Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Di Tosto, Gennaro (2009) Cooperation through communication: Agent-based models and experimental results. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
622Kb

Abstract (inglese)

In human societies, reputation is a complex artefact. It relies on the tendency of group members to assess one another and its ultimate function is to perform distributed social control, i.e. the enforcement of social accepted norms and behaviours without the presence of a centralised institutional actor. This goal is accomplished by means of evaluations spreading (gossip) among the members of the same group. Hence, reputation is described as an information transmission process. The inputs of the process are the beliefs that group members autonomously acquire during social interactions, while its output is an emergent property for the evaluated agent, i.e. what an agent is believed to be (according to given social norms) as a result of the spreading of evaluations
about him/her.

Since social actors interact in a non-linear way, Agent-Based Social Simulation (ABSS) is a candidate methodology for the study of gossip and reputation. By means of computer models, ABSS allows the design of the behaviour of artificial entities ---the agents--- and the local rules that govern their interactions. The simulated dynamic, then, allows to observe the properties that emerge at the level of the systems, which can be statistically analysed.

Simulations were implemented in scenarios that represent different forms of strategic interactions, allowing us to test how and to what extent circulation of information influence cooperative behavior. Two forms of communication mechanisms were tested: one with private information, the other with public information. Moreover, an additional case scenario is analysed: an Industrial district populated by artificial firms. Industrial districts (Ids) can be conceived as complex systems made of heterogeneous but strictly interrelated and complementary firms. One of the distinctive features of industrial districts is the tight connection existing between the social community and the firms: in this context, economic exchanges are mainly informed by social relationships and holding good reputation is an asset that may actually foster potential relations. In this work we modelled the effects of two kinds of social evaluations: namely Image (direct evaluations) and Reputation (reported evaluation). Likewise, we compared the effects of sincere and insincere information on the economic performances of the single firms and of the cluster as a whole.

In a different experimental settings ---performed with groups of natural subjects interacting through a graphic computer interface--- we analysed reciprocal forms of messages exchanges. The positive effects of communication on rates of cooperation is a robust experimental finding. When individuals can talk to one other, cooperation increases significantly. Proposed explanations to this phenomenon consider the formation of group identity, as well as the chance to make explicit commitments ---where reputational and moral factors
come into play--- as fundamental causes. This research, however, looks at communication as a mean to establishing and enforcing cooperation among people; to our knowledge, no attempt has been made to analyze communication strategies, when communication processes are actually the place where cooperation evolve.

We developed a novel experimental setting in which participants playing a memory game (with numbers instead of images) could either play alone, or exchange messages containing the position and the value of the cards, so that
those who received a truthful message could more easily get a match. This setting was conceptually modeled after the stag hunt game, a coordination game in which players do better if they coordinate their behavior with the behavior of others.

In our experiment, playing alone is faster than sending messages, but it leads to a quicker depletion of the available moves. On the contrary, sending messages is more time consuming, but it allows players to know the position of cards, provided the information is correct, without wasting moves in trying to guess.

Results show that the exchange of messages is a mutually beneficial activity, allowing participants to jointly discover the game board, to score higher and more efficiently. Cooperation through communication is conditional to receiving messages from other participants and is performed with this very expectation (as reported by the majority of the subjects afterwards). This strategic behavior could be explained according to two alternative frameworks: either a game-theoretical interpretation of reciprocity, analyzed as an imitation strategy (Tit-For-Tat); or a cognitive view in which cooperative behavior is regarded as a socially prescribed activity, and every deviation from the norm is punished according to the interpretation of the violation. The absence of retaliatory behaviour; and a tendency to exclude non-cooperative partners from further communication seems to exclude the possibility of an imitation strategy.

Abstract (italiano)

Nelle società umane, la reputazione è un artefatto complesso. Essa si basa sulla tendenza dei membri di un gruppo di valutarsi reciprocamente e la sua funzione è quella di eseguire un controllo sociale distribuito, vale a dire l'applicazione ed il rispetto dei comportamenti e delle norme sociali accettate, senza la presenza di un attore istituzionale centralizzato. Questo obiettivo si realizza mediante la diffusione delle valutazioni (gossip) tra i membri dello stesso gruppo. Di conseguenza, la reputazione è descritta come un processo di trasmissione delle informazioni. Gli input del processo sono le credenze che i membri del gruppo acquisiscono autonomamente durante le interazioni sociali, mentre il suo output è una proprietà emergente per l' agente target delle valutazioni; vale a dire ciò che un agente è creduto essere (in base a norme sociali) a seguito della diffusione di valutazioni su di lui/lei.

Dal momento che gli attori sociali interagiscono tra loro in modo non-lineare, la Simulazione Sociale Basata su Agenti (ABSS) è stata scelta come metodologia per lo studio del gossip e della reputazione. Per mezzo di modelli computazionali, ABSS permette il design e l'analisi del comportamento di entità  artificiali (gli agenti) e le norme locali che regolano le loro interazioni. Le dinamiche simulate, quindi, permettono di osservare le proprietà  emergenti a livello del sistema, che possono essere analizzate statisticamente.

Le simulazioni sono state implementate in scenari che rappresentano diverse forme di interazione strategica, e ci hanno permesso di testare come, e in quale misura, la circolazione di informazioni influenza il comportamento
cooperativo. Due forme di comunicazione sono state testati: una con informazioni private, l'altra con informazioni pubbliche. Inoltre, un ulteriore scenario è analizzato: un distretto industriale popolato da agenti artificiali.
Una delle caratteristiche distintive dei distretti industriali è il legame stretto esistente tra le imprese ed il loro contesto sociale: in questo caso, gli scambi economici sono principalmente informati da relazioni sociali e la buona reputazione di un'azienda è un bene che può effettivamente favorire potenziali relazioni. In questo lavoro abbiamo modellato gli effetti di due tipi di valutazioni sociali: vale a dire ``Immagine'' (valutazioni dirette) e ``Reputazione'' (valutazioni riportate). Allo stesso tempo, abbiamo confrontato gli effetti di comunicazioni sincere e insincere sui risultati economici delle singole imprese e del sistema nel suo complesso.

Parallelamente è stato intrapreso un lavoro sperimentale, i cui soggetti interagivano tramite computer, volto ad analizzare forme cooperative di comunicazione durante lo svolgimento di un task assegnato. L'effetto positivo della cooperazione sul tasso di cooperazione è un risultato sperimentale oramai solido. Quando i soggetti hanno la possibilità di parlare tra di loro, i comportamenti cooperativi aumentano significativamente. Le spiegazioni proposte per questo fenomeno vanno ricercate nella formazione di identita' di gruppo, come anche nella possibilita' di formare impegni espliciti, dove i fattori reputazionali e morali giocano un ruolo fondamentale. A tutt'oggi però lo stato dell'arte non contempla un'analisi delle strategie di comunicazione, nel caso in cui siano i processi comunicativi il luogo in cui la cooperazione ha luogo ed evolve.

Il disegno sperimentale prevede la possibilità per i partecipanti, ai quali è chiesto di svolgere un compito simile ad un memory game (con numeri invece di immagini), di giocare da soli, oppure di scambiare messaggi con altri partecipanti contenenti la posizione ed il valore delle carte. In questo modo, chi riceve messaggi veritieri è facilitato nel compito. I risultati mostrano che lo scambio di informazioni è un'attività mutualmente benefica, che consente ai partecipanti di esplorare congiuntamente lo spazio delle possibilità, e di ottenere punteggi più elevati. L'invio di messaggi è inoltre un comportamento condizionato alla ricezione di messaggi dagli altri partecipanti, ed è un'attività svolta con questa precisa aspettativa sul comportamento degli altri, come riportato dalla maggiornaza dei soggetti nel questionario finale. Questa strategia comportamentale è interpretabile come una norma di reciprocazione. L'assenza di punizione (retaliatory behaviour), congiuntamente alla tendenza ad escludere partners non cooperativi dal processo di comunicazione, ad indicare che le deviazioni dalla norma sono trattate in base alla soggetiva interpretazione dell'utilità della norma.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Castelli , Luigi
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE PSICOLOGICHE > SCIENZE COGNITIVE
Data di deposito della tesi:02 Febbraio 2009
Anno di Pubblicazione:2009
Parole chiave (italiano / inglese):cooperazione abm
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/05 Psicologia sociale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:1910
Depositato il:02 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alexander, R. D. (1987). The Biology of Moral Systems (Foundations of Human Behavior). Aldine. Cerca con Google

Ashlock, D., Smucker, M., Stanley, E. A., and Tesfatsion, L. (1996). Preferential partner selection in an evolutionary study of prisoner's dilemma.BioSystems, 37(1-2):99{125. Cerca con Google

Axtell, R. L. and Epstein, J. (2006). Coordination in transient social network: an agent-based model of the time of retirement. In Epstein, J., editor, Generative Social Science. Princeton University Press. Cerca con Google

Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harburger, J., Chakravarty, S., Hammond, R., Parker, J., and Parker, M. (2002). Population growth and collapse in a multiagent model Cerca con Google

of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 3:7275{7279. Cerca con Google

Back, I. and Flache, A. (2006). The viability of cooperation based on inter personal commitment. Journal of Articial Societies and Social Simulation, 9(1). http://jasss.soc.surrey.ac.uk/9/1/12.html. Vai! Cerca con Google

Bateson, M., Nettle, D., and Roberts, G. (2006). Cues of being watched enhance cooperation in a real-world setting. Biology Letters, 2(3):412{414. Cerca con Google

Becattini, G. (1990). The marshallian industrial district as socio-economic notion. International Institute of Labour Studies. Cerca con Google

Boyd, R., Gintis, H., Bowles, S., and Richerson, P. J. (2003). The evolution of altruistic punishment. PNAS, 100(6):3531{3535. Cerca con Google

Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. The University of Chicago Press. Cerca con Google

Boyd, R. and Richerson, P. J. (2006). Culture and the Evolution of the Human Social Instincts. In Eneld, N. J. and Levinson, S. C., editors, Roots of Human Sociality. Culture, Cognition and Interaction. Berg, Oxford. Cerca con Google

Bratman, M. (1987). Intention, Plans, and Practical Reason. Harvard University Press, Cambridge, Mass. Cerca con Google

Brosig, J., Weimann, J., and Ockenfels, A. (2003). The Eect of Communication Media on Cooperation. German Economic Review, 4(2):217{241. Cerca con Google

Castelfranchi, C. (1988). Che Figura! Il Mulino, Bologna. Cerca con Google

Castelfranchi, C. (1990). Social power. In Demazeau, Y. and Muller, J. P., editors, Decentralized AI { Proceedings of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World, pages 49{62. Elsevier. Cerca con Google

Castelfranchi, C., Miceli, M., and Cesta, A. (1992). Dependence relations among autonomous agents. In Werner, E. and Demazeau, Y., editors, Decentralized AI 3: Proceedings of the Third European Workshop on Modelling Autonomous Agents in a Multi-Agent World, pages 215{231. Elsevier. Cerca con Google

Coleman, J. S. (1990). Foundations of Social Theory. The Belknap Press of Harvard University Press. Cerca con Google

Conte, R. (1999). Social intelligence among autonomous agents. Computational and Mathematical Organization Theory, 5:202{228. Cerca con Google

Conte, R. and Castelfranchi, C. (1995). Cognitive and Social Acition. UCL Press, London. Cerca con Google

Conte, R. and Paolucci, M. (2002). Reputation in Articial Societies: Social Beliefs for Social Order. Springer. Cerca con Google

Croson, R. T. A. (2008). Dierentiating altruism and reciprocity. In Plott, C. R. and Smith, V. L., editors, Handbook of Experimental Economics Results. Elsevier, Amsterdam. Cerca con Google

Dawkins, R. (1976). The Selsh Gene. Oxford University Press. de Vos, H., Smaniotto, R., and Elsas, D. (2001). Reciprocal altruism under conditions of partner selection. Rationality and Society, 13(2):139{183. Cerca con Google

Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10):1407{1424. Cerca con Google

Di Tosto, G., Giardini, F., and Conte, R. (2007). Enforcing prosocial behaviour. In Amblard, F., editor, Proceedings of Essa'07 the 4th Conference of the European Social Simulation Association, pages 597{607. Toulouse, IRIT Editions. Cerca con Google

Doebeli, M. and Hauert, C. (2005). Models of Cooperation based on the Prisoner's Dilemma and the Snowdrift Game. Ecology Letters, 8:748{766. Cerca con Google

Dunbar, R. (2004). Gossip in Evolutionary Perspective. Review of General Psychology, 8(2):100{110. Cerca con Google

Elias, N. (1974). Towards a theory of communities. In The Sociology of Communities. A Selection of Readings. Frank Cass & Co, London. Cerca con Google

Epstein, J. M. (2008). Why model? Journal of Articial Societies and Social Simulation, 11(4):12. http://jasss.soc.surrey.ac.uk/11/4/12.html. Vai! Cerca con Google

Farrell, H. (2005). Trust and political economy: Institutions and the sources of interrm cooperation. Comparative Political Studies, 38(5):459{483. Cerca con Google

Fehr, E. and Gachter, S. (2000). Fairness and Retaliation: The Economics of Reciprocity. The Journal of Economic Perspectives, 14(3):159{181. Cerca con Google

Fehr, E. and Gachter, S. (2002). Altruistic punishment in humans. Nature, 415(6868):137{140. Cerca con Google

Giardini, F. and Di Tosto, G. (2007). Cooperation through communication: Reciprocal exchange of relevant information among humans involved in strategic interactions. In Vosniadou, S., Kayser, D., and Protopapas, Cerca con Google

A., editors, Proceedings of EuroCogSci07 - The European Cognitive Science Conference, pages 190{195. Lawrence Erlbaum Associates. Cerca con Google

Giardini, F., Di Tosto, G., and Conte, R. (2008a). A model for simulating reputation dynamics in industrial districts. Simulation Modelling Practice and Theory, 16(2):231{241. Cerca con Google

Giardini, F., Di Tosto, G., and Conte, R. (2008b). Reputation and economic performance in industrial districts: Modellig social complexity through multi-agent systems. In Cio Revilla, C. and Deuant, G., editors, The Second World Congress on Social Simulation (WCSS08), George Mason University, Fairfax, VA, USA, July 14{17, 2008. Cerca con Google

Gintis, H. (2007). A framework for the unication of the behavioral sciences. Behavioral and Brain Sciences, 30(1):1{61. Cerca con Google

Gintis, H., Smith, E. A., and Bowles, S. (2001). Costly Signaling and Cooperation. Journal of Theoretical Biology, 213(1):103{119. Cerca con Google

Gluckman, M. (1963). Papers in honor of Melville J. Herskovits: Gossip and scandal. Current Anthropology, 4(3). Cerca con Google

Grafen, A. (1998). Evolutionary biology: Green beard as death warrant. Nature, 394(6693):521{522. Cerca con Google

Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3). Cerca con Google

Hales, D. and Edmonds, B. (2003). Evolving Social Rationality for MAS using \Tags". In Rosenchein, J. S., Wooldridge, M., Sandholm, T., and Yokoo, M., editors, Proocedings of the 2nd International Conference on Cerca con Google

Autonomous Agents and Multiagent Systems (AAMAS 03), pages 497{503. ACM Press. Cerca con Google

Hales, D. and Edmonds, B. (2005). Applying a socially-inspired technique (tags) to improve cooperation in p2p networks. IEEE Transactions in Systems, Man and Cybernetics { Part A: Systems and Humans, 35(3):385{395. Cerca con Google

Haley, K. J. and Fessler, D. M. T. (2005). Nobody's watching? subtle cues aect generosity in an anonymous economic game. Evolution and Human Behavior, 26:245{256. Cerca con Google

Hauk, E. (2001). Leaving the prison: Permitting partner choice and refusal in prisoner's dilemma games. Computational Economics, 18(1):65{87. Cerca con Google

Henirch, J. (2004). Cultural group selection, coevolutionary processes and large-scale cooperation. Journal of Economic Behavior & Organization, 53:3{35. Cerca con Google

Henrich, J. and Gil-White, F. J. (2001). The evolution of prestige: freely conferred deference as a mechanism for enhancing the benets of cultural transmission. Evolution and Human Behavior, 22(3):165{196. Cerca con Google

Hirshleifer, D. and Rasmusen, E. (1989). Cooperation in a repeated prisoners' dilemma with ostracism. Journal of Economic Behavior and Organization, 12:87{106. Cerca con Google

Hruschka, D. and Henrich, J. (2006). Friendship, cliqueness, and the emergence of cooperation. Journal of Theoretical Biology, 239:1{15. Cerca con Google

Huynh, T. D., Jennings, N. R., and Shadbolt, N. R. (2006). An integrated trust and reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2):119{154. Cerca con Google

Kalick, S. M. and Hamilton, T. E. (1986). The matching hypothesis reexamined. Journal of Personality and Social Psychology, 51(4):673{682. Cerca con Google

Karlsson, C., Johansson, B., and Stough, R. (2005). Industrial Clusters And Inter-rm Networks (New Horizons in Regional Science Series). Edward Elgar Publishing. Cerca con Google

Kollock, P. (1998). Social dilemmas: The anatomy of cooperation. Annual Reviews of Sociology, 24:183{214. Cerca con Google

Kritikos, A. and Meran, G. (1998). Social norms, moral commitment, and cooperation. Homo Oeconomicus, 15:71{92. Cerca con Google

Marsh, S. (1992). Trust and reliance in multi-agent systems: A preliminary report. In MAAMAW '92, 4th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Rome, Italy. Cerca con Google

Marsh, S. (1994a). Formalising trust as a computational concept. Technical report, Dept. of Computing Science and Mathematics, University of Stirling. Cerca con Google

Marsh, S. (1994b). Optimism and pessimism in trust. In Proceedings of the Ibero-American Conference on Articial Intelligence (IBERAMIA-94). Cerca con Google

Miceli, M. and Castelfranchi, C. (2000). The role of evaluation in cognition and social interaction. In Dautenhahn, K., editor, Human cognition and agent technology. John Benjamins Publishing Company, Amsterdam, NL. Cerca con Google

Milinski, M., Semmann, D., Bakker, T. C. M., and Krambeck, H.-J. (2001). Cooperation through indirect reciprocity: image scoring or standing strategy? Proceedings of the Royal Society of London B, 268:2495{2501. Cerca con Google

Milinski, M., Semmann, D., and Krambeck, H.-J. (2002). Reputation helps solve the `tragedy of the commons'. Nature, 415(6870):424{426. Cerca con Google

Moukas, A., Zacharia, G., and Maes, M. (1999). Amalthaea and histos: Multiagent systems for www sites and reputation recommendations. In Klusch, M., editor, Intelligent Information Agents. Agent-Based Information Discovery and Management on the Internet, pages 292{322. Springer, Berlin. Cerca con Google

Mui, L., Halberstadt, A., and Mohtashemi, M. (2002). Notion of reputation in multi-agent systems: A review. In Proceedings of the AAMAS Conference, pages 280{287. Cerca con Google

Noe, R. (2006). Cooperation experiments: coordination through communication versus acting apart together. Animal Behaviour, 71(1):1{18. Cerca con Google

Nowak, A., Szamrej, J., and Latane, B. (1990). From Private Attitude to Public Opinion: A Dynamic Theory of Social Impact. Psychological Review, 97(3):362{376. Cerca con Google

Nowak, M. A. and Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393(6685):573{577. Cerca con Google

Orbell, J. M. and Dawes, R. M. (1993). Social welfare, cooperators' advantage, and the option of not playing the game. American Sociological Review, 58:787{800. Cerca con Google

Panchanathan, K. and Boyd, R. (2004). Indirect reciprocity can stabilize cooperation without the second-order free rider problem. Nature, 432(7016):499{502. Cerca con Google

Putnam, R. D. (2001). Bowling Alone : The Collapse and Revival of American Community. Simon & Schuster. Cerca con Google

Putnam, R. D., Leonardi, R., and Nanetti, R. Y. (1993). Making Democracy Work: Civic Traditions in Modern Italy. Princeton University Press. Cerca con Google

Ramchurn, S. D., Huynh, D., and Jennings, N. R. (2004). Trust in multiagent systems. The Knowledge engineering Review, 19(1):1{25. Cerca con Google

Regan, K. and Cohen, R. (2005). A model of indirect reputation assessment for adaptive buying agents in electronic markets. In Proceedings of the Business Agents and Semantic Web (BASeWEB05), Victoria, Canada. Cerca con Google

Riolo, R. L., Cohen, M. D., and Axelrod, R. (2001). Evolution of cooperation without reciprocity. Nature, 414:441{443. Cerca con Google

Sabater, J. and Paolucci, M. (2007). Representation and aggregation of social evaluations in computational trust and reputation models. International Journal of Approximate Reasoning, 46(3):458{483. Cerca con Google

Sabater, J., Paolucci, M., and Conte, R. (2006). Repage: Reputation and image among limited autonomous partners. Journal of Articial Societies and Social Simulation, 9(2). Cerca con Google

Sabater, J. and Sierra, C. (2002). Social ReGreT, a reputation model based on social relations. SIGecom Exch., 3(1):44{56. Cerca con Google

Sabater, J. and Sierra, C. (2004). Review on computational trust and reputation models. Articial Intelligence Review, 24(1):33{60. Cerca con Google

Schelling, T. C. (1978). Micromotives and Macrobehavior. W. W. Norton. Schillo, M., Fischer, K., and Klein, C. T. (2001). The micro-macro link in dai and sociology. In MABS 2000: Proceedings of the second international workshop on Multi-agent based simulation, pages 133{148, Secaucus, NJ, USA. Springer-Verlag New York, Inc. Cerca con Google

Schillo, M., Funk, P., and Rovatsos, M. (2000). Using trust for detecting deceitful agents in articial societies. Applied Articial Intelligence, 14(8):825{ 848. Cerca con Google

Semmann, D., Krambeck, H.-J., and Milinski, M. (2004). Strategic investment in reputation. Behav Ecol Sociobiol, 56:248{252. Cerca con Google

Shoham, Y. (1993). Agent-oriented programming. Artif. Intell., 60(1):51{92. Cerca con Google

Sichman, J. S., Conte, R., Castelfranchi, C., and Demazeau, Y. (1994). A social reasoning mechanism based on dependence networks. In ECAI 94. Cerca con Google

11th European Conference on Articial Intelligence, pages 188{192. John Wiley and Sons. Cerca con Google

Simon, H. A. (1996). The Sciences of the Articial, 3rd Edition. MIT Press, Cambridge. Cerca con Google

Skyrms, B. (2001). The Stag Hunt. Proceedings and Addresses of the American Philosophical Association, 75(2):31{41. Cerca con Google

Smith, E. R. and Conrey, F. R. (2007). Agent-Based Modeling: A New Approach for Theory Building in Social Psychology. Pers Soc Psychol Rev, 11(1):87{104. Cerca con Google

Sommerfeld, R. D., Krambeck, H.-J., Semmann, D., and Milinski, M. (2007). Cerca con Google

Gossip as an alternative for direct observation in games of indirect reciprocity. Proceedings of the National Academy of Sciences, 104(44):17435{17440. Cerca con Google

Stanley, E. A., Ashlock, D., and Tesfatsion, L. (1994). Iterated prisoner's dilemma with choice and refusal of partners. In Articial Life III, volume 17 of Santa Fe Institute Studies in the Sciences of Complexity, pages 131{175, Reading, MA. Cerca con Google

Stasser, G. (1988). Computer simulation as a research tool: The DISCUSS model of group decision making. Journal of Experimental Social Psychology, 24(5):393{422. Cerca con Google

Tesfatsion, L. and Judd, K. L. (2006). Handbook of Computational Economics, Volume 2, First Edition : Agent-Based Computational Economics (Hand-book of Computational Economics). North Holland. Cerca con Google

Wedekind, C. and Milinski, M. (2000). Cooperation Through Image Scoring in Humans. Science, 288(5467):850{852. Cerca con Google

Wilson, D. S., Wilczynski, C., Wells, A., and Weiser, L. (2000). Gossip and other aspects of language as group-level adaptations. In Heyes, C. and Huber, L., editors, The evolution of cognition. MIT Press, Cambridge. Cerca con Google

Yu, B. and Singh, M. P. (2000). A social mechanism of reputation management in electronic communities. In Klush, M. and Kerschberg, L., editors, Cooperative Information Agents IV. The Future of Information Agents in Cyberspace, 4th International Workshop, CIA2000, LNAI 1860, pages 154{ Cerca con Google

165. Springer-Verlag. Cerca con Google

Zacharia, G. (1999). Trust management through reputation mechanisms. In Castelfranchi, C., Falcone, R., and Firozabadi, B. S., editors, Deception, Fraud and Trust in Agent Societies, pages 163{167. Seattle. Cerca con Google

Zacharia, G., Moukas, A., and Maes, P. (1999). Collaborative reputation mechanisms in electronic marketplaces. In Proceedings of the 32nd Hawaii International Conference on System Sciences, Wailea Maui Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record