Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ventura, Marcello (2009) Prion protein: does N-terminal domain allow vesicular micronutrients uptake? [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
9Mb

Abstract (inglese)

Prion protein (PrPC) is a cell surface glycoprotein, anchored by the GPI to the cell membrane. It seems to be involved in some neurodegenerative diseases, but its physiological function is still undefined. Many cellular functions were proposed as PrPC roles, such as the modulation of several signal transduction pathways known to promote cellular survival and the protection against oxidative stress. Nevertheless, the main hypothesis on PrPC role is in copper homeostasis. Copper is an essential micronutrient (EMN) and all EMNs (vitamins and metals) are present in bodies and foods in micromolar concentrations. This feature can easily lead to deficiency. It is also clear that deficiency of EMNs produces overlapping diseases symptoms. Also the uptake pathway (endocytosis) is common for many EMN. Thanks to these reasons we hypothesize that prion protein could allow EMNs uptake. The aim of this work is to study these binding processes and their characteristics. So N-terminal domain of mouse PrPC (mPrP23-109) was recombinant expressed and purified. To study specificity and characteristics of metals binding process, mPrP23-109 was titrated with five first transition serie divalent metals (Mn, Co, Ni, Cu, Zn), at several pH values and it was followed in fluorescence spectroscopy. Furthermore, to define if metal binding could drive structural rearrangements in the prion protein N- terminal domain, we performed structural analysis using circular dicroism (CD). To investigate vitamins stacking between triptophan indolic rings, mPrP23-109 was titrated with four vitamins belonging to B group and titrations were monitored by fluorescence anisotropy, that allows to know the fluorophores average molecular rotational speed. Finally, we also investigated the possibility that prion protein N- terminal domain could interact with membrane mimetic systems. Our findings confirm that prion protein has a functional role in copper homeostasis. We also propose that prion protein, together with copper, plays a key role in integrated endocytic uptake pathway, involving all EMNs.

Abstract (italiano)

La protein prionica (PrPC) è una glicoproteina legata alla superficie extracellulare della membrana tramite l’ancora GPI. Ad essa è stata attribuita la causa di alcune malattie neuro degenerative, ma la sua funzione fisiologica non è ancora stata definita. Molte funzioni sono state proposte, tra cui la modulazione di alcune vie di transduzione del segnale che promuovono la sopravvivenza cellulare e la protezione da stress ossidativo, ma l’ipotesi principale è una funzione nell’omeostasi del rame. Il rame è un micro nutriente essenziale (MNE) e tutti gli MNE sono presenti nel corpo e negli alimenti in concentrazioni micromolari; ciò può determinare facilmente una deficinza. È ormai chiaro che i sintomi da deficienza sono comuni a molti MNE. Inoltre anche le vie di assorbimento di molti MNE sono analoghe fra loro, usando vie endocitiche. Grazie a queste evidenze abbiamo ipotizzato che la PrPC possa essere coinvolta nell’assorbimento degli MNE. Lo scopo di questo lavoro è di studiare questi legami e le loro caretteristiche. Per far ciò, è stato espresso e purificato il dominio N-terminale della proteina prionica di topo (mPrP23-109). Per studiare la specificità e le caratteristiche del legame con i metalli, la proteina ricombinante è stata titolata con cinque metalli divalenti della prima serie di transizione (Mn, Co, Ni, Cu, Zn), a diversi valori di pH utilizzando la spettroscopia di fluorescenza. Per definire se le interazioni osservate fossero funzionali, è stata effettuata l’analisi strutturale in dicroismo circolare. Per verificare la proabile interazione tra le vitamine ed i triptofani della proteina, mPrP23-109 è stata titolata con quattro vitamine, appartenenti al gruppo B, ed è stata monitorata la velocità dei fluorofori mediante l’anisotropia di fluorescenza. Infine è stata anche studiata l’interazione tra dominio N-terminale della PrPC con sistemi mietici di membrane. I nostri risultati confermano che la PrPC ha un ruolo funzionale nell’omeostasi del rame. Inoltre proponiamo che la proteina prionica, insieme con il rame, ricopre un ruolo chiave nell’assorbimento integrato degli MNE, via endocitosi.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Salvato, Benedetto
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:01 Febbraio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):prion protein; micronutrients; vitamin; metal; copper
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 05 - Scienze biologiche > BIO/09 Fisiologia
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:1886
Depositato il:01 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Prusiner, S. B. (1998). Prions. Proc Natl Acad Sci U S A 95, 13363-83. Cerca con Google

Stahl, N. & Prusiner, S. B. (1991). Prions and prion proteins. Faseb J 5, 2799-807. Cerca con Google

Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. (1987). Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229-40. Cerca con Google

Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Wright, P. E. & Dyson, H. J. (1997). Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94, 13452-7. Cerca con Google

Viles, J. H., Donne, D., Kroon, G., Prusiner, S. B., Cohen, F. E., Dyson, H. J. & Wright, P. E. (2001). Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40, 2743-53. Cerca con Google

Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., Fraser, P. E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. & Kretzschmar, H. (1997). The cellular prion protein binds copper in vivo. Nature 390, 684-7. Cerca con Google

Jones, C. E., Klewpatinond, M., Abdelraheim, S. R., Brown, D. R. & Viles, J. H. (2005). Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol 346, 1393-407. Cerca con Google

Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E. & Dyson, H. J. (1999). Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A 96, 2042-7. Cerca con Google

Jones, C. E., Abdelraheim, S. R., Brown, D. R. & Viles, J. H. (2004). Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 279, 32018-27. Cerca con Google

Jackson, G. S., Murray, I., Hosszu, L. L., Gibbs, N., Waltho, J. P., Clarke, A. R. & Collinge, J. (2001). Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci U S A 98, 8531-5. Cerca con Google

Hasnain, S. S., Murphy, L. M., Strange, R. W., Grossmann, J. G., Clarke, A. R., Jackson, G. S. & Collinge, J. (2001). XAFS study of the highaffinity copper-binding site of human PrP(91-231) and its low-resolution structure in solution. J Mol Biol 311, 467-73. Cerca con Google

Burns, C. S., Aronoff-Spencer, E., Legname, G., Prusiner, S. B., Antholine, W. E., Gerfen, G. J., Peisach, J. & Millhauser, G. L. (2003). Cerca con Google

Copper coordination in the full-length, recombinant prion protein. Biochemistry 42, 6794-803. Cerca con Google

Klewpatinond, M. & Viles, J. H. (2007). Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochem J 404, 393-402. Cerca con Google

Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R. & Wuthrich, K. (1996). NMR structure of the mouse prion protein domain PrP(121-321). Nature 382, 180-2. Cerca con Google

Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wuthrich, K. (1997). NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413, 282-8. Cerca con Google

Kretzschmar, H. A., Prusiner, S. B., Stowring, L. E. & DeArmond, S. J. (1986). Scrapie prion proteins are synthesized in neurons. Am J Pathol 122, 1-5. Cerca con Google

Moser, M., Colello, R. J., Pott, U. & Oesch, B. (1995). Developmental expression of the prion protein gene in glial cells. Neuron 14, 509-17. Cerca con Google

Horiuchi, M., Yamazaki, N., Ikeda, T., Ishiguro, N. & Shinagawa, M. (1995). A cellular form of prion protein (PrPC) exists in many nonneuronal tissues of sheep. J Gen Virol 76 ( Pt 10), 2583-7. Cerca con Google

Mironov, A., Jr., Latawiec, D., Wille, H., Bouzamondo-Bernstein, E., Legname, G., Williamson, R. A., Burton, D., DeArmond, S. J., Prusiner, S. B. & Peters, P. J. (2003). Cytosolic prion protein in neurons. J Neurosci 23, 7183-93. Cerca con Google

Vey, M., Pilkuhn, S., Wille, H., Nixon, R., DeArmond, S. J., Smart, E. J., Anderson, R. G., Taraboulos, A. & Prusiner, S. B. (1996). Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci U S A 93, 14945-9. Cerca con Google

Peters, P. J., Mironov, A., Jr., Peretz, D., van Donselaar, E., Leclerc, E., Erpel, S., DeArmond, S. J., Burton, D. R., Williamson, R. A., Vey, M. & Prusiner, S. B. (2003). Trafficking of prion proteins through a caveolaemediated endosomal pathway. J Cell Biol 162, 703-17. Cerca con Google

Nichols, B. (2003). Caveosomes and endocytosis of lipid rafts. J Cell Sci 116, 4707-14. Cerca con Google

Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. (1994). Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127, 1217-32. Cerca con Google

Sunyach, C., Jen, A., Deng, J., Fitzgerald, K. T., Frobert, Y., Grassi, J., McCaffrey, M. W. & Morris, R. (2003). The mechanism of internalization of glycosylphosphatidylinositol-anchored Cerca con Google

Magalhaes, A. C., Silva, J. A., Lee, K. S., Martins, V. R., Prado, V. F., Ferguson, S. S., Gomez, M. V., Brentani, R. R. & Prado, M. A. (2002). Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 277, 33311-8. Cerca con Google

Rivera-Milla, E., Oidtmann, B., Panagiotidis, C. H., Baier, M., Sklaviadis, T., Hoffmann, R., Zhou, Y., Solis, G. P., Stuermer, C. A. & Malaga-Trillo, E. (2006). Disparate evolution of prion protein domains and the distinct origin of Doppel- and prion-related loci revealed by fish-to-mammal comparisons. Faseb J 20, 317-9. Cerca con Google

Rivera-Milla, E., Stuermer, C. A. & Malaga-Trillo, E. (2003). An evolutionary basis for scrapie disease: identification of a fish prion mRNA. Trends Genet 19, 72-5. Cerca con Google

Kuwahara, C., Takeuchi, A. M., Nishimura, T., Haraguchi, K., Kubosaki, A., Matsumoto, Y., Saeki, K., Yokoyama, T., Itohara, S. & Onodera, T. (1999). Prions prevent neuronal cell-line death. Nature 400, 225-6. Cerca con Google

Bounhar, Y., Zhang, Y., Goodyer, C. G. & LeBlanc, A. (2001). Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276, 39145-9. Cerca con Google

Paitel, E., Sunyach, C., Alves da Costa, C., Bourdon, J. C., Vincent, B. & Checler, F. (2004). Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279, 612- 8. Cerca con Google

Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. (1997). Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146, 104-12. Cerca con Google

Wong, B. S., Liu, T., Li, R., Pan, T., Petersen, R. B., Smith, M. A., Gambetti, P., Perry, G., Manson, J. C., Brown, D. R. & Sy, M. S. (2001). Cerca con Google

Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem 76, 565-72. Cerca con Google

Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J. L., Lehmann, S., Launay, J. M. & Kellermann, O. (2000). Signal transduction hrough prion protein. Science 289, 1925-8. Cerca con Google

Chiarini, L. B., Freitas, A. R., Zanata, S. M., Brentani, R. R., Martins, V. R. & Linden, R. (2002). Cellular prion protein transduces neuroprotective signals. EMBO J 21, 3317-26. Cerca con Google

Zanata, S. M., Lopes, M. H., Mercadante, A. F., Hajj, G. N., Chiarini, L. B., Nomizo, R., Freitas, A. R., Cabral, A. L., Lee, K. S., Juliano, M. A., de Oliveira, E., Jachieri, S. G., Burlingame, A., Huang, L., Linden, R., Brentani, R. R. & Martins, V. R. (2002). Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21, 3307-16. Cerca con Google

Brown, L. R. & Harris, D. A. (2003). Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J Neurochem 87, 353-63. Cerca con Google

Lee, K. S., Magalhaes, A. C., Zanata, S. M., Brentani, R. R., Martins, V. R. & Prado, M. A. (2001). Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J Neurochem 79, 79-87. Cerca con Google

Pauly, P. C. & Harris, D. A. (1998). Copper stimulates endocytosis of the prion protein. J Biol Chem 273, 33107-10. Cerca con Google

Perera, W. S. & Hooper, N. M. (2001). Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11, 519-23. Cerca con Google

Wong, B. S., Chen, S. G., Colucci, M., Xie, Z., Pan, T., Liu, T., Li, R., Gambetti, P., Sy, M. S. & Brown, D. R. (2001). Aberrant metal binding by prion protein in human prion disease. J Neurochem 78, 1400-8. Cerca con Google

Brown, D. R., Nicholas, R. S. & Canevari, L. (2002). Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67, 211-24. Cerca con Google

Herms, J., Tings, T., Gall, S., Madlung, A., Giese, A., Siebert, H., Schurmann, P., Windl, O., Brose, N. & Kretzschmar, H. (1999). Evidence of presynaptic location and function of the prion protein. J Neurosci 19, 8866-75. Cerca con Google

Opazo, C., Barria, M. I., Ruiz, F. H. & Inestrosa, N. C. (2003). Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16, 91-8. Cerca con Google

44. Ruiz, F. H., Silva, E. & Inestrosa, N. C. (2000). The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues. Biochem Biophys Res Commun 269, 491-5. Cerca con Google

Nadal, R. C., Abdelraheim, S. R., Brazier, M. W., Rigby, S. E., Brown, D. R. & Viles, J. H. (2007). Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Free Radic Biol Med 42, 79- 89. Cerca con Google

Tallkvist, J., Bowlus, C. L. & Lonnerdal, B. (2000). Functional and molecular responses of human intestinal Caco-2 cells to iron treatment. Am J Clin Nutr 72, 770-5. Cerca con Google

Leblondel, G. & Allain, P. (1999). Manganese transport by Caco-2 cells. Biol Trace Elem Res 67, 13-28. Cerca con Google

Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L. & Hediger, M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482-8. Cerca con Google

Chua, A. C. & Morgan, E. H. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. J Comp Physiol [B] 167, 361-9. Cerca con Google

Crossgrove, J. S. & Yokel, R. A. (2004). Manganese distribution across the blood-brain barrier The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25, 451-60. Cerca con Google

Aschner, M., Shanker, G., Erikson, K., Yang, J. & Mutkus, L. A. (2002). The uptake of manganese in brain endothelial cultures. Neurotoxicology 23, 165-8. Cerca con Google

Aschner, M., Gannon, M. & Kimelberg, H. K. (1992). Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58, 730-5. Cerca con Google

Erikson, K. M. & Aschner, M. (2006). Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 27, 125-30. Cerca con Google

Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S. & Yokel, R. A. (2003). Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology 24, 3-13. Cerca con Google

Murphy, V. A., Wadhwani, K. C., Smith, Q. R. & Rapoport, S. I. (1991). Saturable transport of manganese(II) across the rat blood-brain barrier. J Neurochem 57, 948-54. Cerca con Google

Rabin, O., Hegedus, L., Bourre, J. M. & Smith, Q. R. (1993). Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem 61, 509-17. Cerca con Google

Davidsson, L., Lonnerdal, B., Sandstrom, B., Kunz, C. & Keen, C. L. (1989). Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J Nutr 119, 1461-4. Cerca con Google

Davis, C. D. & Greger, J. L. (1992). Longitudinal changes of manganesedependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 55, 747-52. Cerca con Google

Rossander-Hulten, L., Brune, M., Sandstrom, B., Lonnerdal, B. & Hallberg, L. (1991). Competitive inhibition of iron absorption by manganese and zinc in humans. Am J Clin Nutr 54, 152-6. Cerca con Google

Wedler, F. C. & Denman, R. B. (1984). Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul 24, 153-69. Cerca con Google

Davis, C. D., Zech, L. & Greger, J. L. (1993). Manganese metabolism in Cerca con Google

rats: an improved methodology for assessing gut endogenous losses. Proc Soc Exp Biol Med 202, 103-8. Cerca con Google

Kobayashi, M. & Shimizu, S. (1999). Cobalt proteins. Eur J Biochem 261, 1-9. Cerca con Google

Addlagatta, A., Hu, X., Liu, J. O. & Matthews, B. W. (2005). Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Biochemistry 44, 14741-9. Cerca con Google

Arfin, S. M., Kendall, R. L., Hall, L., Weaver, L. H., Stewart, A. E., Matthews, B. W. & Bradshaw, R. A. (1995). Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A 92, 7714-8. Cerca con Google

Krautler, B. (2005). Vitamin B12: chemistry and biochemistry. Biochem Soc Trans 33, 806-10. Cerca con Google

Smith, T. A. (2005). Human serum transferrin cobalt complex: stability and cellular uptake of cobalt. Bioorg Med Chem 13, 4576-9. Cerca con Google

Uthus, E. O. & Seaborn, C. D. (1996). Deliberations and evaluations of the approaches, endpoints and paradigms for dietary recommendations of the other trace elements. J Nutr 126, 2452S-2459S. Cerca con Google

Kim, H., Yu, C. & Maier, R. J. (1991). Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J Bacteriol 173, 3993-9. Cerca con Google

Przybyla, A. E., Robbins, J., Menon, N. & Peck, H. D., Jr. (1992). Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 8, 109-35. Cerca con Google

Nielsen, F. H. (1985). The importance of diet composition in ultratrace element research. J Nutr 115, 1239-47. Cerca con Google

Schnegg, A. & Kirchgessner, M. (1975). [Changes in hemoglobin content, erythrocyte count and hematocrit in nickel deficiency]. Nutr Metab 19, 268-78. Cerca con Google

Nielsen, F. H. (1996). How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential? J Nutr 126, 2377S-2385S. Cerca con Google

Uthus, E. O. & Poellot, R. A. (1996). Dietary folate affects the response of rats to nickel deprivation. Biol Trace Elem Res 52, 23-35. Cerca con Google

Solomons, N. W., Viteri, F., Shuler, T. R. & Nielsen, F. H. (1982). Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel. J Nutr 112, 39- 50. Cerca con Google

Tallkvist, J., Wing, A. M. & Tjalve, H. (1994). Enhanced intestinal nickel absorption in iron-deficient rats. Pharmacol Toxicol 75, 244-9. Cerca con Google

Tallkvist, J. & Tjalve, H. (1997). Effect of dietary iron-deficiency on the disposition of nickel in rats. Toxicol Lett 92, 131-8. Cerca con Google

Tallkvist, J. & Tjalve, H. (1998). Transport of nickel across monolayers of human intestinal Caco-2 cells. Toxicol Appl Pharmacol 151, 117-22. Cerca con Google

Tallkvist, J., Bowlus, C. L. & Lonnerdal, B. (2003). Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol 92, 121-4. Cerca con Google

Tabata, M. & Sarkar, B. (1992). Specific nickel(II)-transfer process between the native sequence peptide representing the nickel(II)-transport site of human serum albumin and L-histidine. J Inorg Biochem 45, 93-104. Cerca con Google

Rezuke, W. N., Knight, J. A. & Sunderman, F. W., Jr. (1987). Reference values for nickel concentrations in human tissues and bile. Am J Ind Med 11, 419-26. Cerca con Google

Linder, M. C. & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am J Clin Nutr 63, 797S-811S. Cerca con Google

Harris, Z. L. & Gitlin, J. D. (1996). Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63, 836S-41S. Cerca con Google

Milne, D. B. (1994). Assessment of copper nutritional status. Clin Chem 40, 1479-84. Cerca con Google

Graham, G. G. & Cordano, A. (1969). Copper depletion and deficiency in the malnourished infant. Johns Hopkins Med J 124, 139-50. Cerca con Google

Olivares, M. & Uauy, R. (1996). Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am J Clin Nutr 63, 846S-52S. Cerca con Google

Turnlund, J. R. (1998). Human whole-body copper metabolism. Am J Clin Nutr 67, 960S-964S. Cerca con Google

Puig, S., Lee, J., Lau, M. & Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277, 26021-30. Cerca con Google

Puig, S. & Thiele, D. J. (2002). Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6, 171-80. Cerca con Google

Petris, M. J. (2004). The SLC31 (Ctr) copper transporter family. Pflugers Arch 447, 752-5. Cerca con Google

Lee, J., Pena, M. M., Nose, Y. & Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277, 4380-7. Cerca con Google

Kuo, Y. M., Zhou, B., Cosco, D. & Gitschier, J. (2001). The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 98, 6836-41. Cerca con Google

Lee, J., Prohaska, J. R. & Thiele, D. J. (2001). Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98, 6842-7. Cerca con Google

Klomp, A. E., Tops, B. B., Van Denberg, I. E., Berger, R. & Klomp, L. W. (2002). Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 364, 497-505. Cerca con Google

Lee, J., Petris, M. J. & Thiele, D. J. (2002). Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J Biol Chem 277, 40253-9. Cerca con Google

Pena, M. M., Lee, J. & Thiele, D. J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129, 1251- 60. Cerca con Google

Vallee, B. L. & Galdes, A. (1984). The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol 56, 283-430. Cerca con Google

Klug, A. & Schwabe, J. W. (1995). Protein motifs 5. Zinc fingers. Faseb J 9, 597-604. Cerca con Google

Huse, M., Eck, M. J. & Harrison, S. C. (1998). A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J Biol Chem 273, 18729-33. Cerca con Google

Lin, R. S., Rodriguez, C., Veillette, A. & Lodish, H. F. (1998). Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J Biol Chem 273, 32878-82. Cerca con Google

Cousins, R. J. (1989). Theoretical and practical aspects of zinc uptake and absorption. Adv Exp Med Biol 249, 3-12. Cerca con Google

Lee, H. H., Prasad, A. S., Brewer, G. J. & Owyang, C. (1989). Zinc absorption in human small intestine. Am J Physiol 256, G87-91. Cerca con Google

Eide, D. J. (2004). The SLC39 family of metal ion transporters. Pflugers Arch 447, 796-800. Cerca con Google

Palmiter, R. D. & Huang, L. (2004). Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447, 744-51. Cerca con Google

Liuzzi, J. P. & Cousins, R. J. (2004). Mammalian zinc transporters. Annu Rev Nutr 24, 151-72. Cerca con Google

Ishihara, K., Yamazaki, T., Ishida, Y., Suzuki, T., Oda, K., Nagao, M., Yamaguchi-Iwai, Y. & Kambe, T. (2006). Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J Biol Chem 281, 17743-50. Cerca con Google

Van Eerdewegh, P., Little, R. D., Dupuis, J., Del Mastro, R. G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S. P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., Wang, M., Cerca con Google

Adair, R., Feng, Y., Dubois, J., FitzGerald, M. G., Huang, H., Gibson, R., Allen, K. M., Pedan, A., Danzig, M. R., Umland, S. P., Egan, R. W., Cuss, F. M., Rorke, S., Clough, J. B., Holloway, J. W., Holgate, S. T. & Keith, T. P. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426-30. Cerca con Google

Chowanadisai, W., Lonnerdal, B. & Kelleher, S. L. (2006). Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281, 39699-707. Cerca con Google

Thirumoorthy, N., Manisenthil Kumar, K. T., Shyam Sundar, A., Panayappan, L. & Chatterjee, M. (2007). Metallothionein: an overview. World J Gastroenterol 13, 993-6. Cerca con Google

Tallaksen, C. M., Bell, H. & Bohmer, T. (1993). Thiamin and thiamin phosphate ester deficiency assessed by high performance liquid chromatography in four clinical cases of Wernicke encephalopathy. Alcohol Clin Exp Res 17, 712-6. Cerca con Google

Tomasulo, P. A., Kater, R. M. & Iber, F. L. (1968). Impairment of thiamine absorption in alcoholism. Am J Clin Nutr 21, 1341-4. Cerca con Google

Dudeja, P. K., Tyagi, S., Kavilaveettil, R. J., Gill, R. & Said, H. M. (2001). Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles. Am J Physiol Cell Physiol 281, C786-92. Cerca con Google

Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., Ganapathy, V. & Prasad, P. D. (1999). Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 274, 31925-9. Cerca con Google

Fleming, J. C., Tartaglini, E., Steinkamp, M. P., Schorderet, D. F., Cohen, N. & Neufeld, E. J. (1999). The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 22, 305-8. Cerca con Google

Labay, V., Raz, T., Baron, D., Mandel, H., Williams, H., Barrett, T., Szargel, R., McDonald, L., Shalata, A., Nosaka, K., Gregory, S. & Cohen, N. (1999). Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 22, 300-4. Cerca con Google

Rajgopal, A., Edmondnson, A., Goldman, I. D. & Zhao, R. (2001). SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 1537, 175-8. Cerca con Google

Davis, R. E., Icke, G. C., Thom, J. & Riley, W. J. (1984). Intestinal absorption of thiamin in man compared with folate and pyridoxal and its subsequent urinary excretion. J Nutr Sci Vitaminol (Tokyo) 30, 475-82. Cerca con Google

Huang, S. N. & Swaan, P. W. (2000). Involvement of a receptor-mediated component in cellular translocation of riboflavin. J Pharmacol Exp Ther 294, 117-25. Cerca con Google

Said, H. M. & Ma, T. Y. (1994). Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells. Am J Physiol 266, G15-21. Cerca con Google

Said, H. M., Ortiz, A., Moyer, M. P. & Yanagawa, N. (2000). Riboflavin uptake by human-derived colonic epithelial NCM460 cells. Am J Physiol Cell Physiol 278, C270-6. Cerca con Google

Huang, S. N., Phelps, M. A. & Swaan, P. W. (2003). Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J Pharmacol Exp Ther 306, 681-7. Cerca con Google

Said, H. M. & Arianas, P. (1991). Transport of riboflavin in human intestinal brush border membrane vesicles. Gastroenterology 100, 82-8. Cerca con Google

Rindi, G. & Gastaldi, G. (1997). Measurements and characteristics of intestinal riboflavin transport. Methods Enzymol 280, 399-407. Cerca con Google

Yonezawa, A., Masuda, S., Katsura, T. & Inui, K. (2008). Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 295, C632-41. Cerca con Google

124. Innis, W. S., McCormick, D. B. & Merrill, A. H., Jr. (1985). Variations in riboflavin binding by human plasma: identification of immunoglobulins as the major proteins responsible. Biochem Med 34, 151-65. Cerca con Google

Lee, S. S. & McCormick, D. B. (1983). Effect of riboflavin status on hepatic activities of flavin-metabolizing enzymes in rats. J Nutr 113, 2274- 9. Cerca con Google

Yamada, Y., Merrill, A. H., Jr. & McCormick, D. B. (1990). Probable reaction mechanisms of flavokinase and FAD synthetase from rat liver. Arch Biochem Biophys 278, 125-30. Cerca con Google

McCormick, D. B. (1989). Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev 69, 1170-98. Cerca con Google

Kim, H., Jacobson, E. L. & Jacobson, M. K. (1994). NAD glycohydrolases: a possible function in calcium homeostasis. Mol Cell Biochem 138, 237-43. Cerca con Google

Lautier, D., Lagueux, J., Thibodeau, J., Menard, L. & Poirier, G. G. (1993). Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 122, 171-93. Henderson, L. M. & Gross, C. J. (1979). Transport of niacin and niacinamide in perfused rat intestine. J Nutr 109, 646-53. Cerca con Google

Simanjuntak, M. T., Tamai, I., Terasaki, T. & Tsuji, A. (1990). Carriermediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. J Pharmacobiodyn 13, 301-9. Cerca con Google

Takanaga, H., Maeda, H., Yabuuchi, H., Tamai, I., Higashida, H. & Tsuji, A. (1996). Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. J Pharm Pharmacol 48, 1073-7. Cerca con Google

Nabokina, S. M., Kashyap, M. L. & Said, H. M. (2005). Mechanism and regulation of human intestinal niacin uptake. Am J Physiol Cell Physiol 289, C97-103. Cerca con Google

Guggino, S. E. & Aronson, P. S. (1985). Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. J Clin Invest 76, 543-7. Cerca con Google

Manganel, M., Roch-Ramel, F. & Murer, H. (1985). Sodium-pyrazinoate cotransport in rabbit renal brush border membrane vesicles. Am J Physiol 249, F400-8. Cerca con Google

Schuette, S. & Rose, R. C. (1986). Renal transport and metabolism of nicotinic acid. Am J Physiol 250, C694-703. Cerca con Google

Bernofsky, C. (1980). Physiology aspects of pyridine nucleotide regulation in mammals. Mol Cell Biochem 33, 135-43. Cerca con Google

Mrochek, J. E., Jolley, R. L., Young, D. S. & Turner, W. J. (1976). Metabolic response of humans to ingestion of nicotinic acid and nicotinamide. Clin Chem 22, 1821-7. Cerca con Google

Said, H. M., Ortiz, A. & Ma, T. Y. (2003). A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway. Am J Physiol Cell Physiol 285, C1219-25. Cerca con Google

Said, Z. M., Subramanian, V. S., Vaziri, N. D. & Said, H. M. (2008). Pyridoxine uptake by colonocytes: a specific and regulated carriermediated process. Am J Physiol Cell Physiol 294, C1192-7. Cerca con Google

Merrill, A. H., Jr., Henderson, J. M., Wang, E., McDonald, B. W. & Millikan, W. J. (1984). Metabolism of vitamin B-6 by human liver. J Nutr 114, 1664-74. Cerca con Google

Fonda, M. L., Trauss, C. & Guempel, U. M. (1991). The binding of pyridoxal 5'-phosphate to human serum albumin. Arch Biochem Biophys 288, 79-86. Cerca con Google

Leklem, J. E. & Shultz, T. D. (1983). Increased plasma pyridoxal 5'- phosphate and vitamin B6 in male adolescents after 4500-meter run. Am J Clin Nutr 38, 541-8. Cerca con Google

Harris, D. A. & True, H. L. (2006). New insights into prion structure and toxicity. Neuron 50, 353-7. Cerca con Google

Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H. P., DeArmond, S. J., Prusiner, S. B., Aguet, M. & Weissmann, C. (1992). Cerca con Google

Normal development and behaviour of mice lacking the neuronal cellsurface PrP protein. Nature 356, 577-82. Cerca con Google

Manson, J. C., Clarke, A. R., Hooper, M. L., Aitchison, L., McConnell, I. & Hope, J. (1994). 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8, 121-7. Cerca con Google

Mallucci, G. R., Ratte, S., Asante, E. A., Linehan, J., Gowland, I., Jefferys, J. G. & Collinge, J. (2002). Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21, 202-10. Cerca con Google

Toni, M., Massimino, M. L., Griffoni, C., Salvato, B., Tomasi, V. & Spisni, E. (2005). Extracellular copper ions regulate cellular prion protein (PrPC) expression and metabolism in neuronal cells. FEBS Lett 579, 741- 4. Cerca con Google

Xiao, Z., Loughlin, F., George, G. N., Howlett, G. J. & Wedd, A. G. (2004). C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins Cerca con Google

involved in copper trafficking. J Am Chem Soc 126, 3081-90. Cerca con Google

Miura, T., Hori-i, A. & Takeuchi, H. (1996). Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett 396, 248-52. Cerca con Google

Holladay, S. R., Yang, Z., Kennedy, M. D., Leamon, C. P., Lee, R. J., Jayamani, M., Mason, T. & Low, P. S. (1999). Riboflavin-mediated delivery of a macromolecule into cultured human cells. Biochim Biophys Acta 1426, 195-204. Cerca con Google

Seetharam, B. (1999). Receptor-mediated endocytosis of cobalamin (vitamin B12). Annu Rev Nutr 19, 173-95. Cerca con Google

Foraker, A. B., Ray, A., Da Silva, T. C., Bareford, L. M., Hillgren, K. M., Schmittgen, T. D. & Swaan, P. W. (2007). Dynamin 2 regulates riboflavin endocytosis in human placental trophoblasts. Mol Pharmacol 72, 553-62. Cerca con Google

Rothberg, K. G., Ying, Y. S., Kolhouse, J. F., Kamen, B. A. & Anderson, R. G. (1990). The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol 110, 637-49. Cerca con Google

Taylor, J. P., Hardy, J. & Fischbeck, K. H. (2002). Toxic proteins in neurodegenerative disease. Science 296, 1991-5. Cerca con Google

Harris, D. A., Huber, M. T., van Dijken, P., Shyng, S. L., Chait, B. T. & Wang, R. (1993). Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32, 1009-16. Cerca con Google

Chen, S. G., Teplow, D. B., Parchi, P., Teller, J. K., Gambetti, P. & Autilio-Gambetti, L. (1995). Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270, 19173-80. Cerca con Google

Vincent, B., Paitel, E., Frobert, Y., Lehmann, S., Grassi, J. & Checler, F. (2000). Phorbol ester-regulated cleavage of normal prion protein in HEK293 human cells and murine neurons. J Biol Chem 275, 35612-6. Cerca con Google

Michel, V. & Bakovic, M. (2007). Lipid rafts in health and disease. Biol Cell 99, 129-40. Cerca con Google

Chang, J. Y. (1985). Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem 151, 217-24. Cerca con Google

Kramer, M. L., Kratzin, H. D., Schmidt, B., Romer, A., Windl, O., Liemann, S., Hornemann, S. & Kretzschmar, H. (2001). Prion protein binds copper within the physiological concentration range. J Biol Chem 276, 16711-9. Cerca con Google

Kremer, J. M., Esker, M. W., Pathmamanoharan, C. & Wiersema, P. H. (1977). Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16, 3932-5. Cerca con Google

Gruenberg, J. (2001). The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2, 721-30. Cerca con Google

Quaglio, E., Chiesa, R. & Harris, D. A. (2001). Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276, 11432-8. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record