transduction of low-temperature signals in Synechocystis.” EMBO J. 19: 1327-1334. Cerca con Google

Suzuki I., Kanesaki Y., Mikami K., Kanehisa M. & Murata N. (2001) “Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis.” Mol. Microbiol. 40: 235-244. Cerca con Google

Takaichi S., Mochimaru M., Maoka T. & Katoh H. (2005) “Myxol and 4-Ketomyxol 2?-Fucosides, not Rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and Proposal for the Biosynthetic Pathway of Carotenoids.” Plant Cell. Physiol. 46: 497-504. Cerca con Google

Takaichi S. & Mochimaru M. (2007) “Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides.” Cell. Mol. Life Sci. 64: 2607-2619. Cerca con Google

Tandeau de Marsac N. (1977) ”Occurrence and Nature of Chromatic Adaptation in Cyanobacteria.” J. Bacteriol. 130: 82-91. Cerca con Google

Tamaru Y., Takani Y., Yoshida T. & Sakamoto T. (2005) “Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune.” Appl. Environ. Microbiol. 71: 7327-7333. Cerca con Google

Tamura K., Dudley J., Nei M. & Kumar S. (2007) “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0”. Mol. Biol. Evol. 24: 1596-1599. Cerca con Google

Taton A., Grubisic S., Brambilla E., De Wit R. & Wilmotte A. (2003) “Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a Morphological and Molecular Approach.” Appl. Environ. Microbiol. 69: 5157-5169. Cerca con Google

Taton A., Grubisic S., Balthasart P., Hodgson D.A., Laybourn-Parry J.& Wilmotte A. (2006) “Biogeographical distributionand ecological ranges of benthic cyanobacteria in East Antarctic lakes.” FEMS Microbiol. Ecol. 20: 1-18. Cerca con Google

Tasaka Yasushi, Gombos Z., Nishiyama Y., Mohanty P., Ohba T., Ohki K. & Murata N. (1996) “Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis.” EMBO J. 15: 6416-6425. Cerca con Google

Teneva I., Dzhambazov B., Mladenov R. e Schirmer K. (2005) “Molecular and Phylogenetic Characterization of Phormidium Species (Cyanoprokaryota) Using the cpcB-IGS-cpcA Locus.” J. Phycol. 41: 188-194. Cerca con Google

Thompson J.D., Higgins D.G. & Gibson T.J. (1994) “Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.” Nucleic Acids Res. 22: 4673-4680. Cerca con Google

Tocher D.R., Leaver M.J. & Hodgson P.A. (1998) “Recent advances in the biochemistry and molecular biology of fatty acyl desaturases.” Prog. Lipid Res.. 37: 73-117. Cerca con Google

Toledo G. & Palenik B. (1997) “Synechococcus Diversity in the California Current as Seen by RNA Polymerase (rpoC1) Gene Sequences of Isolated Strains.” Appl. Environ. Microbiol. 63: 4298-4303. Cerca con Google

Tolomio C., De Appolonia F., Moro I. & Ceschi Berrini C. (2004) “Thermophilic microalgae growth on different substrates and at different temperatures in experimental tanks in Abano Terme (Italy).” Arch. Hydrobiol. Suppl., Algol.Stud. 111: 145-157. Cerca con Google

Tomitani A., Knoll A. H., Cavanaugh C. M. & Ohno T. (2006) “The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives.” PNAS 103: 5442-5447. Cerca con Google

Van de Meene A.M.L., Hohmann-Marriott M.F., Vermaas W.F.J. & Roberson R.W. (2006) “The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803.” Arch. Microbiol. 184: 259-270. Cerca con Google

Van den Hoek C., Mann D. G. e Jahns H. M. (1995) “Algae. An introduction to phycology.” Cambridge University Press, Cambridge. 627 pp. Cerca con Google

Vargas M. A., Rodríguez H., Moreno J., Olivares H., Del Campo J. A., Rivas J. & Guerrero M. G. (1998) “Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria.” J. Phycol. 34: 812–817. Cerca con Google

Várkonyi Z., Msamoto K., Debreczeny M., Zsiros O., Ughy B., Gombos Z., Domonkos I.., Farkas T., Wada H. & Szalontai B. (2002) “Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: an FTIR spectroscopic study.“ PNAS 99: 2410-2415. Cerca con Google

Vigh L., Los D.A., Horvath I. & Murata N. (1993) “The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC 6803.” PNAS 90: 9090-9094. Cerca con Google

Wada H., Avelange-Macherel M. & Murata N. (1993) “The desA Gene of the Cyanobacterium Synechocystis sp. Strain PCC6803 Is the Structural Gene for ?12 Desaturase.” J. Bacteriol. 175: 6056-6058. Cerca con Google

Wada H., Gombos Z. & Murata N. (1994) “Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress.” PNAS 91: 4273-4277. Cerca con Google

Ward D. M., Weller R. & Bateson M. M. (1990) “16S rRNA sequences reveal numerous uncultured microorganisms in a natural community.” Nature 345: 63-65. Cerca con Google

Ward D. M. (1998) “A natural species concept for prokaryotes.” Curr. Opin. Microbiol. 1: 271-277. Cerca con Google

Ward D., Ferris M., Nold S., & Bateson M. (1998) “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities.” Microbiol. Mol. Biol. Rev. 62: 1353-1370. Cerca con Google

Waring G. A. (1965) “Thermal springs of the United States and other countries of the world-a summary.” U.S. Geological Survey Professional Paper 492. Cerca con Google

Watanabe K., Nelson J.S., Harayama S. & Kasai H. (2001) “ICB database: the gyrB database for identification and classification of bacteria.” Nucleic Acids Res. 29: 344-345. Cerca con Google

Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. & Trüper H.G. (1987) “Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics.” Int. J. Syst. Bacteriol. 37: 463-464. Cerca con Google

Weise G., Drews G., Jann B. & Jann K. (1970) “Identification and analysis of a lipopolysaccharide in cell walls of the blue-green alga Anacystis nidulans.” Arch. Mikrobiol. 71: 89-98. Cerca con Google

Whitton B.A. (1992) “Diversity, ecology, and taxonomy of the cyanobacteria.” In: Mann, N.H., Carr, N.G. (Eds.), Photosynthetic Prokaryotes. Plenum Press, New York, pp. 1-51. Cerca con Google

Wilmotte A. & Herdman M. (2001) “Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences.” In Bergey’s manual of systematic bacteriology. D. R. Boone & R. W. Castenholz (eds). 2nd edn. New York, U.S.A., Springer-Verlag, pp. 487-493. Cerca con Google

Wilson K. M., Schembri M. A.,. Baker P. D &. Saint C. P. (2000) “Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis raciborskii and Design of a Species-Specific PCR.” Appl. Environ. Microbiol. 66: 332-338. Cerca con Google

Woese C.R. (1987) “Bacterial evolution.” Microbiol. Rev. 51: 221-271. Cerca con Google

Wolf E. & Schü?ler A. (2005) “Phycobiliprotein fluorescence of Nostoc punctiforme changes during the life cycle and chromatic adaptation: characterization by spectral confocal laser scanning microscopy and spectral unmixing.” Plant Cell Environ. 28: 480-491. Cerca con Google

Wolgemuth C.W. & Oster G. (2004) “The Junctional Pore Complex and the Propulsion of Bacterial Cells.” J. Mol .Microbiol. Biotechnol. 7: 72-77. Cerca con Google

Wolk C.P. (1973) “Physiology and Cytological Chemistry of Blue-Green Algae.” Bacteriol. Rev. 37: 32-101. Cerca con Google

Yamamoto S. & Harayama S. (1995) “PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains.” Appl. Environ. Microbiol. 61: 1104-1109. Cerca con Google

Young J.M. (2001) “Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy.” Int. J.System. Evol. Microbiol. 51: 945-953. Cerca con Google

Zilinskas B.A. & Howell D.A. (1987) “Immunological Conservation of Phycobilisome Rod Linker Polypeptides.” Plant Physiol. 85: 322-326. Cerca con Google

Zsìros O., Kis M., Mustárdy L., Farkas T., Várkonyi Z., Gombos Z. & Szalontai B. (2002) “Light-driven structural changes in thylakoid and cytoplasmic membranes of a cyanobacterium, Synechocystis PCC 6803.” J. Plant Physiol. 159: 403-414. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record