Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Govoni, Chiara (2009) Neural basis of cognitive control: TMS studies. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

1663Kb

Abstract (inglese)

Everyday behaviour requires constant coordination and monitoring in order for our actions to be successful. Within cognitive science such coordination and monitoring of behaviour is termed ‘control’ and refers to a set of functions that serve to configure the mental system for performing specific acts. A system of cognitive control is thought to set high level goals and direct subordinate cognitive systems in order to accomplish those goals. This thesis utilises a transcranical magnetic stimulation (TMS) approach to the study of executive control, addressing research questions concerning the mental processes that are modulated by executive control and the mechanisms underlying control-related processing adjustments. Moreover, using TMS we studied the neural structures involved in cognitive control.
The first chapter investigates the process of task switching and dual task as instruments to study cognitive control and its subcomponents. The second chapter summarises mechanism of transcranical magnetic stimulation. Experimental chapters 3 and 4, investigate two different subcomponents of cognitive control: using task switching we studied the “inhibitory” component, and by using the dual task we checked the “planning and decision making” component. Finally, the last chapter discusses our results and their implications in the context of executive control and in particular, in relation to models of task switching, models of dual task and models of conflict control .

Abstract (italiano)

Il comportamento di ogni giorno richiede costantemente coordinazione e monitoraggio per svolgere con successo le nostre azioni. Nelle scienze cognitive la coordinazione e il monitoraggio vengono chiamati “controllo” che si riferisce a un gruppo di funzioni che servono configurare il sistema mentale per eseguire azioni specifiche. Un sistema di controllo cognitivo deve essere tarato su obiettivi di alto livello e dirigere i sistemi cognitivi sotto-ordinati per conseguire tali obiettivi. Questa tesi utilizza la tecnica della stimolazione magnetica transcranica (TMS) per lo studio del controllo esecutivo, per affrontare le domande della ricerca riguardanti i processi mentali che sono modulati dal controllo esecutivo e i meccanismi sottostanti gli adattamenti dell’elaborazione relati al controllo.
Il primo capitolo esamina il processo di cambio di compito e di doppio compito come strumenti per studiare il controllo cognitivo e le sue sottocomponenti. Il secondo capitolo riassume il meccanismo della stimolazione magnetica transcranica. I capitoli sperimentali 3 e 4 esaminano due diverse sottocomponenti del controllo cognitivo: utilizzando il cambio di compito abbiamo studiato la componente “inibitoria”, e usando il doppio compito abbiamo valutato la componente di “pianificazione e decisione”. Infine, nell’ultimo capitolo si discutono i nostri risultati e le loro implicazioni nel contesto del controllo esecutivo e, in particolare, in relazione i modelli di cambio di compito, ai modelli di doppio compito e ai modelli di controllo del conflitto.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mapelli, Daniela
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE PSICOLOGICHE > PSICOBIOLOGIA
Data di deposito della tesi:30 Gennaio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):dual task, task switching, cognitive control, executive functions, tms
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:1807
Depositato il:30 Gen 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdeen MA, and Stuchley MA (1994). Modelling of magnetic stimulation of bent neurons: IEEE. IEEE Transactions in Biomedical Engineering, 41; 1092-1095. Cerca con Google

Adcock A, Constable T, Gore JC, and Goldman-Rakic PS (2000). Functional neuroanatomy of executive processes involved in dual-task performance. Proceeding of the National Academy of Sciences, 97; 3567-3572. Cerca con Google

Allport A (1980). Patterns and actions: Cognitive mechanisms are content-specific. In Claxton GL (Ed.), Cognitive psychology: New directions, pp. 26-64. London: Routledge & Kegan Paul. Cerca con Google

Allport A, and Wylie G (2000). Task switching, stimulus-response bindings, and negative priming. In Monsell S, and Driver J (Eds.), Control of Cognitive Processes - Attention and Performance, vol. XVIII, pp. 35-70. London, England: MIT Press. Cerca con Google

Allport A, Styles EA, and Hsieh S (1994). Shifting intentional set: exploring the dynamic control of tasks. In Umiltà CA and Moscovitch M (Eds.), Attention and Performance, Vol XV, pp. 421-452. Cambridge, MA: MIT Press. Cerca con Google

Amassian VE, Eberle L, Maccabee PJ, and Cracco RQ (1992). Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain shaped volume conductor: The significance of fiber-bending in excitation. Electroencephalography and Clinical Neurophysiology, 85; 291-301. Cerca con Google

Antal A, Kincses TZ, Nitsche MA, Bartfai O, Demmer I, Sommer, M, and Paulus W (2002). Pulse configuration dependent effects of repetitive transcranial magnetic stimulation on visual perception. Neuroreport, 13; 1-5. Cerca con Google

Arbuthnott K, and Frank J (2000). Executive control in set switching: Residual switch cost and task-set inhibition. Canadian Journal of Experimental Psychology, 54; 33-41. Cerca con Google

Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, and Robbins TW (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6; 115-116. Cerca con Google

Aron AR, Monsell S, Sahakian BJ, and Robbins TW (2004). A componential analysis of task- switching deficits associated with lesions of left and right frontal cortex. Brain, 127; 1561-1573. Cerca con Google

Baddeley AD, and Hitch GJ (1974). Working memory. In Bower GH (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory, pp. 47-90, New York: Academic Press. Cerca con Google

Baddley A, Bressi S, Sala SD, Logie R, and Spinnler S (1991). The decline of working memory in Alzheimer’s disease. Brain, 114; 2521-2542. Cerca con Google

Baddley A, Logie R, Bressi S, Sala SD, and Spinnler S (1986). Dementia and working memory. Quarterly Journal of Experimental Psychology, 38A; 603-618. Cerca con Google

Baddley AD (1986). Working memory. Oxford: Oxford University Press. Cerca con Google

Baddley AD (1992). Working memory. Science, 255; 556-559. Cerca con Google

Badre D (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12; 193-200. Cerca con Google

Barbas H, and Pandya DN (1989). Architecture and intrinsic connections of the prefrontal cortex in rhesus mmonkey. Journal of Comparative Neurology, 286; 353-375. Cerca con Google

Barcelo F, Perianez JA, and Knight RT (2002). Think differently: a brain orienting response to task novelty. Neuroreport, 13; 1887-1892. Cerca con Google

Barker AT (1999). The history and basic principles of magnetic nerve stimulation. Electroencephalography and Clinical Neurophysiology supp., 51; 3-21. Cerca con Google

Barker AT, Jalinous R, and Freeston IL (1985). Non-invasive magnetic stimulation of the human motor cortex. Lancet, 1; 1106-1107. Cerca con Google

Bechara A, Damasio H, Tranel D, and Anderson SW (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18; 428-437. Cerca con Google

Bohning DE (2000). Introduction and overview of TMS physics. In George MS, and Belmaker RH (Eds.), Transcranial magnetic stimulation in neuropsyciatry, pp.13-44. Washington DC and London: American Psychiatric Press, Inc. Cerca con Google

Botvinick MM, Cohen JD, and Carter CS (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8; 539-546. Cerca con Google

Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, and Hallett M (1992). Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. Journal of Clinical Neurophysiology, 9; 132-136. Cerca con Google

Broadbent DE (1982). Task combination and selective intake of information. Acta Psychologica, 50; 253-290. Cerca con Google

Bunge SA, Klingberg T, Jacobsen RB, and Gabrieli JD (2000). A resource model of the neural basis of executive working memory. Proceeding of the National Academy of Sciences, 28; 3573–3578. Cerca con Google

Caroselli JS, Hiscock M, and Bullock R (2006). Dual-task interference in right- and left-handers: typical laterality patterns are obtained despite reversal of baseline asymmetries. Cortex, 42; 57-68. Cerca con Google

Caroselli JS, Hiscock M, and Roebuck T (1997). Asymmetric interference between concurrent tasks: an evaluation of competing explanatory models. Neuropsychologia, 35; 457-469. Cerca con Google

Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, and Cohen LG (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48; 1398-1403. Cerca con Google

Chen R, Yung D, and Li JY (2003). Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. Journal of Neurophysiology, 89; 1256-1264. Cerca con Google

Chiappa KH, Cros D, and Cohen D (1991). Magnetic stimulation: determination of coil current flow direction. Neurology, 41; 1154-1155. Cerca con Google

Ciccola A (2008). Neural correlates of prospective memory. Unpublished doctoral dissertation. University of Padua, Italy. Cerca con Google

Clark VP, Fannon S, Lai S, Benson R, and Bauer L (2000). Responses to rare visual target and distractor stimuli using event- related fMRI. Journal of Neurophysiology, 83; 3133–3139. Cerca con Google

Claus D (2000). Motorisch evozierte potentiale (MEP). In Lowitsch K, Hopf HC, Buchner H, Claus D, Jörg J, Rappelsberger P, and Tackmann W (Eds.), Das EP-Buch, pp. 173-232. Stuttgart and New York: Thieme. Cerca con Google

Cohen D, and Cuffin BN (1991). Developing a more focal magnetic stimulator. Part I: some basic principles. Journal of Clinical Neurophysiology, 8; 102-111. Cerca con Google

Cohen JD, and Servan-Schreiber D (1992). Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99; 45–77. Cerca con Google

Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, and Smith EE (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386; 604–608. Cerca con Google

D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, and Grossman M (1995). The neural basis of the central executive system of working memory. Nature, 378; 279–281. Cerca con Google

Damasio A. (1994). Descartes’ error. New York: Putnam Press. Cerca con Google

Davey K, Epstein CM, George M, and Bohning DE (2003). Modeling the effect of electrical conductivity of the head on the induced electric field in the brain during magnetic stimulation. Clinical Neurophysiology, 114; 2204-2209. Cerca con Google

De Jong R, Liang CC, and Lauber E (1994). Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20; 731-750. Cerca con Google

Dell’Acqua R, Stablum F, Galbiati S, Soanocchi G, and Cerri C (2001). Selective effect of closed-head injury on central resource allocation: evidence from dual-task performance. Experimental Brain Research, 136; 364-378. Cerca con Google

Della Sala S, Baddeley A, Papagno C, and Spinnler H (1995). Dual-task paradigm: a means to examine the central executive. Annals of the New York Academy of Scences, 769; 161–171. Cerca con Google

Dell'Acqua, R., Pashler, H., & Stablum, F. (2003). Multi-tasking costs in closed-head injury patients: A fine-grained analysis. Experimental Brain Research, 152, 29-41. Cerca con Google

Desimone R, and Duncan J (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscence, 18; 193–222 Cerca con Google

Desimone R, Miller EK, Chelazzi L, and Lueschow A (1995). Multiple memory systems in the visual cortex. In Gazzaniga S (Ed.), The cognitive neuroscience, pp.475-486. Cambridge MA: MIT Press. Cerca con Google

Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali P, and Rothwell JC (2004). The physiological basis of transcranial motor cortex stimulation in conscious humans. Clinical Neuropshysiology, 115; 255-266. Cerca con Google

Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, and Rothwell JC (2001). The effect of corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Experimental Brain Research, 138; 268-273. Cerca con Google

Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, and Rothwell JC (2002). Descending volleys evoked transcranial magnetic stimulation of the brain in conscious humans: effect of coil shape. Clinical Neuropshysiology, 113; 114-119. Cerca con Google

Dias R, Robbins TW and Roberts AC (1996a). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380; 69-72. Cerca con Google

Dias R, Robbins TW, and Roberts AC (1996b). Primate analogue of theWisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behavioural Neuroscience, 110; 872–886. Cerca con Google

Dias R, Robbins TW, Roberts AC (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. Journal of Neuroscience, 17; 9285–9297. Cerca con Google

Divac I, Rosvold HE, and Szarcbart MK (1967). Behavioural effects of selective ablation of the caudate nucleus. Journal of Comparative and Physiological Psychology, 63; 184-190. Cerca con Google

Dove A, Pollmann S, Schubert T, Wiggins CJ, von Cramon DY (2000). Prefrontal cortex activation in task switching: an event-related fMRI study. Cognitive Brain Research, 9; 103–109. Cerca con Google

Dreher JC, and Berman KF (2002). Fractionating the neural substrate of cognitive control processes. Proceeding of the National Academy of Sciences, 99; 14595-14600. Cerca con Google

Dreher JC, and Grafman J (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13; 329-339. Cerca con Google

Duncan J, Burgess P, and Emslie H. (1995). Fluid intelligence after frontal lobe lesion. Neuropsychologia, 33; 261-268. Cerca con Google

Egner T, and Hirsch J (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8; 1784-1790. Cerca con Google

Eimer M (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology, 35; 123-138. Cerca con Google

Epstein CM, and Davey K (2002). Iron-core coils for transcranial magnetic stimulation. Journal of Clinical Neurophysiology, 19; 376-381. Cerca con Google

Ferraro FR (1996). Cognitive slowing in closed-head injury. Brain and Cognition, 32; 429-440. Cerca con Google

Franklin MS, Dien J, Neely JH, Huber E, and Waterson LD (2007). Semantic priming modulates the N400, N300, and N400RP. Clinical Neurophysiology, 118; 1053-1068. Cerca con Google

Fuster J (1989). The Prefrontal Cortex: Anatomy, physiology and neuropsychology of the frontal lobe. 2d ed. New York: Raven Press. Cerca con Google

Gabrieli JDE, Poldrack RA, and Desmond JE (1998). The role of left prefrontal cortex in language and memory. Proceeding of the National Academy of Sciences, 95; 906-913. Cerca con Google

Garnham CW, Barker AT, and Freeston IL (1995). Measurement of the activating function of magnetic stimulation using combined electrical and magnetic stimuli. Journal of Medical Engineering and Technology, 19; 57-61. Cerca con Google

Gehring WJ, and Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295; 2279–2282. Cerca con Google

Gilbert SJ, and Shallice T (2002). Task switching: a PDP model. Cognitive Psychology, 44; 297-337. Cerca con Google

Goldman-Rakic PS (1987). Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In Plum F (Ed.), Handbook of physiology, pp. 373-417. Bethesda, MD: American Psychological Society. Cerca con Google

Gopher D, Armony L, and Greenshpan Y (2000). Switching tasks and attention policies. Journal of Experimental Psychology General, 129; 308–339. Cerca con Google

Goschke T (1998). Decomposing the central executive: persistence, deactivation, and reconfiguration of voluntary task-set. Paper presented at the Attention and Performance XVIII Symposium on “Control of Cognitive Processes”. Cumberland Lodge, Windsor Great Park, England. Cerca con Google

Goshke T (2000). Intentional reconfiguration and involuntary persistence in task set switching. In Monsell S and Driver J (Eds.), Control of Cognitive Processes - Attention and Performance, vol. XVIII, pp. 331-355. London, England: MIT Press. Cerca con Google

Grafman J, Holyoak KJ, and Boller F (1996). Structure and function of the human prefrontal cortex. New York: Annals of the New York Academy f Science. Cerca con Google

Herath P, Klingberg T, Young J, Amunts K, and Roland P (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. Cerebral Cortex, 11; 796-805. Cerca con Google

Jalinous R (1991). Technical and pratical aspects of magnetic nerve stimulation. Journal of Clinical Neurophysiology, 8: 10-25. Cerca con Google

Jersild AT (1927). Mental set and shift. Archives of Psychology, no. 89. Cerca con Google

Jiang Y (2004). Resolving dual-task interference: an fMRI study. NeuroImage, 22; 748-754. Cerca con Google

Jiang Y, and Kanwisher N (2003). Common neural mechanisms for response selection and perceptual processing. Journal of Cognitive Neuroscience, 15; 1095– 1110. Cerca con Google

Johnson-Laird PN (1983). Mental models. Cambridge, Mass.: Harvard University Press. Cerca con Google

Johnson-Laird PN (1988). A computational analysis of consciousness. In Marcel AJ, and Bisiach E (Eds.), Consciousness in contemporary science, pp. 357-368. Oxford: Clarendon Press. Cerca con Google

Just MA, Carpenter PA, Keller TA, Emery L, Zajac H, and Thulborn KR (2001). Interdependence of nonoverlapping cortical systems in dual cognitive tasks. NeuroImage, 14; 417-426. Cerca con Google

Kahneman D (1973). Attention and Effort. Englewood Cliffs: Pretice-Hall. Cerca con Google

Kiehl KA, Liddle PF, and Hopfinger JB (2000) Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology, 37; 216–223. Cerca con Google

Kimberg DY, Aguirre GK, and D’Esposito M (2000). Modulation of task related neural activity in task-switching: an fMRI study. Cognitive Brain Research, 10; 189–196. Cerca con Google

Kinsbourne M, and Hicks RE (1978). Functional cerebral space: a model for overflow, transfer and interference effects in human performance. In Requin J (Ed.), Attention and Performance, vol. VII, Hillsdale: Lawrence Erlbaum Associates. Cerca con Google

Klingberg T (1998). Concurrent performance of two working memory tasks: potential mechanisms of interference. Cerebral Cortex, 8; 593-601. Cerca con Google

Koechlin E, Basso G, Pietrini P, Panzer S, and Grafman J (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399; 148-151. Cerca con Google

Koechlin E, Corrado G, Pietrini P, and Grafman J (2000). Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proceedings of the National Academy of Sciences, 97; 7651–7656. Cerca con Google

Kok A (1986). Effects of degradation of visual stimulation components of the event-related potential (ERP) in Go/Nogo reaction tasks. Biological Psychology, 23; 21-38. Cerca con Google

Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, and Miyashita Y (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1; 80– 84. Cerca con Google

Kramer T, Beck S, Erb M, and Grodd W (2001a). The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clinical Neuropshysiology, 112; 2015-2021. Cerca con Google

Kramer T, Beck S, Thielscher A, Laubis-Herrmann U, and Topka H (2001b). Motor threshold in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neuropshysiology, 112; 250-258. Cerca con Google

Kuhn T (1970). The structure of scientific revolutions. 2d ed. Chicago: University of Chicago Press. Cerca con Google

Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferber A, Wroe S, Asselman P, and Marsden CD (1993). Corticocortical inhibition in human motor cortex. Journal of Pshysiology, 471; 501-519. Cerca con Google

Lisanby SH, Gutman D, Luber B, Schroeder C, and Sackeim HA (2001). Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49; 460-463. Cerca con Google

Logan GD (1994). On the ability to inhibit thought and action. In Dagenbach D, and Carr TH (Eds.) Inhibitory Processes in Attention, Memory and Language, pp. 189–239. San Diego: Academic Press. Cerca con Google

Logan GD (2003). Executive control of thought and action: In search of the wild homunculus. Current Directions in Psychological Science, 12; 45-48. Cerca con Google

Logan GD, and Cowan WB (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychological Review, 91; 295-327. Cerca con Google

Logan GD, and Gordon RD (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108; 393-434. Cerca con Google

Luck SJ, and Vogel EK (1997). The capacity of visual working memory for features and conjunctions. Nature, 390; 279–281. Cerca con Google

Luria R, and Meiran N (2005). Increased control demand results in serial processing: Evidence from dual-task performance. Psychological Science, 16; 833-840. Cerca con Google

Maccabee PJ, Amassian VE, Eberle LP, and Cracco RQ (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: Locus of exctitation. Journal of Physiology, 460; 201-219. Cerca con Google

MacDonald AW III, Cohen JD, Stenger VA, and Carter CS (2000). Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288; 1835–1838. Cerca con Google

MacLeod CM (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109;163–203. Cerca con Google

Mayr U (2002). Inhibition of action rules. Psychonomic Bulletin and Review, 9; 93–99. Cerca con Google

Mayr U, and Keele SW (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129; 4–26. Cerca con Google

Mayr U, and Kliegl R (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26; 1124–1140. Cerca con Google

Mayr U, Diedrichsen J, Ivry R, and Keele SW (2006). Dissociating task-set selection from task-set inhibition in the prefrontal cortex. Journal of Cognitive Neurosciences, 18; 14-21. Cerca con Google

McRobbie D, and Foster MA (1984). Thresholds for biological effect of time-varying magnetic field. Clinical Physiology and Physiological Measures, 2; 67-78. Cerca con Google

Mecklinger A, von Cramon DY, Springer A, and von Cramon GM (1999). Executive control functions in task switching: evidence from brain injured patients. Journal of Clinical and Experimental Psychology, 21; 606-619. Cerca con Google

Meiran N (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22; 1423-1442. Cerca con Google

Meiran N (2000). Reconfiguration of stimulus task sets and response task sets during task switching. In Monsell S, anc DriverJS (Eds.), Attention and performance XVIII: Control of cognitive processes, pp. 377-399. Cambridge, MA: MIT Press. Cerca con Google

Meiran N, Chorev Z, and Sapir A (2000). Component processes in task switching. Cognitive Psychology, 41; 211-253. Cerca con Google

Meuter RFI, and Allport A (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40; 25-40. Cerca con Google

Meyer DE, and Kieras DE (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104; 3–65. Cerca con Google

Meyer DE, Evans JE, Lauber, EJ, Rubinstein J, Gmeindl L, Junck L, and Koeppe RA (1997). Activation of brain mechanisms for executive menal processes in cognitive task switching. Poster presented at the meeting of the Cognitive Neuroscience Society, Boston, MA. Cerca con Google

Miller EK (1999). The prefrontal cortex: complex neural properties for complex behavior. Neuron, 22; 15–17. Cerca con Google

Miller EK, and Cohen JD (2001). An integrative theory of prefrontal cortex function. Annual Review in Neurosciences, 24; 167-202. Cerca con Google

Milner B (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9; 90-100. Cerca con Google

Miranda PC, and Basser PJ (2003). The electric field induced in the brain by magnetic stimulation: a 3-D finite element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50; 1075-1085. Cerca con Google

Miyake A, and Shah P (1999). Models of Working Memory: an introduction. In Miyake A, and Shah P (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, pp. 1–27.Cambridge, U.K; Cambridge Univ. Press. Cerca con Google

Monsell S (2003). Task Switching. Trends in Cognitive Science, 7; 134-140. Cerca con Google

Monsell S, and Driver J (2000). Banishing the control homunculus. In Monsell S, and Driver J (Eds.), Control of Cognitive Processes - Attention and Performance, vol. XVIII, pp. 3-32. London, England: MIT Press. Cerca con Google

Monsell S, Yeung N, and Azuma R (2000). Reconfiguration of task-set: is it easier to switch to the weaker task? Psychological Research, 63; 250-264. Cerca con Google

Mouchawar GA, Nyenhuis JA, … (1991). Guidelines for energy-efficient coils: coils for magnetic stimulation of the heart. Electroencephalography and Clinical Neurophysiology, Supp. 43; 255-267. Cerca con Google

Muellbacher W, Ziemann U, and Hallett M (2000). Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behaviour. Clinical Neuropshysiology, 111; 1002-1007. Cerca con Google

Murphy K, and Peters M (1994). Right-handers and left-handers show differences and important similarities in task integration when performing manual and vocal tasks concurrently. Neuropsychologia, 32; 663-674. Cerca con Google

Nagarajan SS, Durand DM, and Warman EN (1993). Effects of induced electric field on finite neuronal structures: a simulation study. IEEE Transactions in Biomedical Engineering, 40; 1175-1188. Cerca con Google

Narici L, Romani GL, Salustri C, Pizzella V, Modena I, and Papanicolau AC (1987). Neuromagnetic evidence of synchrinized spntaneous activity in the brain following ripetitive sensory stimulation. International Journal of Neuroscience, 32; 831-836. Cerca con Google

Niehaus L, Meyer BU, and Weyh T (2000). Influence of pulse configuration and direction of coil current on excitatory effects of magnetic motor cortex and nerve stimulation. Clinical Neuropshysiology, 111; 75-80. Cerca con Google

Norman DA, and Bobrow DG (1985). On data-limited and resource-limited processes. Cognitive Psychology, 7; 44-64. Cerca con Google

Norman DA, and Shallice T (1986). Attention to action: willed and automatic control of behaviour. In Davidson RJ, and Shapiro D (Eds.), Consciousness and self-regulation: advances in research, Vol. 4, pp. 1-18. New York: Plennum Press. Cerca con Google

Oberauer K, Süß HM, Wilhelm O, and Wittmann WW (2003). The multiple faces of working memory - storage, processing, supervision, and coordination. Intelligence, 31; 167-193. Cerca con Google

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97-113. Cerca con Google

Orth M, and Rothwell JC (2004). The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation. Clinical Neuropshysiology, 115; 1076-1082. Cerca con Google

Owen AM, James M, Leigh PH, Summers BA, Marsden CD, Quinn NP, Lange KW and Robbins TW (1992). Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115; 1727-1751. Cerca con Google

Pandya DN, and Yeterian EH (1998). Comparison of prefrontal architecture and connections. In Roberts AC, Robbins TW and Weiskrantz L (Eds.), The prefrontal cortex: Executive and cognitive functions, pp. 51-66. Oxford: Oxford University Press. Cerca con Google

Pandya DP, and Yeterian EH (1995). Morphological correlations of human and monkey frontal lobe. In Damasio AE, Damasio H and Christen Y (Eds.), Neurobiology of human decision-making, pp.13-46. New York: Springer. Cerca con Google

Pascual-Leone A, Català MD, and Pascual-Leone Pascual A (1996a). Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology, 46; 499–502. Cerca con Google

Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, and Hallett M (1994b). Akinesia in Parkinson’s disease. II. Shortening of choice reaction time and movement time with subthreshold repetitive transcranial motor cortex stimulation. Neurology, 44; 892–898. Cerca con Google

Pascual-Leone A, Valls-Sole J, Wassermann E, and Hallett M (1994). Responses to rapid-rate transcranial magnetic stimulation of human motor cortex. Brain, 117; 847-858. Cerca con Google

Pashler H (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10; 358– 377. Cerca con Google

Pashler H (1989). Dissociations and dependencies between speed and accuracy: evidence for a two-component theory of divided attention in simple tasks. Cognitive Psychology, 21; 469– 514. Cerca con Google

Pashler H (1991). Shifting visual attention and selecting motor responses: distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17, 1023–1040. Cerca con Google

Pashler H (1993). Doing two things at the same time. American Scientist, 47–56. Cerca con Google

Pashler H (1994b). Dual task interference in simple tasks: Data and theory. Psychological Bulletin, 116; 220-244. Cerca con Google

Pashler H (1998). The psychology of attention. MIT Press, Cambridge, MA. Cerca con Google

Pashler H, and Johnson JC (1989). Chronometric evidence for central postponement in temporally overlapping tasks, Quarterly Journal of Experimental Psychology, 41A; 19-45. Cerca con Google

Passingham RE (1993). The Frontal Lobes and Voluntary Action. Oxford, UK: Oxford Univ. Press Cerca con Google

Paus T (1999). Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia, 37; 219–224. Cerca con Google

Peinemann A, Lehner, C, Conrad B, and Siebner HR (2001). Age-related decrease in paired-pulse intracorticali inhibition in the human primary motor cortex. Neuroscience Letters, 313; 33-36. Cerca con Google

Perrett E (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12; 323–330. Cerca con Google

Petrides MP (1996). Lateral frontal cortical contribution to memory. Seminars in the Neurosciences, 8; 57-63. Cerca con Google

Porter R, and Lemon RN (1993). Anatomical substrates for movement performance: cerebral cortex and the corticospinal tract. In Porter R, and Lemon RN (Eds.), Corticospinal functions and voluntary movement, pp. 36-89. Oxford: Clarendon Press. Cerca con Google

Pylyshyn ZW, and Storm RW (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3; 179– 197. Cerca con Google

Reilly JP (1992). Electrical stimulation and electropathology. Cambridge: Cambridge University Press. Cerca con Google

Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L and Rabbitt P (1996). A neural systems approach to the cognitive psychology of aging: using the CANTAB battery. In Rabbit P (Ed.), Methodology on frontal and executive function, pp 215-238. Hove, East Sussex: Psychology Press. Cerca con Google

Roberts AC, DeSalvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, and Robbins TW (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analogue of the Wisconsin Card Sorting test: possible interactions with subcortical dopamine. Journal of Neuroscience, 14; 2531-2544. Cerca con Google

Roberts AC, Robbins TW, Everitt BJ and Muir JL (1992). A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in monkeys. Neuroscience, 47; 251-264. Cerca con Google

Rogers RD, and Monsell S (1995). Cost of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology General, 124; 207-231. Cerca con Google

Rogers RD, Sahakian BJ, Hodges RJ, Polkey CE, Kennard C, and Robbins TW (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain, 121; 815–842. Cerca con Google

Rosler KM, Hess CW, Heckmann R, and Ludin HP (1990). Significance of the shape and size of the stimulating coil in magnetic stimulation of the human motor cortex. Neuroscience Letters, 100; 347-352. Cerca con Google

Rossi AF, Rotter PS, Desimone R, Ungerleider LG (1999). Prefrontal lesions produce impairments in feature-cued attention. Soc. Neurosci. Abstr. 25:3 Cerca con Google

Roth BJ, Saypol JM, Hallett M, and Cohen LG (1991). A theoretical calculation of the field induced in the cortex during magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 81; 47-56. Cerca con Google

Rubinstein JS, Meyer DE, and Evans JE (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27; 763-797. Cerca con Google

Rushworth MFS, Hadland KA, Paus T, Sipila PK (2002b). Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. Journal of Neurophysiology, 87; 2577-2592. Cerca con Google

Rushworth MFS, Passingham RE, and Nobre AC (2002a). Components of switching intentional set. Journal of Cognitive Neuroscience, 14; 1139-1150. Cerca con Google

Rushworth MFS, Passingham RE, and Nobre AC (2005). Components of attentional set-switching. Experimental Psychology, 52; 83-8. Cerca con Google

Salmelin R, and Hari R (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60; 537-550 Cerca con Google

Schubert T (1996). The analysis of interference in overlapping tasks. Zeitschrift für Psychologie, 4; 625-656. Cerca con Google

Schubert T (1999). Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks. Journal of Experimental Psychology: Human Perception & Performance, 25; 408-425. Cerca con Google

Schütz-Bosbach S, Haggard P, Fadiga L, and Craighero L (2008). Motor cognition: TMS studies of action generation. In Wassermann EM, Walsh V, Epstein CM, Paus T, Ziemann U, and Lisanby SH (Eds.), The Oxford handbook of transcranial stimulation, pp 463-478. Oxford: Oxford University Press. Cerca con Google

Serrien DJ (2009). Verbal-manual interactions during dual task performance: An EEG study. Neuropsychologia, 47; 139-144. Cerca con Google

Shallice T (1988). From Neuropsychology to Mental Structure. Cambridge, UK: Cambridge University Press Cerca con Google

Shallice T, and Burgess P (1993). Supervisory control of action and thought selection. In Baddeley A and Weiskrantz L (Eds.), Attention: selection, awareness and control, pp.171-187. Oxford: Clarendon Press. Cerca con Google

Shallice T, and Burgess P (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 351; 1405-1412. Cerca con Google

Shallice T, Stuss DT, Pcton TW, Alexander MP, and Gillingham S (2008). Mapping task switching in frontal cortex through neuropsychological group studies. Frontiers in Neuroscience, 2; 79-85. Cerca con Google

Shallice T. 1982. Specific impairments of planning. Philos. Trans. R. Soc. London Ser. B 298:199–209 Cerca con Google

Shubert T, and Szameitat AJ (2003). Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Cognitive Brain Research, 17; 733-746. Cerca con Google

Siebner HR, Tormos JR, Ceballos-Baumann AO, Auer C, Catala MD, Conrad B, and Pascual-Leone A (1999). Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology, 52; 529-537. Cerca con Google

Sigman M, and Dehaene S (2006). Dynamics of the central bottleneck: dual-task and task uncertainty. Plos Biology, 4; 1227-1238. Cerca con Google

Smith EE, and Jonides J (1999). Storage and executive processes in the frontal lobes. Science, 283; 1657–1661. Cerca con Google

Sohn MH, Ursu S, Anderson JR, Stenger VA, and Carter CS (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences, 97; 13448-13453. Cerca con Google

Sommer M, Alfaro A, Rummel M, Speck S, Lang N, Tings T, and Paulus W (2006). Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clinical Neurophysiology, 117; 838-844. Cerca con Google

Sommer M, and Paulus W (2008). TMS waveform and current direction. In Wasserman EM, Walsh V, Epstein CM, Paur T, Ziemann U, and Lisanby SH (Eds.), The Oxford Hanbook of Transcranial Stimulation, pp. 7-12. New York: Oxford University Press. Cerca con Google

Sommer M, Kamm T, Tergau F, Ulm G, and Paulus W (2002a). Repetitive paired-pulse transcranial magnetic stimulation affects cortispinal excitability and finger tapping in Parkinson’s disease. Clinical Neurophysiology, 113; 944-950. Cerca con Google

Sommer M, Ruge D, Tergau F, Beuche W, Altenmüller E, and Paulus W (2002b). Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Movement Disorders, 17; 1017-1025. Cerca con Google

Sommer M, Tergau F, Wischer S, and Paulus W (2001). Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex. Experimental Brain Research, 139; 465-472. Cerca con Google

Sommer W, Leuthold H, and Schubert T (2001). Multiple bottlenecks in information processing? An electrophysiological examination. Psychonomic Bulletin and Review, 8; 81-88. Cerca con Google

Spelke E, Hirst W, and Neisser U (1976). Skills of divided attention. Cognition, 4; 215–230. Cerca con Google

Stroop JR (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18; 643–662. Cerca con Google

Swainson, R, Cunnington R, Jackson GM, Rorden C, Peters AM, Morris PG, and Jackson SR (2003). Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-set switching. Journal of Cognitive Neuroscience, 15; 785–799. Cerca con Google

Tings T, Lang N, Tergau F, Paulus W, and Sommer M (2005). Orientation-specific fast rTMS maximized corticospinal inhibition and facilitation. Experimental Brain Research, 124; 323-333. Cerca con Google

Tipper SP (2001). On the strategic modulation of the time course of facilitation and inhibition of return. Quarterly Journal of Experimental Psychology, 54A; 753-773. Cerca con Google

Tofts PS (1990). The distribution of induced currents in magnetic stimulation of nervous system. Physics in Medicine and Biology, 35; 1119-1128. Cerca con Google

Touge T, Gerschlager W, Brown P, and Rothwell JC (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clinical Neurophysiology, 112; 2138-2145. Cerca con Google

Umiltà C (1988). The control operations of consciousness. In Marcel AJ, and Bisiach E (Eds.), Consciousness in contemporary science, pp. 334-356. Oxford: Clarendon Press. Cerca con Google

Umiltà C, Nicoletti R, Simion F, Tagliabue ME, and Bagnara S (1992). The cost of strategy. European Journal of Cognitive Psychology, 4; 21-40. Cerca con Google

Van Selst M, and Jolicoeur P (1997). Decision and response in dual task interference. Cognitive Psychology, 33; 266-307. Cerca con Google

Vendrell P, Junque C, Pujol J, JuradoMA, Molet J, Grafman J (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia, 33; 341–352 Cerca con Google

Wada S, Kuboyta H, Maita S, Yamamoto I, Yamagochi M, Andoh T, Kawakami T, Okumura F, and Takenaka T (1996). Effects of stimulus waveform on magnetic nerve stimulation. Japanese Journal of Applied Psychology, 35; 1983-1988. Cerca con Google

Wagner TAZ, Grodzinsky MAJ, and Pascual-Leone A (2004). Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 51; 1586-1598. Cerca con Google

Walsh V, and Cowey A (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1; 73-79. Cerca con Google

Wasserman EM, Walsh V, Epstein CM, Paus T, Ziemann U, and Lisanby SH (2008). The Oxford Handbook of Trancranial Stimulation. New York: Oxford University Press. Cerca con Google

Wassermann EM (1998). Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography and Clinical Neurophysiology, 108; 1–16. Cerca con Google

Weissman JD, Epstein CM, and Davey KR (1992). Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalography and Clinical Neurophysiology, 85; 215-219. Cerca con Google

Welford AT (1952). The ‘‘psychological refractory period’’ and the timing of high speed performance - A review and a theory. British Journal of Psychology, 43; 2 – 19. Cerca con Google

Wharton C and Grafman J (1998) . Reasoning and the human brain. Trends in Cognitive Sciences, 2; 54-59. Cerca con Google

Wickens CD (1980). The structure of attentional resources. In Nickerson R (Ed.), Attention and performance, vol. VIII, pp. 239-257. Hillsdale, NJ: Erlbaum. Cerca con Google

Wickens CD, Kramer A, Vanasse L, and Donchin E (1983). Performance aof concurrent tasks: a psychophysiological analysis of the reciprocity of information processing resources. Science, 221; 1080-1082. Cerca con Google

Wise SP, Murray EA and Gerfen GR (1996). The frontal cotex-basal ganglia system in primates. Critical Reviews in Neurobiology, 10; 317-356. Cerca con Google

Wylie G, and Allport A (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63; 212-233. Cerca con Google

Ziemann U, Rothwell JC, and Ridding MC (1996). Interaction between intracorticali inhibition and facilitation in human motor cortex. Journal of Physiology, 496; 873-881. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record