Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dal Zilio, Simone (2009) Innovative solution in organic photovoltaic devices. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
12Mb

Abstract (inglese)

New technologies for photovoltaic energy generation can contribute to environmentally friendly, renewable energy production and may lead to the reduction of carbon dioxide liberated by burning fossil fuels and biomasses. Besides the established silicon based solar cells new photovoltaic technology has gained a lot of interest during the last decade. Among them organic solar cells (OSC) based on conjugated molecules or polymers are promising candidates for the manufacturing of environmentally safe, flexible, lightweight, and inexpensive photovoltaic devices which can be used in low cost applications. Particularly attractives are in photovoltaic (PV) elements based on thin plastic films. The flexibility offered through the chemical tailoring of desired properties, as well as the cheap technology already well developed for all kinds of plastic thin film applications would make such an approach widely adopted. Unfortunately a
main bottleneck is to be solved before industrial production could become economically viable, particularly represented by the still low conversion efficiency. In organic semiconductors the primary photo-excitations do not directly and quantitatively lead to free charge carriers but to coulombically bound electron-hole pairs, called excitons, that need strong electric fields to generated free charge carriers, present for example at the discontinuous potential drops at the interfaces between donors and acceptors as well as between semiconductors and metals. The exciton diffusion lengths in polymers and in organic semiconductors is usually around 10-20 nm: for efficient photovoltaic devices, the excitons have to split before recombining and the free electrons and holes must be transported towards the electrodes to produce the photocurrent.
Major problem derives from loss mechanism, such as exciton decay, charge recombination and low mobility, resulting in reduced photocurrent extraction at the electrodes and low power conversion efficiency. The improvement of the efficiency is one of the most important aspect in which is concentrated the research in OSC, our too. Two different routes going towards this objective focalized in this aspect have been explored, in order to contribute to realize a novel
and effective technology in the photovoltaic field. The first concerns the development of a novel light trapping system bases on microlenses, The second, on which we are still working, regards the fabrication of nanostructured solar cells by top-down techniques, particularly nanoimprinting (NIL).

Abstract (italiano)

Il problema energetico sta destando negli ultimi anni sempre maggior interesse e preoccupazione, per il ridursi delle risorse fossili e dal conseguente acuirsi dei problemi d’inquinamento derivanti dal loro quasi esclusivo utilizzo per la produzione di energia elettrica. Non è sorprendente quindi che dal mondo della ricerca un grande sforzo sia dedicato allo sviluppo della tecnologia fotovoltaica. Attualmente, il silicio possiede una posizione centrale nel panorama delle celle fotovoltaiche: l’elevato costo di questo tipo di tecnologia, derivato dall’alto costo del materiale e dei processi fabbricativi, ha incoraggiato lo sviluppo di soluzioni alternative che si basino su materiali innovativi. Tra queste, grande risalto è stato dato negli ultimi anni alle cosiddette "organic solar cell", basate sull’impiego di semiconduttori organici. Il loro vantaggio risiede nel fatto che questi possono essere depositati, su larghe aree e a costi molto ridotti, in fase liquida, utilizzando quindi metodi tipici dell’industria della stampa nel campo del fotovoltaico ed eliminando così alti costi di materiale e di processo tipici dell’industria a semiconduttore inorganico. L’impiego di film sottili e conseguentemente di poco materiale, contribuisce a rendere il fotovoltaico organico uno dei più quotati candidati per lo sviluppo di una tecnologia solare a basso costo. Una tipologia di celle solari organiche utilizza come materiali
foto attivi i polimeri coniugati; evidenti progressi sono stati compiuti, col raggiungimento di efficienze ragguardevoli, dell’ordine del 4-5%. Purtroppo però, questo non è ancora sufficiente perché la tecnologia possa essere trasferita su scala industriale. Molti sforzi si stanno facendo nell’ambito della ricerca per migliorare l’efficienza di queste celle. Sullo sviluppo e l’impiego di soluzioni alternative e innovative applicabili al campo del fotovoltaico organico, e in particolare polimerico, è concentrata la nostra attività di ricerca. Due percorsi in particolare sono stati investigati, basate sull’impiego di un nuovo sistema per l’intrappolamento in cavità della luce e sull’impiego delle nanotecnologie fabbricative.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Carnera, Alberto
Correlatore:Tormen, Massimo
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZA E INGEGNERIA DEI MATERIALI
Data di deposito della tesi:01 Febbraio 2009
Anno di Pubblicazione:30 Gennaio 2009
Parole chiave (italiano / inglese):Organic photovoltaic devices, organic cells, light trapping, microlenses, BHJ solar cells, conjugated polymers, efficiency improvement
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Area 03 - Scienze chimiche > CHIM/05 Scienza e tecnologia dei materiali polimerici
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica "Galileo Galilei"
Codice ID:1870
Depositato il:01 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

P. Peumans, V. Bulovi´c, and S. R. Forrest. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 76(19):2650–2652, 2000. Cerca con Google

Miri Park, Christopher Harrison, Paul M. Chaikin, Richard A. Register, and Douglas H. Adamson. Block copolymer lithography: Periodic arrays of 1011 holes in 1square centimeter. Science, 276(5317):1401–1404, 1997. Cerca con Google

A Rohatgi. Road to cost-effective crystalline silicon photovoltaics. Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 1:A29– A34, 2003. Cerca con Google

M. Wolf. Proceedings of the 14th IEEE Photovoltaic Specialists Conference, San Diego, page 674, 1980. Cerca con Google

E.S. Vera J.J. Loferski M. Spitzer, J. Shewchun. Proceedings of the 14th IEEE Photovoltaic Specialists Conference, San Diego, page 372, 1980. Cerca con Google

H.F. Sterling R.C. Chittick, J.H. Alexander. J. Electrochem. Soc., 116:77, 1969. Cerca con Google

Xuanzhi Wu. High-efficiency polycrystalline cdte thin-film solar cells. Solar Energy, 77(6):803 – 814, 2004. Thin Film PV. Cerca con Google

J. AbuShama F. Hasoon D. L. Young B. Egaas R. Noufi Miguel A. Contreras, K. Ramanathan. Cerca con Google

Diode characteristics in state-of-the-art zno/cds/cu(in1-xgax)se2 solar cells. Cerca con Google

Prog. Photovolt. Res. Appl., 13:209, 2005. Cerca con Google

Brian O’Regan & Michael Grätzel. A low-cost, high-efficiency solar cell based on dyesensitized Cerca con Google

colloidal tio2 films. Nature, 353:737, 1991. Cerca con Google

masayoshi Suzuki, Sato H, A. Atsushi, and S. Naemura. Organic light emitting materials based on liquid crystals. Journal of photopolymers science and technology, 16:323–328, 2003. Cerca con Google

Kyoko Kogo, Tadashi Goda, Masahiro Funahashi, and Jun ichi Hanna. Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes. Applied Physics Letters, 73(11):1595–1597, 1998. Cerca con Google

Lukas Schmidt-Mende; Mark Watson; Klaus Muumlllen; Richard H. Friend. Organic thin film photovoltaic devices from discotic materials. journal Molecular Crystals and Liquid Crystals, 396:73–90, 2003. Cerca con Google

A. Lux G. Rozenberg S.C. Moratti K. Petritsch, R.H. Friend and A.B. Holmes. Liquid crystalline phthalocyanines in organic solar cells. Synthetic Metals, 102:1776–1777, 1999. Cerca con Google

Fichou D. Nunzi J.-M. Pfeffer N. Charra, F. Picosecond photoinduced dichroism in solutions Cerca con Google

of thiophene oligomers. Chemical physics letters, 192:566–570, 1992. Cerca con Google

Brazovskii S. Bishop A.R. Kirova, N. The model for optical properties of ppp-type polymers. Cerca con Google

Synthetic Metals, 101:271–272, 1999. Cerca con Google

A. Moliton. Electrical and optical properties of polymers. Actualite Chimique, 319:24– 32, 2008. Cerca con Google

J. G. Fripiat J. L. Brédas, B. Thémans and J. M. André. Highly conducting polyparaphenylene, Cerca con Google

polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping. Phys. Rev. B, 29:6761–6773, 1984. Cerca con Google

B. Scott S. E. Gledhill and B. A. Gregg. Organic and nano-structured composite photovoltaics: Cerca con Google

An overview. Journal of Materials Research, 20 (12):3167–3179, 2005. Cerca con Google

William Barford, Robert J. Bursill, and RichardW. Smith. Theoretical and computational studies of excitons in conjugated polymers. Phys. Rev. B, 66(11):115205, Sep 2002. Cerca con Google

Norihiko Takeda, Sadayuki Asaoka, and John R. Miller. Nature and energies of electrons and holes in a conjugated polymer, polyfluorene. Journal of the American Chemical Society, 128(50):16073–16082, 2006. Cerca con Google

H. Bässler, V. I. Arkhipov, E. V. Emelianova, A. Gerhard, A. Hayer, C. Im, and J. Rissler. Excitons in [pi]-conjugated polymers. Synthetic Metals, 135-136:377 – 382, 2003. Proceedings of the International Conference on Science and Technology of Synthetic Metals. Cerca con Google

J. Frenkel. Some remarks on the theory of the photoelectric effect. Phys. Rev., 38(2):309– 320, Jul 1931. Cerca con Google

N. F. Mott. Conduction in polar crystals. ii. the conduction band and ultra-violet absorption of alkali-halide crystals. Transactions of the Faraday Society, 34:500–506, 1938. Cerca con Google

J. J. M. Halls N. T. Harrison A. B. Holmes A. Koehler A. Lux S. C. Moratti K. Pichler N. Tessler K. Towns R. H. Friend, G. J. Denton and H. F. Wittmann. Electronic excitations in luminescent conjugated polymers. Solid State Communications, 102:249–258, 1997. Cerca con Google

J. J. M. Halls N. T. Harrison A. B. Holmes A. Koehler A. Lux S. C. Moratti K. Pichler N. Tessler R. H. Friend, G. J. Denton and K. Towns. Electronic processes of conjugated polymers in semiconductor device structures. Synth.Met., 84:463–470, 1997. Cerca con Google

Partee J. Shinar, J. On the nature of trapped polarons in p-conjugated polymers. Synthetic Metals, 84 (1-3):525–528, 1997. Cerca con Google

J. Grüner M. G. Harrison and G. C. W. Spencer. Analysis of the photocurrent action spectra of meh-ppv polymer photodiodes. Phisical review B, 55:7831–7849, 1997. Cerca con Google

R. B. M. Koehorst T. J. Schaafsma E. E. van Faassen H. R. Kerp, H. Donker. Exciton transport in organic dye layers for photovoltaic applications. Chemical Physics Letters,298:302, 1997. Cerca con Google

Thomas Stubinger and Wolfgang Brutting. Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. Journal of Applied Physics, 90(7):3632–3641, 2001. Cerca con Google

B. Kraabel, Jan C. Hummelen, D. Vacar, D. Moses, N. S. Sariciftci, A. J. Heeger, and F. Wudl. Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes. The Journal of Chemical Physics, 104(11):4267–4273, 1996. Cerca con Google

Niyazi Serdar Sariciftci and Alan J. Heeger. Role of buckminsterfullerene, c[sub 60], in organic polymeric photoelectric devices. Fullerenes and Photonics II, 2530(1):76–86, 1995. Cerca con Google

G. Zerza, C. J. Brabec, G. Cerullo, S. De Silvestri, and N. S. Sariciftci. Ultrafast charge transfer in conjugated polymer-fullerene composites. Synthetic Metals, 119(1-3):637 – 638, 2001. Cerca con Google

B. de Boer L. J. A. Koster P. W. M. Blom V. D. Mihailetchi, H. X. Xie. Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulkheterojunction solar cells. Advanced Functional Materials, 16:699–708, 2006. Cerca con Google

J. G. Muller, J. M. Lupton, J. Feldmann, U. Lemmer, M. C. Scharber, N. S. Sariciftci, C. J. Brabec, and U. Scherf. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells. Phys. Rev. B, 72(19):195208, Nov 2005. Cerca con Google

Masahiro Hiramoto, Hiroshi Fujiwara, and Masaaki Yokoyama. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Applied Physics Letters, 58(10):1062–1064, 1991. Cerca con Google

L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, and J. D. MacKenzie. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Cerca con Google

Science, 293(5532):1119–1122, 2001. Cerca con Google

G. Yu, K. Pakbaz, and A. J. Heeger. Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Applied Physics Letters, 64(25):3422–3424, 1994. Cerca con Google

Pavel Schilinsky, Christoph Waldauf, and Christoph J. Brabec. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Applied Physics Letters, 81(20):3885–3887, 2002. Cerca con Google

W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou. Organic co-evaporated films of a ppv-pentamer and c60: model systems for donor/acceptor polymer blends. Thin Solid Films, 403-404:438 – 443, 2002. Proceedings of Symposium P on Thin Film Materials for Photovoltaics. Cerca con Google

G. Yu and A. J. Heeger. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 78(7):4510–4515, 1995. Cerca con Google

Walsh C.A. Greenham N.C. Marseglla E.A. Friend R.H. Moratti S.C. Holmes A.B. Halls, Cerca con Google

J.J.M. Efficient photodiodes from interpenetrating polymer networks. Nature, 376:498– 500, 1995. Cerca con Google

F. Wudl. Acc. Chem. Res., 25:157161, 1992. Cerca con Google

Allen Miller and Elihu Abrahams. Impurity conduction at low concentrations. Phys. Rev., 120(3):745–755, Nov 1960. Cerca con Google

[44] R. A. Marcus. Nonadiabatic processes involving quantum-like and classical-like coordinates with applications to nonadiabatic electron transfers. The Journal of Chemical Physics, 81(10):4494–4500, 1984. Cerca con Google

M. Fahlman and W.R. Salaneck. Surfaces and interfaces in polymer-based electronics. Surface Science, 500(1-3):904 – 922, 2002. Cerca con Google

Mingirulli N. Zimmermann B. Ziegler T. Kern R. Niggemann M. Hinsch A. Gombert A. Glatthaar, M. Impedance spectroscopy on organic bulk-heterojunction solar cells. Hysica Status Solidi (A) Applications and Materials, 202:R125–R127, 2005. Cerca con Google

Petritsch K. Arias A.C. Lux A. Andersson M.R. Friend R.H. Granstrom, M. Laminated fabrication of polymeric photovoltaic diodes. Nature, 395:257–260, 1998. Cerca con Google

Sugiyama K. Ito E. Seki K. Ishii, H. Energy level alignment and interfacial electronic structures at organic-metal and organic-organic interfaces. Advanced Materials, 11:605– 625, 1999. Cerca con Google

Th. Kugler, W. R. Salaneck, H. Rost, and A. B. Holmes. Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices. Chemical Physics Letters, 310(5-6):391 – 396, 1999. Cerca con Google

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, and T. Fromherz. The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 403-404:368 – 372, 2002. Proceedings of Symposium P on Thin Film Materials for Photovoltaics. Cerca con Google

Klaus Petritsch. Organic Solar Cell Architectures. PhD Thesis, 2000. Cerca con Google

Cravino A. Meissner D. Serdar Sariciftci N. Fromherz T. Rispens M.T. Sanchez L. Hummelen Cerca con Google

J.C. Brabec, C.J. Origin of the open circuit voltage of plastic solar cells. Advanced Funtional Materials, 11 (5):374–380, 2001. Cerca con Google

Adolf Goetzberger. Optical confinement in thin si-solar cells by diffuse back reflectors. Conference Record of the IEEE Photovoltaic Specialists Conference, pages 867–870, 1981. Cerca con Google

Wang A. Green M.A. Ferrazza F. Zhao, J. 19.8monocrystalline silicon solar cells. APPLIED Cerca con Google

PHYSICS LETTERS, 73, NUMBER 14:1991–1993, 1998. Cerca con Google

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/zno substrates. Solar Energy Materials and Solar Cells, 85(1):1 – 11, 2005. Cerca con Google

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer. Diffraction gratings and buried nano-electrodes–architectures for organic solar cells. Thin Solid Films, 451-452:619 – 623, 2004. Proceedings of Symposium D on Thin Film and Nano- Structured Materials for Photovoltaics, of the E-MRS 2003 Spring Conference. Cerca con Google

M. Niggemann, M. Glatthaar, P. Lewer, C. Müller, J.Wagner, and A. Gombert. Functional microprism substrate for organic solar cells. Thin Solid Films, 511-512:628 – 633, 2006. Cerca con Google

EMSR 2005 - Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics - EMRS 2005- Symposium F. Cerca con Google

R. Barry Johnson and Gary A. Jacobsen. Advances in lenticular lens arrays for visual display. Cerca con Google

Current Developments in Lens Design and Optical Engineering VI, 5874(1):587406, 2005. Cerca con Google

Kristofer Tvingstedt, Viktor Andersson, Fengling Zhang, and Olle Inganäs. Folded reflective tandem polymer solar cell doubles efficiency. Applied Physics Letters, 91(12):123514, 2007. Cerca con Google

Inganaas O. Granlund T. Nyberg T. Svensson M. Andersson M.R. Hummelen J.C. Roman, L.S. Trapping light in polymer photodiodes with soft embossed gratings. Advanced Materials, 12:189–195, 2000. Cerca con Google

Carpentiero A. Ferrari E. Cojoc D. Fabrizio E.D. Tormen, M. Novel fabrication method for three-dimensional nanostructuring: An application to micro-optics. Nanotechnology, 18 (38):art. no. 385301, 2007. Cerca con Google

K. Colladet, M. Nicolas, L. Goris, L. Lutsen, and D. Vanderzande. Low-band gap polymers for photovoltaic applications. Thin Solid Films, 451-452:7 – 11, 2004. Proceedings of Symposium D on Thin Film and Nano-Structured Materials for Photovoltaics, of the E-MRS 2003 Spring Conference. Cerca con Google

Wendimagegn Mammo, Shimelis Admassie, Abay Gadisa, Fengling Zhang, Olle Inganäs, and Mats R. Andersson. New low band gap alternating polyfluorene copolymer-based photovoltaic cells. Solar Energy Materials and Solar Cells, 91(11):1010 – 1018, 2007. Low Band Gap Polymer Materials for Organic Solar Cells. Cerca con Google

Gang Zeng, Soo-Jin Chua, and Wei Huang. Influence of donor and acceptor substituents on the electronic characteristics of poly(fluorene-phenylene). Thin Solid Films, 417(1- 2):194 – 197, 2002. Cerca con Google

Xiangjun Wang, Erik Perzon, Juan Luis Delgado, Pilar de la Cruz, Fengling Zhang, Fernando Cerca con Google

Langa, Mats Andersson, and Olle Inganäs. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters, 85(21):5081–5083, 2004. Cerca con Google

Gao J. Hummelen J.C.Wudl F. Heeger A.J. Yu, G. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270:1789– 1791, 1995. Cerca con Google

Marisol Reyes-Reyes, Kyungkon Kim, and David L. Carroll. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)- propyl-1- phenyl-(6,6)c[sub 61] blends. Applied Physics Letters, 87(8):083506, 2005. Cerca con Google

Uchida S. Forrest S.R. Peumans, P. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 425:158–162, 2003. Cerca con Google

S. Uchida S. R. Forrest J. Xue, B. P. Rand. A hybrid planar-mixed molecular heterojunction Cerca con Google

photovoltaic cell. Advanced Materials, 17:66, 2005. Cerca con Google

Sachetan M. Tuladhar Stelios A. Choulis Jenny Nelson James R. Durrant Donal D. C. Bradley Mark Giles Iain McCulloch Chang-Sik Ha Youngkyoo Kim, Steffan Cook and Moonhor Ree. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. nature materials, 3:197– 203, 2005. Cerca con Google

Xiaoniu Yang, Joachim Loos, Sjoerd C. Veenstra, Wiljan J. H. Verhees, Martijn M. Wienk, Jan M. Kroon, Matthias A. J. Michels, and Rene A. J. Janssen. Nanoscale morphology of high-performance polymer solar cells. Nano Letters, 5(4):579–583, 2005. Cerca con Google

Max Shtein & Stephen R. Forrest Fan Yang. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Materials, 4:37–41, 2004. Cerca con Google

Mingqi Li and Christopher K. Ober. Block copolymer patterns and templates. Materials Today, 9(9):30 – 39, 2006. Cerca con Google

Paul J. Flory. Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 9(8):660–660, 1941. Cerca con Google

M. W. Matsen and F. S. Bates. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 29(4):1091–1098, 1996. Cerca con Google

M. Bal, A. Ursache, M. T. Tuominen, J. T. Goldbach, and T. P. Russell. Nanofabrication Cerca con Google

of integrated magnetoelectronic devices using patterned self-assembled copolymer templates. Applied Physics Letters, 81(18):3479–3481, 2002. Cerca con Google

S. Mößmer F.-M. Kamm A. Plettl P. Ziemann M. Möller J.P. Spatz, V.Z.-H. Chan. A combined Cerca con Google

top-down/bottom-up approach to the microscopic localization of metallic nanodots. Advanced Materials, 14:1827 – 1832, 2002. Cerca con Google

Mingqi Li, Katsuji Douki, Ken Goto, Xuefa Li, Christopher Coenjarts, Detlef M. Smilgies, and Christopher K. Ober. Spatially controlled fabrication of nanoporous block copolymers. Chemistry of Materials, 16(20):3800–3808, 2004. Cerca con Google

Mohamed S. A. Abdou and Steven Holdcroft. Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution. Macromolecules, 26(11):2954–2962, 1993. Cerca con Google

Yi-Ming Chang,Wei-Fang Su, and LeeyihWang. Influence of photo-induced degradation on the optoelectronic properties of regioregular poly(3-hexylthiophene). Solar Energy Materials and Solar Cells, 92(7):761 – 765, 2008. Degradation and Stability of Polymer and Organic Solar Cells. Cerca con Google

Gang Li, Vishal Shrotriya, Yan Yao, and Yang Yang. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics, 98(4):043704, 2005. Cerca con Google

Davood Raoufi, Ahmad Kiasatpour, Hamid Reza Fallah, and Amir Sayid Hassan Rozatian. Surface characterization and microstructure of ito thin films at different annealing temperatures. Applied Surface Science, 253(23):9085 – 9090, 2007. Cerca con Google

Davood Raoufi. Morphological characterization of ito thin films surfaces. Applied Surface Cerca con Google

Science, 255(6):3682 – 3686, 2009. Cerca con Google

D Vaufrey, MBen Khalifa, J Tardy, C Ghica, MG Blanchin, C Sandu, and J A Roger. Itoon- Cerca con Google

top organic light-emitting devices: a correlated study of opto-electronic and structural characteristics. Semiconductor Science and Technology, 18(4):253–260, 2003. Cerca con Google

T. F. Stoica, V. S. Teodorescu, M. G. Blanchin, T. A. Stoica, M. Gartner, M. Losurdo, and M. Zaharescu. Morphology, structure and optical properties of sol-gel ito thin films. Materials Science and Engineering B, 101(1-3):222 – 226, 2003. EMRS 2002 Symposium S: Micro- and Nano-structured Semiconductors. Cerca con Google

G. Kavei and A. Mohammadi Gheidari. The effects of surface roughness and nanostructure on the properties of indium tin oxide (ito) designated for novel optoelectronic devices fabrication. Journal of Materials Processing Technology, 208(1-3):514 – 519, 2008. Cerca con Google

E. Terzini, P. Thilakan, and C. Minarini. Properties of ito thin films deposited by rf magnetron Cerca con Google

sputtering at elevated substrate temperature. Materials Science and Engineering B, 77(1):110 – 114, 2000. Cerca con Google

L. Stolz Roman M. Svensson O. Inganäs T. Granlund, T. Nyberg. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 12:268–273, 2000. Cerca con Google

S. L. Lai, M. Y. Chan, M. K. Fung, C. S. Lee, and S. T. Lee. Concentration effect of glycerol on the conductivity of pedot film and the device performance. Materials Science and Engineering B, 104(1-2):26 – 30, 2003. Cerca con Google

W. H. Kim, A. J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi. Molecular Cerca con Google

organic light-emitting diodes using highly conducting polymers as anodes. Applied Physics Letters, 80(20):3844–3846, 2002. Cerca con Google

J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. C. Bradley. Influence of thermal treatment on the conductivity and morphology of pedot/pss films. Synthetic Metals, 139(3):569 – 572, 2003. Proceedings of the Fifth International Topical Conference on Optical Probes of Conjugated Polymers and Organic and Inorganic Nanostructures. Cerca con Google

Youngkyoo Kim, Amy M. Ballantyne, Jenny Nelson, and Donal D.C. Bradley. Effects of thickness and thermal annealing of the pedot:pss layer on the performance of polymer solar cells. Organic Electronics, 10(1):205 – 209, 2009. Cerca con Google

Takashima W. Nagamatsu S. Endo T. Rikukawa M. Kaneto K. Pandey, S.S. Regioregularity vs regiorandomness: Effect on photocarrier transport in poly(3-hexylthiophene). Japanese Journal of Applied Physics, Part 2: Letters, 39 (2 A):L94–L97, 2000. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record